Черная дыра что это такое для детей


Черные дыры - объяснение для детей

Астрономия для детей > Черные дыры

Что такое черная дыра – объяснение для детей: описание с фото, как найти в космосе Вселенной, как появляются, смерть звезды, сверхмассивные черны дыры галактик.

Для самых маленьких родители или в школе должны объяснить, что воспринимать черную дыру как пустое место – грубейшая ошибка. Наоборот, в ней сконцентрировано невероятное количество материи, которая замкнута в маленьком пространстве. Чтобы объяснение для детей было более красочным, просто представьте, что вы взяли звезду в 10 раз массивнее Солнца и попытались впихнуть в область размером с Нью-Йорк. Из-за такого давления, гравитационное поле обретает настолько большую силу, что никто и даже световой луч не может вырваться. С развитием технологий НАСА удается все больше узнать об этих загадочных объектах.

Начать объяснение для детей можно с того, что термина «черная дыра» не существовало до 1967 года (ввел Джон Уилер). Но до этого уже несколько веков упоминалось о существовании странных объектов, которые своей плотностью и массивностью не выпускают свет. Их даже предсказал Альберт Эйнштейн в общей теории относительности. Она доказала, что при смерти массивной звезды остается небольшое плотное ядро. Если звезда по массе в трое превышает солнечную, то сила тяжести превозмогает остальные силы, и мы получаем черную дыру.

Процесс формирования черной звезды

Конечно, важно объяснить детям, что исследователи лишены возможности наблюдать эти особенности напрямую (телескопы находят лишь свет, рентгеновское излучение и прочие формы электромагнитного излучения), так что ждать фото черной дыры не приходится. Но можно высчитать их местоположение и даже определить размер из-за влияния, которое они оказывают на окружающие объекты. Например, если она пройдет сквозь облако межзвездной материи, то в процессе начнет втягивать вещество внутрь – аккреция. То же самое повторится, если вблизи пройдет звезда. Правда звезда может разорваться.

В момент притягивания вещество нагревается и ускоряется, выпуская в пространство рентгеновские лучи. Недавние открытия заметили несколько мощных всплесков гамма-лучей, демонстрируя процесс пожирания дырой соседних звезд. В этот момент они стимулируют рост одних и останавливают у других.

Смерть звезды – начало для черной дыры

Большая часть черных дыр появляется из остаточного материала умирающих крупных звезд (взрыв сверхновой). Меньшие по размеру звезды превращаются в плотные нейтронные, которым не хватает массивности, чтобы удерживать свет. Если масса звезды больше солнечной в 3 раза, то она становится кандидатом на пост черной дыры. Важно объяснить детям одну странность. Когда звезда разрушается, то ее поверхность приближается к воображаемой поверхности (горизонт событий). Время на самой звезде становится медленнее, чем у наблюдателя. Когда поверхность настигла горизонта событий, то время замирает, и звезда больше не может разрушаться – замороженный разрушающийся объект.

Черные дыры в центрах сливающихся галактиках

Более крупные черные дыры способны появляться после звездного столкновения. После запуска в декабре 2004 года телескопу НАСА удалось заметить сильные мимолетные световые вспышки – гамма-излучения. После этого Чандра и Хаббл собрали данные о событии и поняли, что эти вспышки могли быть следствием столкновения черной дыры и нейтронной звезды, что порождает новую черную дыру.

Хотя в процессе образования дети и родители уже разобрались, но загадкой остается один момент. Кажется, будто дыры существуют в двух разных масштабах. Есть множество черных дыр – остатки массивных звезд. Как правило, они в 10-24 раз массивнее Солнца. Ученые постоянно видят их, если посторонняя звезда приближается критически близко. Но большинство черных дыр существуют изолированно и их просто нельзя заметить. Однако, если судить по количеству звезд, обладающих достаточным размером, чтобы стать кандидатом на черную дыру, то в Млечном Пути таких черных дыр должно присутствовать десятки миллионов миллиардов.

Есть также и сверхмассивные черные дыры, которые в миллион и даже миллиард раз превосходят по размерам наше Солнце. Полагают, что такие монстры обитают в центрах практически всех крупных галактик (и в нашей).

Для самых маленьких будет интересно узнать, что долгое время ученые полагали, будто среднего размера для черных дыр не существует. Но данные Чандры, XMM-Newton и Хаббла показывают, что они есть.

Возможно, сверхмассивные черные дыры появляются из-за цепной реакции, вызванной столкновением звезд в компактных скоплениях. Из-за этого накапливается очень много массивных звезд, которые разрушаются и производят черные дыры. Затем эти скопления занимают галактический центр, где черные дыры сливаются и превращаются в сверхмассивного представителя.

Вы уже могли понять, что у вас не получится полюбоваться на черную дыру в высоком качестве в режиме онлайн, потому что эти объекты не выпускают свет. Но детям будет интересно изучить фото и схемы, созданные на основе контакта черных дыр и обычной материи.


Объекты космоса

Маленькое сообщение черная дыра как объяснить ребенку. Черные дыры — объяснение для детей

« Чёрные дыры » Вселенной.

«Черная дыры»

«Что там новенького в космосе? Чёрные дыры? Заглянуть в них не прочь не только астрономы, но и те, кто интересуется жизнью вселенной, в том числе и любопытные школьники», – так сказал доктор педагогических наук Е. Левитан.

В научно – популярной литературе, в статьях о Вселенной часто можно встретить термин «чёрная дыра». У Вас, впервые, прочитавшего это словосочетание, сразу возникает образ, скажем, отверстия в стене. Упоминание о дырах во Вселенных, первоначально также ассоциируется с неким отверстием в небесах. Так, что же такое чёрная дыра?

Чёрная дыра – это космический объект невероятной плотности, обладающий абсолютной гравитацией, такой, что любое космическое тело и даже само пространство и время, поглощаются ею, это своего рода конечная точка всего.

«Черная дыры» немного напоминают пылесос, который работает в космосе, но в отличие от пылесоса чёрные дыры не всасывают внутрь себя все находящиеся в зоне их воздействия объекты, а, используя свою силу тяжести, только притягивают всё вокруг. Это называется эффектом вакуума (отсутствие воздуха), который вы можете наблюдать и у себя дома в своей комнате. Когда при уборке комнаты включается пылесос, то можно наблюдать, как крошки, грязь и мелкие предметы начинают движение по направлению к пылесосу. У чёрной дыры сила всасывания не так велика, как у пылесоса, поэтому космические объекты не всасываются внутрь неё, а только притягиваются.

Что же делает чёрная дыра? Чёрные дыры управляют самой эволюцией Вселенной. Они на центральном месте, но их невозможно увидеть, можно обнаружить их признаки, хотя чёрные дыры обладают свойством разрушать, они также помогают строить галактики.

Как рождается чёрная дыра? Когда у большой звезды заканчивается топливо, она не может больше поддерживать свой вес. Давление от массивных слоёв водорода заставляет звезду сжиматься всё меньше и меньше. В конце концов, звезда станет меньше атома. Представьте себе на мгновение, что вся звезда раздавиться в точку, меньше атома.

Как может получиться что-то меньше, но сохранить тоже количество массы? На самом деле все очень просто. Возьмём губку, размером с бутылку, мы легко можем раздавить ее в руках. Но вот интересный момент. Если мы делаем что-то меньшее, сжимая ее, ее гравитация становится сильнее. Представим себе, если мы сжимаем звезду в размер атома, насколько мощным станет ее гравитация? Гравитация черной дыры настолько мощная, что поглощает все, даже свет, который проходит слишком близко. Совершенно верно, даже свет не может избежать черную дыру.

Строение чёрной дыры: Черные дыры состоят из трех основных частей). Внешний слой черной дыры называется внешним горизонтом событий. Внутри внешнего горизонта событий вы еще можете вырваться от гравитации черной дыры, потому что сила тяжести здесь не так сильна. Средний слой черной дыры называется внутренним горизонтом событий. Центр черной дыры называется Сингулярность. Это странное слово означает раздавленную звезду. Сингулярность, это место, где гравитация черной дыры самая сильная.

Что будет если в неё попасть? Здесь очень интересно. Для наблюдателя с Земли будет видно, как тот кто полетел к чёрной дыре, моментально в неё упал и исчез. А тот, кто к ней будет подлетать, будет медленно-медленно приближаться, часы будут всё медленнее идти, всё будет затормаживаться (это происходит потому, что чёрная дыра искривляет (нарушает) пространство (мир) вокруг себя.

Почему черные дыры размещаются в центрах галактик

Астрономия для детей Ответы на частые вопросы > Почему черные дыры размещаются в центрах галактик

Сверхмассивные черные дыры в центре галактик – описание для детей с фото: почему там находятся, как появляются, поглощение материала, как наблюдать в космосе.

Расскажем о том, почему черные дыры размещаются в центрах галактик на доступном для детей языке. Данная информация будет полезна детям и их родителям.

Прежде чем дать объяснение для детей, стоит заметить, что о существовании черных дыр ученые узнали не так давно. И одна из главных причин состоит в том, что чернота не позволяет отыскать их даже самым качественным оборудованием. И хотя Эйнштейн предсказал наличие черных дыр, их не могли обнаружить до 1967 года. Только тогда появилось название. Более того, обнаружилось, что они есть в каждой крупной галактике.

Конечно, сложно объяснить детям, что такое черная дыра, ведь родители или учителя в школе не могут продемонстрировать ее наглядно даже в телескоп. Ученым приходится идти на хитрость и исследовать не саму черную дыру, а свет от всего, что она поглощает.

Исследователи считают, что сверхмассивные черные дыры создаются во время смерти массивной звезды. Она не гаснет, а взрывается с невероятной силой. Для самых маленьких это было бы потрясающее зрелище, так как при такой мощности создается интенсивное гравитационное притяжение, которое не дает выбраться даже свету. Процесс поглощения называют «кормлением» черной дыры.

Так как есть множество умерших сверхновых, существуют и миллионы, а может даже миллиарды, черных дыр. Их мощность больше, чем все, что пока обнаружили ученые. И есть предположение, что эта массивная гравитация всасывает все материалы, из которых сделана галактика.

Когда объект подходит к дыре слишком быстро, часть его захватывается, а другие не поддаются, потому что расположены дальше. Считается, что именно эта гравитация заставляет новую галактику вращаться. И получается, что все солнца и планеты, расположенные дальше, вращаются вокруг нее. А вот близкие объекты «пойдут на обед».

Чтобы объяснить детям больше деталей, нужно подождать, пока какой-то объект попадет в гравитационную ловушку дыры, потому что до этого ее просто не видно. И это могут быть любые планеты, звезды или облака пыли. Они медленно разрываются и выпускают рентгеновские лучи, которые попадают в камеру приборов. В некоторых случаях газовое облако может освещаться солнечным светом и внутри есть шанс заметить очертания дыры, так как это единственное черное пятно.

Дети должны понимать, что черные дыры в центре галактик просыпаются только во время обеда. Если же поблизости ничего нет, то они впадают в спячку. Хотя они всегда остаются опасными, так как гравитация «не выключается».

Считается, что сверхмассивные черные дыры расположены в центрах галактик, потому что их мощная гравитация всасывает все объекты вокруг, а остальные вращаются в отдалении и представляют собою галактику.


Дыра для детей | Наука для всех простыми словами

Не в этой вселенной!
Черные дыры представляют собой объекты, у которых так много материи сосредоточено в одной точке, что ничто - даже свет - не может выйти из определенной области вокруг них. Это было особенностью ньютоновой гравитации; это особенность общей теории относительности Эйнштейна; и когда у нас будет полная квантовая теория гравитации, мы в полной мере ожидаем от нее того же

Куда ведут космические чёрные дыры

Как часть космической матрешки, наша вселенная может находиться внутри черной дыры, которая сама по себе является частью большой вселенной. Все черные дыры, обнаруженные в нашей вселенной - от микроскопических до сверхмассивных - могут быть дверными проемами в альтернативные реальности.

Одна из последних "Галлюциногенных" теорий гласит, что черная дыра является туннелем между вселенными - нечто вроде червоточины. Черная дыра не коллапсирует в одну точку, как предполагалось, а переходит в "Белую Дыру" на другом конце черной дыры.

Вас может заинтересовать

Наука в поисках бога - Карл саган.

В эту книгу вошли девять лекций по естественной теологии, которые астрофизик Карл саган читал в 1985 году в университете Глазго, в Шотландии, и которые были отредактированы и изданы уже после смерти ученого.

Наверняка вы полагаете, что если упадете в черную дыру, то вас ждет мгновенная смерть. Но в действительности, как полагают физики, ваша судьба будет куда более странной. В будущем такое может произойти с кем угодно. Может, вы пытаетесь найти новую обитаемую планету для человеческой расы или просто уснули в долгом пути. Что будет, если вы упадете в черную дыру? Можно было бы ожидать, что вас перемелет или разорвет. Но все не так.

Что такое сингулярность

В философии слово "Сингулярность", произошедшее от латинского "Singulus" - "одиночный, единичный", обозначает единичность, неповторимость чего-либо - существа, события, явления. Больше всего над этим понятием размышляли современные французские философы - в частности, Жиль делез. Он трактовал сингулярность как событие, порождающее смысл и носящее точечный характер

Не так просто представить, учитывая все разнообразие форм, которые принимает материя во вселенной, что на протяжении миллионов лет существовали только нейтральные атомы газа водорода и гелия. И точно так же трудно представить, что однажды, через квадриллионы лет, все звезды померкнут. Останутся лишь останки нашей пока еще живой вселенной и … черные дыры. Но и они не будут жить вечно. В связи с чем рождается интересный вопрос

Чёрные дыры звёздных масс.
Образуются при неограниченном гравитационном коллапсе массивных звёзд, достигших конца своей жизни и не имеющих больше топлива, чтобы отсрочить катастрофу. Их масса - от трёх до нескольких десятков масс солнца.
Сверхмассивные чёрные дыры.
Могут достигать 30 млрд масс солнца и находятся в центре галактик. По одной из версии, они образуются так: плотное звездное скопление коллапсирует под действием своей гравитации и образуют чёрную дыру, которая потом растёт, дополнительно затягивая материю.
Чёрные дыры промежуточных масс.

Червоточины. Могут ли червоточины существовать?

Червоточины. Межгалактические возможности путь срезать. Туннель через пространство - время, позволяющий отважным путешественникам скакать между звёздными системами, даже не приближаясь к скорости света.
Червоточины - рабочая лошадка научно-фантастических межзвёздных цивилизаций в книгах и кино, поскольку они решают надоедливую проблему художественного произведения: "Если Придерживаться Физики, то 99, 9% Всей Нашей Истории Будет Такой же Интересной, как Наблюдение за Спящими Людьми".

В начале был знак вопроса. А потом и все остальное. Конец. Все мы слышали о теории большого взрыва (я сейчас про космологическую модель, а не про сериал), но важно понимать, чем эта теория является, а чем нет. Позвольте разъяснить одну точную, понятную и до смешного простую вещь: теория большого взрыва - это не теория создания вселенной. Зафиксируйте это для протокола. Поправляйте людей, когда они ошибаются.

Гипотетическая "Кротовая Нора", которую называют еще "кротовиной" или "червоточиной" (дословный перевод Wormhole) представляет из себя некий пространственно-временной туннель, который позволяет переместиться объекту из пункта а в пункт б во вселенной не по прямой, а огибая пространство. В том случае, если проще, то возьмите любой листок бумаги, сложите его пополам и проткните, полученная дырка и будет той самой кротовой норой

Что такое сингулярность простыми словами.

В философии слово "Сингулярность", произошедшее от латинского "Singulus" - "одиночный, единичный", обозначает единичность, неповторимость чего-либо - существа, события, явления. Больше всего над этим понятием размышляли современные французские философы - в частности, Жиль делез. Он трактовал сингулярность как событие, порождающее смысл и носящее точечный характер

Сингулярность, что это простыми словами. Что такое сингулярность?

В философии слово "Сингулярность", произошедшее от латинского "Singulus" - "одиночный, единичный", обозначает единичность, неповторимость чего-либо - существа, события, явления. Больше всего над этим понятием размышляли современные французские философы - в частности, Жиль делез. Он трактовал сингулярность как событие, порождающее смысл и носящее точечный характер

Вы наверняка слышали, что черные дыры уничтожают информацию, которая в них попадает. Почему это является такой огромной проблемой для физики, что ученые всеми силами пытаются избавиться от этой нелепой и нелогичной формулировки? Что ж, мир стал довольно сложным. В моем детстве все было проще. Трава была зеленее, газировка вкуснее, а черные дыры были черными. То есть черные дыры сжимали материю и энергию в бесконечно плотные сингулярности, не создавая непреодолимых парадоксов
. Это были хорошие дни.

Самые плотные и массивные объекты вселенной живут ужасно долго, но не вечно. И вот, что с ними случается.

Перед фактом сядьте, словно ребёнок, и приготовьтесь расстаться с любым предубеждением, следуя скромно куда и к чему бы не привели бездны природы, или же вы ничему не научитесь.
- т. г. Хаксли.

Изучением черных дыр всерьез физики занялись не так давно - хотя сама концепция их существования появилась еще в позапрошлом веке. Но идея присутствия где-то в космосе таких объектов казалась настолько фантастической и недоказуемой, что практически не рассматривалась всерьез. В новом выпуске рубрики "Просто о Сложном" - рассказ об истории открытия "застывших звезд" и о том, что происходит с пространством и временем на границах черной дыры.

Долгая история неверия.

Белая дыра. Ли белые дыры существуют.

У моряков есть кракены и прочие морские чудища. У физиков есть белые дыры: космические творения, которые находятся где-то между былью и небылью. Их никто не наблюдал в реальном мире: они существуют , внимание, только в виде математических монстров. Однако новые исследования показывают, что если теория под названием петлевая квантовая гравитация окажется верной, белые дыры могут стать реальностью - возможно, мы уже наблюдаем их.

1 образование черных дыр.
Черная дыра рождается тогда, когда у крупной звезды начинает заканчиваться топливо и она начинает разрушаться из-за своей же собственной гравитации.
Такая звезда превращается в белого карлика или нейтронную звезду, но если заезда оказывается очень массивной, она может продолжать сжиматься и, в конечном итоге, достигает размера крошечного атома, который называется центром черной дыры.

Что такое "Великий Аттрактор"

Вплоть до начала XX века нашу галактику уникальным объектом считали. Сегодня мы знаем, что в доступной нашему наблюдению части вселенной насчитывается, пожалуй, не менее 125 миллиардов галактик. В каждой из них - миллиарды или триллионы звезд. Только лишь в ближайших "Окрестностях" солнечной системы - в радиусе 1, 5 миллиардов световых лет - обнаружено уже около 130 сверхскоплений галактик. И все это отнюдь не напоминает некий застывший мир, этакую звездную карту, приклеенную к небесной сфере
. Нет, все здесь проникнуто движением.

Мерцание звезд.
Сами по себе звезды не мерцают. Это впечатление создается у земного наблюдателя, когда он воспринимает свет звезды после того, как он прошел через атмосферу. Это непременное условие мерцания. Внимание! Только в том случае, если наблюдать даже очень далекую звезду из космоса, она не будет мерцать.
Показать полностью. Космонавты, наблюдавшие звезды с луны, где нет атмосферы, видели небо, усеянное звездами, которые светили ровным немигающим светом. Но здесь, на земле, покрытой толстым "Одеялом" атмосферы, лучи света звезд, прежде чем достигнуть поверхности, многократно преломляются в различных направлениях.

Какие бывают и как образуются черные дыры

Таинственные и неуловимые черные дыры. Законы физики подтверждают возможность их существования во вселенной, но сих пор остается множество вопросов. Многочисленные наблюдения показывают, что дыры существуют во вселенной и этих объектов - больше миллиона.

 

Что такое черные дыры?

Ещё в 1915 году при решении уравнений Эйнштейна было предсказано такое явление как «черные дыры». Однако научное сообщество заинтересовалось ими только в 1967 году. Их тогда называли «сколлапсировавшие звёзды», «застывшие звёзды».

Сейчас черной дырой называют область времени и пространства, которые обладают такой гравитацией, что из неё не может выбраться даже луч света.

Как образуются черные дыры?

Существуют несколько теорий появления черных дыр, которые делятся на гипотетические и реалистичные. Самая простая и распространенная реалистичная - теория гравитационного каллапса больших звезды.

Когда достаточно массивная звезда перед «смертью» разрастается в размерах и становится не стабильной, расходуя последнее топливо. В то же время масса звезды остается неизменной, но её размеры уменьшаются так как происходит, так называемое, уплотнение. Иными словами при уплотнении тяжелое ядро "падает" в само себя. Параллельно с этим уплотнение приводит к резкому повышению температуры внутри звезды и внешние слои небесного тела отрываются, из них образуются новые звезды. В это же время в центре звезды - ядро падает в свой собственный "центр". В результате действия сил гравитации центр обваливается в точку - т.е силы гравитации на столько сильны, что поглощают уплотненное ядро. Так рождается черная дыра, которая начинает искажать пространство и время, что даже свет не может вырваться из неё.

В центрах всех галактик находится сверхмассивная черная дыра. Согласно теории относительности Эйнштейна:

«Любая масса искажает пространство и время».

А теперь представьте, как сильно черная дыра искажает время и пространство, ведь её масса огромна и одновременно втиснута в сверхмалый объем. Из-за этой способности возникает следующая странность:

«Черные дыры обладают способностью практически останавливать время и сжимать пространство. Из-за этого сильнейшего искажения дыры становятся не видимыми для нас».

Если черные дыры не видны, откуда мы знаем, что они существуют?

Да, хоть черная дыра и невидимка, но она должна быть заметна за счет материи, которая падает в неё. А так же звездный газ, который притягивается черной дырой, при приближении к горизонту событий температура газа начинает расти до сверхвысоких значений, что приводит к свечению. Именно поэтому черные дыры светятся. Благодаря такому, хоть и слабому свечению, астрономы и астрофизики объясняют наличие в центре галактики объекта с малым объемом, но огромной массой. В данный момент в результате наблюдений обнаружено порядка 1000 объектов, которые похожи по поведению на черные дыры.

Черные дыры и галактики

Как черные дыры могут влиять на галактики? Этот вопрос мучает ученых всего мира. Есть гипотеза, согласно которой именно черные дыры, находящиеся в центре галактики влияет на её формы и эволюцию. И что при столкновении двух галактик происходит слияние черных дыр и во время этого процесса выбрасывается такое огромное количество энергии и материи, что образуются новые звезды.

Типы черных дыр

  • Согласно существующей теории, есть три типа черных дыр: звездные, сверхмассивные, миниатюрные. И каждая из них сформировалась особым образом.
  • - Черные дыры звездных масс, она разрастается до огромных размеров и разрушается.
    - Сверхмассивные черные дыры, которые могут иметь массу, эквивалентную миллионам Солнц, с большой вероятностью существуют в центрах практически всех галактик, включая наш Млечный путь. Ученые все ещё имеют разные гипотизы образования сверхмассивных черных дыр. Пока известно только одно - сверхмассивные черные дыры - побочный продукт образования галактик. Сверхмассивные черные дыры - они отличаются от обычных тем, что имеют очень большой размер, но парадоксально маленькую плотность.
  • - Еще никто не смог обнаружить миниатюрную черную дыру, которая имела бы массу меньшую, чем Солнце. Вполне возможно, что миниатюрные дыры могли бы образоваться вскоре после «Большого взрыва», который является начальной точной существования нашей вселенной (около 13,7 млрд лет назад).
  • - Совсем недавно было введено новое понятие как "белые черные дыры". Это пока гипотетическая черня дыра, которая является противоположностью черной дыре. Активно изучал возможность существования белых дыр Стивен Хокинг.
  • - Квантовые черные дыры - они существуют пока только в теории. Квантовые черные дыры могут образовываться при столкновении сверхмалых частиц в результате ядерной реакции.
  • - Первичные черные дыры - тоже теория. Они образовались сразу после возникновения.

В данный момент существует большое количество открытых вопросов, на которые ещё предстоит ответить будущим поколениям. Например, могут ли в действительности существовать так называемые "кротовые норы", с помощью которых можно путешествовать по пространству и времени. Что именно происходит внутри черной дыры и каким законам подчиняются эти явления. И как быть с исчезновением информации в черной дыре?

Космические черные дыры

Ты, наверное, видел фантастические фильмы, где герои, путешествуя в космосе, попадают в другую вселенную? Чаще всего дверкой в иной мир становятся загадочные космические черные дыры. Оказывается, в этих историях есть доля правды. Так утверждают ученые.

Когда в самом центре звезды - в её ядре, заканчивается топливо, все её частички становятся очень тяжелыми.  И тогда, вся планета обрушивается в центр себя. Это вызывает мощную ударную волну, которая разрывает внешнюю, ещё горящую, оболочку звезды и она взрывается ослепительной вспышкой. Одна чайная ложка  маленькой потухшей звездочки весит несколько миллиардов тонн. Такая звезда называется нейтронной. А если звезда больше нашего солнца в двадцать-тридцать раз ее разрушение приводит  к образованию самого странного явления во вселенной - черной дыры.

Притяжение в Черной дыре настолько сильное, что захватывает в себя планеты, газы и даже свет. Черные дыры  невидимы, их можно найти лишь по огромной воронке из космических тел, летящих в неё. Только вокруг некоторых дыр образуется яркое сияние. Ведь скорость вращения очень велика, частички небесных тел  нагреваются  до миллионов градусов и ярко светятся

Космическая черная дыра притягивает все объекты, закручивая их по спирали. Приближаясь к черной дыре, объекты начинают ускоряться и  вытягиваться, словно огромные спагетти. Сила притяжения  постепенно растет и в какой-то момент становится настолько чудовищной, что ничто уже не может преодолеть её. Эта-то граница называется горизонтом событий. Любое событие, которое произойдёт за ним - останется невидимым навсегда .

Ученые предполагают, что черные дыры могут создавать в космосе туннели – «кротовые норы». Если в неё попадешь, то сможешь пройти сквозь пространство и очутиться в другой Вселенной, где существует противоположная белая дыра.  Может когда-нибудь раскроется эта тайна и на мощных космических кораблях люди будут путешествовать в других измерениях.

Это интересно:

В черной дыре обычное перышко должно весить несколько миллиардов тонн. Если космонавт попадет в черную дыру его рост  увеличится а 100-200 километров и падать он будет со скоростью 18 миллионов километров в час.

Для того, чтобы оставить комментарий необходимо зарегистрироваться, либо войти на сайт под своим логином и паролем

Что такое черная дыра для детей. Черная дыра

Черные дыры являются одними из самых удивительных и в то же время пугающих объектов нашей Вселенной. Возникают они в тот момент, когда в звездах, имеющих огромную массу, заканчивается ядерное топливо. Ядерные реакции прекращаются и светила начинают остывать. Тело звезды сжимается под действием гравитации и постепенно она начинает притягивать к себе более мелкие объекты, трансформируясь в черную дыру.

Первые исследования

Изучать черные дыры светила науки начали не так давно, несмотря на то что основные концепции их существования были разработаны еще в прошлом столетии. Само понятие «черной дыры» было введено в 1967 году Дж. Уиллером, хотя вывод о том, что эти объекты неизбежно возникают при коллапсе массивных звезд, был сделан еще в 30-х годах прошлого столетия. Все, что внутри черной дыры - астероиды, свет, поглощенные ею кометы, - когда-то приблизилось слишком близко к границам этого загадочного объекта и не сумело их покинуть.

Границы черных дыр

Первая из границ черной дыры называется пределом статичности. Это граница области, попадая в которую посторонний объект уже не может находиться в состоянии покоя и начинает вращаться относительно черной дыры, чтобы удержаться от падения в нее. Вторая граница зовется горизонтом событий. Все, что внутри черной дыры, когда-то проходило ее внешнюю границу и двигалось по направлению к точке сингулярности. По мнению ученых, здесь вещество вливается в эту центральную точку, плотность которой стремится к значению бесконечности. Люди не могут знать, какие законы физики действуют внутри объектов с такой плотностью, и поэтому описать характеристики этого места невозможно. В буквальном смысле слова оно является «черной дырой» (или, быть может, «пробелом») в знаниях человечества об окружающем мире.

Строение черных дыр

Горизонтом событий называется неприступная граница черной дыры. Внутри этой границы находится зона, которую не могут покинуть даже объекты, скорость движения которых равна скорости света. Даже кванты самого света не могут покинуть горизонт событий. Находясь в этой точке, никакой предмет уже не может вырваться из черной дыры. О том, что внутри черной дыры, мы не можем узнать по определению - ведь в ее глубинах находится так называемая точка сингулярности, которая формируется за счет предельного сжатия вещества. Когда объект попадает внутрь горизонта событий, с этого момента он никогда не сможет вырваться снова из нее и стать видимым для наблюдателей. С другой стороны, те, кто находятся внутри черных дыр, не могут видеть ничего из происходящего снаружи.

Размер горизонта событий, окружающего этот загадочный космический объект, всегда прямо пропорционален массе самой дыры. Если ее масса будет удвоена, то вдвое больше станет и внешняя граница. Если бы ученые смогли найти способ, позволяющий превратить Землю в черную дыру, то размер горизонта событий составлял бы всего лишь 2 см в поперечном разрезе.

Основные категории

Как правило, масса среднестатистических черных дыр приблизительно равна трем солнечным массам и более. Из двух видов черных дыр выделяют звездные,

Чёрная дыра — Википедия

Компьютерная симуляция слияния двух чёрных дыр, от которого впервые были зарегистрированы гравитационные волны

Чёрная дыра́ — область пространства-времени[2], гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света, в том числе кванты самого света. Граница этой области называется горизонтом событий. В простейшем случае сферически симметричной чёрной дыры он представляет собой сферу с радиусом Шварцшильда, который считается характерным размером[en] чёрной дыры.

Теоретически возможность существования таких областей пространства-времени следует из некоторых точных решений уравнений Эйнштейна, первое[3] из которых было получено Карлом Шварцшильдом в 1915 году. Изобретатель термина достоверно не известен[4], но само обозначение было популяризовано Джоном Арчибальдом Уилером и впервые публично употреблено в популярной лекции «Наша Вселенная: известное и неизвестное» (англ. Our Universe: the Known and Unknown) 29 декабря 1967 года[Комм 1]. Ранее подобные астрофизические объекты называли «сколлапсировавшие звёзды» или «коллапсары» (от англ. collapsed stars), а также «застывшие звёзды» (англ. frozen stars)[5].

Вопрос о реальном существовании чёрных дыр тесно связан с тем, насколько верна теория гравитации, из которой следует их существование. В современной физике стандартной теорией гравитации, лучше всего подтверждённой экспериментально, является общая теория относительности (ОТО), уверенно предсказывающая возможность образования чёрных дыр (но их существование возможно и в рамках других (не всех) моделей, см. Альтернативные теории гравитации). Поэтому наблюдаемые данные анализируются и интерпретируются, прежде всего, в контексте ОТО, хотя, строго говоря, эта теория пока не является интенсивно экспериментально протестированной для условий, соответствующих области пространства-времени в непосредственной близости от горизонта чёрных дыр звёздных масс (однако хорошо подтверждена в условиях, соответствующих сверхмассивным чёрным дырам[6], и с точностью до 94 % согласуется с первым гравитационно-волновым сигналом). Поэтому утверждения о непосредственных доказательствах существования чёрных дыр, в том числе и в этой статье ниже, строго говоря, следует понимать в смысле подтверждения существования астрономических объектов, таких плотных и массивных, а также обладающих некоторыми другими наблюдаемыми свойствами, что их можно интерпретировать как чёрные дыры общей теории относительности[6].

Кроме того, чёрными дырами часто называют объекты, не строго соответствующие данному выше определению, а лишь приближающиеся по своим свойствам к такой чёрной дыре — например, это могут быть коллапсирующие звёзды на поздних стадиях коллапса. В современной астрофизике этому различию не придаётся большого значения[7], так как наблюдаемые проявления «почти сколлапсировавшей» («замороженной») звезды и «настоящей» («извечной») чёрной дыры практически одинаковы. Это происходит потому, что отличия физических полей вокруг коллапсара от таковых для «извечной» чёрной дыры уменьшаются по степенным законам с характерным временем порядка гравитационного радиуса, делённого на скорость света — то есть за доли секунды для чёрных дыр звёздных масс и часы для сверхмассивных чёрных дыр[8].

10 апреля 2019 года Национальный научный фонд США впервые показал «фотографию» сверхмассивной чёрной дыры в центре галактики Messier 87, расположенной на расстоянии 54 миллионов световых лет от Земли.[9][10] Изображение получили благодаря проекту Event Horizon Telescope, который включает в себя восемь радиотелескопов, расположенных по всему земному шару[11]. «Полученная картинка подтверждает существование горизонта событий, то есть подтверждает правильность общей теории относительности Эйнштейна», — заявил один из руководителей проекта Event Horizon Telescop Лучано Реццола[12].

Различают четыре сценария образования чёрных дыр:

  • два реалистичных
  • и два гипотетических

«Чёрная звезда» Мичелла (1784—1796)[править | править код]

«Чёрная дыра» Мичелла

Концепция массивного тела, гравитационное притяжение которого настолько велико, что скорость, необходимая для преодоления этого притяжения (вторая космическая скорость), равна или превышает скорость света, впервые была высказана в 1784 году Джоном Мичеллом в письме[13], которое он послал в Королевское общество. Письмо содержало расчёт, из которого следовало, что для тела с радиусом в 500 солнечных радиусов и с плотностью Солнца вторая космическая скорость на его поверхности будет равна скорости света[14]. Таким образом, свет не сможет покинуть это тело, и оно будет невидимым[15]. Мичелл предположил, что в космосе может существовать множество таких недоступных наблюдению объектов. В 1796 году Лаплас включил обсуждение этой идеи в свой труд «Exposition du Systeme du Monde», однако в последующих изданиях этот раздел был опущен. Тем не менее, именно благодаря Лапласу эта мысль получила некоторую известность[15].

От Мичелла до Шварцшильда (1796—1915)[править | править код]

На протяжении XIX века идея тел, невидимых вследствие своей массивности, не вызывала большого интереса у учёных. Это было связано с тем, что в рамках классической физики скорость света не имеет фундаментального значения. Однако в конце XIX — начале XX века было установлено, что сформулированные Дж. Максвеллом законы электродинамики, с одной стороны, выполняются во всех инерциальных системах отсчёта, а с другой стороны, не обладают инвариантностью относительно преобразований Галилея. Это означало, что сложившиеся в физике представления о характере перехода от одной инерциальной системы отсчёта к другой нуждаются в значительной корректировке.

В ходе дальнейшей разработки электродинамики Г. Лоренцем была предложена новая система преобразований пространственно-временных координат (известных сегодня как преобразования Лоренца), относительно которых уравнения Максвелла оставались инвариантными. Развивая идеи Лоренца, А. Пуанкаре предположил, что все прочие физические законы также инвариантны относительно этих преобразований.

В 1905 году А. Эйнштейн использовал концепции Лоренца и Пуанкаре в своей специальной теории относительности (СТО), в которой роль закона преобразования инерциальных систем отсчёта окончательно перешла от преобразований Галилея к преобразованиям Лоренца. Классическая (галилеевски-инвариантная) механика была при этом заменена на новую, Лоренц-инвариантную релятивистскую механику. В рамках последней скорость света оказалась предельной скоростью, которую может развить физическое тело, что радикально изменило значение чёрных дыр в теоретической физике.

Однако ньютоновская теория тяготения (на которой базировалась первоначальная теория чёрных дыр) не является лоренц-инвариантной. Поэтому она не может быть применена к телам, движущимся с околосветовыми и световой скоростями. Лишённая этого недостатка релятивистская теория тяготения была создана, в основном, Эйнштейном (сформулировавшим её окончательно к концу 1915 года) и получила название общей теории относительности (ОТО)[15]. Именно на ней и основывается современная теория астрофизических чёрных дыр[7].

По своему характеру ОТО является геометрической теорией. Она предполагает, что гравитационное поле представляет собой проявление искривления пространства-времени (которое, таким образом, оказывается псевдоримановым, а не псевдоевклидовым, как в специальной теории относительности). Связь искривления пространства-времени с характером распределения и движения заключающихся в нём масс даётся основными уравнениями теории — уравнениями Эйнштейна.

Искривление пространства

(Псевдо)римановыми называются пространства, которые в малых масштабах ведут себя «почти» как обычные (псевдо)евклидовы. Так, на небольших участках сферы теорема Пифагора и другие факты евклидовой геометрии выполняются с очень большой точностью. В своё время это обстоятельство и позволило построить евклидову геометрию на основе наблюдений над поверхностью Земли (которая в действительности не является плоской, а близка к сферической). Это же обстоятельство обусловило и выбор именно псевдоримановых (а не каких-либо ещё) пространств в качестве основного объекта рассмотрения в ОТО: свойства небольших участков пространства-времени не должны сильно отличаться от известных из СТО.

Однако в больших масштабах римановы пространства могут сильно отличаться от евклидовых. Одной из основных характеристик такого отличия является понятие кривизны. Суть его состоит в следующем: евклидовы пространства обладают свойством абсолютного параллелизма: вектор X′,{\displaystyle X',} получаемый в результате параллельного перенесения вектора X{\displaystyle X} вдоль любого замкнутого пути, совпадает с исходным вектором X.{\displaystyle X.} Для римановых пространств это уже не всегда так, что может быть легко показано на следующем примере. Предположим, что наблюдатель встал на пересечении экватора с нулевым меридианом лицом на восток и начал двигаться вдоль экватора. Дойдя до точки с долготой 180°, он изменил направление движения и начал двигаться по меридиану к северу, не меняя направления взгляда (то есть теперь он смотрит вправо по ходу). Когда он таким образом перейдёт через северный полюс и вернётся в исходную точку, то окажется, что он стоит лицом к западу (а не к востоку, как изначально). Иначе говоря, вектор, параллельно перенесённый вдоль маршрута следования наблюдателя, «прокрутился» относительно исходного вектора. Характеристикой величины такого «прокручивания» и является кривизна[16]

.

Решения уравнений Эйнштейна для чёрных дыр[править | править код]

Так как чёрные дыры являются локальными и относительно компактными образованиями, то при построении их теории обычно пренебрегают наличием космологической постоянной, так как её эффекты для таких характерных размеров задачи неизмеримо малы. Тогда стационарные решения для чёрных дыр в рамках ОТО, дополненной известными материальными полями, характеризуются только тремя параметрами: массой (M{\displaystyle M}), моментом импульса (L{\displaystyle L}) и электрическим зарядом (Q{\displaystyle Q}), которые складываются из соответствующих характеристик вошедших в чёрную дыру при коллапсе и упавших в неё позднее тел и излучений (если в природе существуют магнитные монополи, то чёрные дыры могут иметь также магнитный заряд (G{\displaystyle G})[17], но пока подобные частицы не обнаружены). Любая чёрная дыра стремится в отсутствие внешних воздействий стать стационарной, что было доказано усилиями многих физиков-теоретиков, из которых особо следует отметить вклад нобелевского лауреата Субраманьяна Чандрасекара, перу которого принадлежит фундаментальная для этого направления монография «Математическая теория чёрных дыр»[18]. Более того, представляется, что никаких других характеристик, кроме этих трёх, у не возмущаемой снаружи чёрной дыры быть не может, что формулируется в образной фразе Уилера: «Чёрные дыры не имеют волос»[17].

Решения уравнений Эйнштейна для чёрных дыр с соответствующими характеристиками:

  • Решение Шварцшильда (1916 год, Карл Шварцшильд) — статичное решение для сферически-симметричной чёрной дыры без вращения и без электрического заряда.
  • Решение Рейснера — Нордстрёма (1916 год, Ганс Рейснер и 1918 год, Гуннар Нордстрём) — статичное решение сферически-симметричной чёрной дыры с зарядом, но без вращения.
  • Решение Керра (1963 год, Рой Керр) — стационарное, осесимметричное решение для вращающейся чёрной дыры, но без заряда.
  • Решение Керра — Ньюмена (1965 год, Э. Т. Ньюмен (англ.), Э. Кауч, К. Чиннапаред, Э. Экстон, Э. Пракаш и Р. Торренс)[19] — наиболее полное на данный момент решение: стационарное и осесимметричное, зависит от всех трёх параметров.

Решение для вращающейся чёрной дыры чрезвычайно сложно. Его вывод был описан Керром в 1963 году очень кратко[20], и лишь спустя год детали были опубликованы Керром и Шильдом в малоизвестных трудах конференции. Подробное изложение вывода решений Керра и Керра — Ньюмена было опубликовано в 1969 году в известной работе Дебнея, Керра и Шильда[21]. Последовательный вывод решения Керра был также проделан Чандрасекаром более чем на пятнадцать лет позже[18].

Считается, что наибольшее значение для астрофизики имеет решение Керра, так как заряженные чёрные дыры должны быстро терять заряд, притягивая и поглощая противоположно заряженные ионы и пыль из космического пространства. Существует также гипотеза[22], связывающая гамма-всплески с процессом взрывной нейтрализации заряженных чёрных дыр путём рождения из вакуума электрон-позитронных пар (Р. Руффини с сотрудниками), но она оспаривается рядом учёных[23].

Теоремы об «отсутствии волос»[править | править код]

Теоремы об «отсутствии волос» у чёрной дыры (англ. No hair theorem) говорят о том, что у стационарной чёрной дыры внешних характеристик, помимо массы, момента импульса и определённых зарядов (специфических для различных материальных полей), быть не может (в том числе и радиуса), и детальная информация о материи будет потеряна (и частично излучена вовне) при коллапсе. Большой вклад в доказательство подобных теорем для различных систем физических полей внесли Брэндон Картер, Вернер Израэль, Роджер Пенроуз, Пётр Хрусьцель (Chruściel), Маркус Хойслер. Сейчас представляется, что данная теорема верна для известных в настоящее время полей, хотя в некоторых экзотических случаях, аналогов которых в природе не обнаружено, она нарушается[24].

Решение Шварцшильда[править | править код]

Основные свойства[править | править код]

Согласно теореме Биркгофа[en], гравитационное поле любого сферически симметричного распределения материи вне её даётся решением Шварцшильда. Поэтому слабо вращающиеся чёрные дыры, как и пространство-время вблизи Солнца и Земли, в первом приближении тоже описываются этим решением.

Две важнейшие черты, присущие чёрным дырам в модели Шварцшильда — это наличие горизонта событий (он по определению есть у любой чёрной дыры) и сингулярности, которая отделена этим горизонтом от остальной Вселенной[15].

Решением Шварцшильда точно описывается изолированная невращающаяся, незаряженная и не испаряющаяся чёрная дыра (это сферически симметричное решение уравнений гравитационного поля (уравнений Эйнштейна) в вакууме). Её горизонт событий — это сфера, радиус которой, определённый из её площади по формуле S=4πr2,{\displaystyle S=4\pi r^{2},} называется гравитационным радиусом или радиусом Шварцшильда.

Все характеристики решения Шварцшильда однозначно определяются одним параметром — массой. Так, гравитационный радиус чёрной дыры массы M{\displaystyle M} равен[25]

rs=2GMc2,{\displaystyle r_{s}={\frac {2\,GM}{c^{2}}},}

где G{\displaystyle G} — гравитационная постоянная, а c{\displaystyle c} — скорость света. Чёрная дыра с массой, равной массе Земли, обладала бы радиусом Шварцшильда около 9 мм (то есть Земля могла бы стать чёрной дырой, если бы что-либо смогло сжать её до такого размера). Для Солнца радиус Шварцшильда составляет примерно 3 км.

Такая же величина гравитационного радиуса получается в результате вычислений на основе классической механики и ньютоновской теории тяготения. Данный факт не случаен, он является следствием того, что классическая механика и ньютоновская теория тяготения содержатся в общей теории относительности как её предельный случай.[26]

Объекты, размер которых наиболее близок к своему радиусу Шварцшильда, но которые ещё не являются чёрными дырами, — это нейтронные звёзды.

Можно ввести понятие «средней плотности» чёрной дыры, поделив её массу на «объём, заключённый под горизонтом событий»[Комм 2]:

ρ=3c632πM2G3.{\displaystyle \rho ={\frac {3\,c^{6}}{32\pi M^{2}G^{3}}}.}

Средняя плотность падает с ростом массы чёрной дыры. Так, если чёрная дыра с массой порядка солнечной обладает плотностью, превышающей ядерную плотность, то сверхмассивная чёрная дыра с массой в 109 солнечных масс (существование таких чёрных дыр подозревается в квазарах) обладает средней плотностью порядка 20 кг/м³, что существенно меньше плотности воды. Таким образом, чёрную дыру можно получить не только сжатием имеющегося объёма вещества, но и экстенсивным путём — накоплением огромного количества материала.


Для более точного описания реальных чёрных дыр необходим учёт наличия момента импульса. Кроме того, малые, но концептуально важные добавки для чёрных дыр астрофизических масс — излучение Старобинского и Зельдовича и излучение Хокинга — следуют из квантовых поправок. Учитывающую это теорию (то есть ОТО, в которой правая часть уравнений Эйнштейна есть среднее по квантовому состоянию от тензора энергии-импульса) обычно называют «полуклассической гравитацией». Представляется, что для очень малых чёрных дыр эти квантовые поправки должны стать определяющими, однако это точно неизвестно, так как отсутствует непротиворечивая модель квантовой гравитации[27].

Метрическое описание и аналитическое продолжение[править | править код]

В 1915 году К. Шварцшильд выписал решения уравнений Эйнштейна без космологического члена для пустого пространства в сферически симметричном статическом случае[15] (позднее Биркхоф показал, что предположение статичности излишне[28]). Это решение оказалось пространством-временем M{\displaystyle {\mathcal {M}}} с топологией R2×S2{\displaystyle R^{2}\times S^{2}} и интервалом, приводимым к виду

ds2=−(1−rs/r)c2dt2+(1−rs/r)−1dr2+r2(dθ2+sin2⁡θdφ2),{\displaystyle ds^{2}=-(1-r_{s}/r)c^{2}dt^{2}+(1-r_{s}/r)^{-1}dr^{2}+r^{2}(d\theta ^{2}+\sin ^{2}\theta \,d\varphi ^{2}),}

где

t{\displaystyle t} — временна́я координата, в секундах,
r{\displaystyle r} — радиальная координата, в метрах,
θ{\displaystyle \theta } — полярная угловая координата, в радианах,
φ{\displaystyle \varphi } — азимутальная угловая координата, в радианах,
rs{\displaystyle r_{s}} — радиус Шварцшильда тела с массой M{\displaystyle M}, в метрах.

Временна́я координата соответствует времениподобному вектору Киллинга ∂t{\displaystyle \partial _{t}}, который отвечает за статичность пространства-времени, при этом её масштаб выбран так, что t{\displaystyle t} — это время, измеряемое бесконечно удалёнными покоящимися часами (r=const→∞,θ=

Черные дыры: описание, факты, классификация

Объекты глубокого космоса > Черные дыры

Рассмотрите загадочные и невидимые черные дыры во Вселенной: интересные факты, исследование Эйнштейна, сверхмассивные и промежуточные типы, теория, строение.

Черные дыры – одни из наиболее интересных и таинственных объектов в космическом пространстве. Обладают высокой плотностью, а гравитационная сила настолько мощная, что даже свету не удается вырваться за ее пределы.

Впервые о черных дырах заговорил Альберт Эйнштейн в 1916 году, когда создал общую теорию относительности. Сам термин возник в 1967 году благодаря Джону Уилеру. А первую черную дыру «заметили» в 1971 году.

Классификация черных дыр включает три типа: черные дыры звездной массы, сверхмассивные и черные дыры средней массы. Обязательно посмотрите видео про черные дыры, чтобы узнать много интересных фактов и познакомиться с этими загадочными космическими формированиями поближе.

Интересные факты о черных дырах

  • Если вы оказались внутри черной дыры, то гравитация будет вас растягивать. Но бояться не нужно, ведь вы умрете еще до того, как достигнете сингулярности. Исследования 2012 года предположили, что квантовые эффекты превращают горизонт событий в огненную стену, сделавшую из вас кучку пепла.
  • Черные дыры не «всасывают». Этот процесс вызывается вакуумом, которого нет в этом образовании. Так что материал просто падает.
  • Первой черной дырой стал Лебедь Х-1, найденный ракетами со счетчиками Гейгера. В 1971 году ученые получили сигнал радиоизлучения от Лебедя Х-1. Этот объект стал предметом спора между Кипом Торном и Стивеном Хокингом. Последний считал, что это не черная дыра. В 1990 году он признал свое поражение.
  • Крошечные черные дыры могли появиться сразу после Большого Взрыва. Стремительно вращающееся пространство сжимало некоторые области в плотные дыры, с меньшей массивностью, чем у Солнца.
  • Если звезда подойдет слишком близко, то ее может разорвать.
  • По общим подсчетам, существует примерно до миллиарда звездных черных дыр с массой втрое больше солнечной.
  • Если сравнивать теорию струн и классическую механику, то первая порождает больше разновидностей массивных гигантов.

Опасность черных дыр

Когда у звезды заканчивается топливо, она может запустить процесс саморазрушения. Если ее масса была втрое больше солнечной, то оставшееся ядро станет нейтронной звездой или белым карликом. Но более крупная звезда трансформируется в черную дыру.

Зависимость между массой черной дыры и массой балджа

Такие объекты маленькие, но обладают невероятной плотностью. Представьте, что перед вами объект, размером в город, но его масса в три раза больше солнечной. Это создает невероятно огромную гравитационную силу, которая притягивает пыль и газ, увеличивая ее размеры. Вы удивитесь, но в Млечном Пути может располагаться несколько сотен миллионов звездных черных дыр.

Сверхмассивные черные дыры

Конечно, ничто во Вселенной не сравнится с устрашающими сверхмассивными черными дырами. Они превосходят солнечную массу в миллиарды раз. Полагают, что такие объекты есть практически в каждой галактике. Ученые пока не знают всех тонкостей процесса формирования. Скорее всего, они вырастают за счет накапливания массы из окружающего пыли и газа.

Размер крупнейшей из известных черных дыр

Возможно, они обязаны своим масштабам слиянию тысячи небольших черных дыр. Или же могло разрушиться целое звездное скопление.

Черные дыры в центрах галактик

Астрофизик Ольга Сильченко об открытии сверхмассивной черной дыры в туманности Андромеды, исследованиях Джона Корменди и темных гравитирующих телах:


Природа космических радиоисточников

Астрофизик Анатолий Засов о синхротронном излучении, черных дырах в ядрах далеких галактик и нейтральном газе:

Промежуточные черные дыры

Не так давно ученые нашли новый вид - черные дыры средней массы (промежуточные). Они могут формироваться, когда звезды в скоплении сталкиваются, поддавшись цепной реакции. В итоге, падают в центр и формируют сверхмассивную черную дыру.

Рост черных дыр

В 2014 году астрономы обнаружили промежуточный тип в рукаве спиральной галактики. Их очень сложно найти, потому что могут располагаться в непредсказуемых местах.

Микрочерные дыры

Физик Эдуард Боос о безопасности БАК, рождении микрочерной дыры и понятии мембраны:

Теория черных дыр

Черные дыры - чрезвычайно массивные объекты, но охватывают сравнительно скромный объем пространства. Кроме того, обладают огромной гравитацией, не позволяя объектам (и даже свету) покинуть их территорию. Однако, напрямую увидеть их невозможно. Исследователям приходится обращаться к излучению, появляющемуся, когда черная дыра питается.

Черные дыры в сливающихся галактиках

Интересно, но бывает так, что вещество, направляющееся к черной дыре, отскакивает от горизонта событий и выбрасывается наружу. При этом формируются яркие струи материала, передвигающиеся на релятивистских скоростях. Эти выбросы можно зафиксировать на больших дистанциях.

Черные дыры – удивительные объекты, в которых сила тяжести настолько огромна, что может сгибать свет, деформировать пространство и искажать время.

В черных дырах можно выделить три слоя: внешний и внутренний горизонт событий и сингулярность.

Горизонт событий черной дыры – граница, где у света пропадают все шансы на бегство. Как только частичка переходит этот рубеж, она не сможет уйти. Внутренняя область, где находится масса черной дыры, называется сингулярностью.

Черная дыра Млечного Пути может являться источником высокоэнергетических нейтрино

Если мы говорим с позиции классической механики, то ничто не может покинуть черную дыру. Но квантовая вносит свою поправку. Дело в том, что у каждой частицы есть античастица. Они обладают одинаковыми массами, но разным зарядом. Если пересеклись, то могут аннигилировать друг друга.

Когда такая пара возникает за пределами горизонта событий, то одна из них может втянуться, а вторая оттолкнется. Из-за этого горизонт способен уменьшиться, а черная дыра разрушиться. Ученые все еще пытаются изучить этот механизм.

Аккреция

Астрофизик Сергей Попов о сверхмассивных черных дырах, образовании планет и аккреции вещества в ранней Вселенной:

Наиболее известные черные дыры

Часто задаваемые вопросы о черных дырах

- Что такое черная дыра?

Если более емко, то черная дыра - определенный участок в космосе, в котором сконцентрировано такое огромное количество массы, что ни одному объекту не удается избежать гравитационного влияния. Когда речь идет о гравитации, мы полагаемся на общую теорию относительности, предложенную Альбертом Эйнштейном. Чтобы разобраться в деталях изучаемого объекта, будем двигаться поэтапно.

Давайте представим, что вы находитесь на поверхности планеты и подбрасываете булыжник. Если вы не обладаете мощью Халка, то не сможете приложить достаточно силы. Тогда камень поднимется на определенную высоту, но под давлением гравитации рухнет обратно. Если же у вас есть скрытый потенциал зеленого силача, то вы способны придать объекту достаточное ускорение, благодаря которому он полностью покинет зону гравитационного воздействия. Это называется «скорость убегания».

Если разбить на формулу, то эта скорость зависит от планетарной массы. Чем она больше, тем мощнее гравитационный захват. Скорость вылета будет полагаться на то, где именно вы находитесь: чем ближе к центру, тем проще выбраться. Скорость вылета нашей планеты – 11.2 км/с, а вот Луны – 2.4 км/с.

Приближаемся к самому интересному. Допустим у вас есть объект с невероятной концентрацией массы, собранной в крошечном месте. В таком случае скорость убегания превышает скорость света. А мы знаем, что ничто не движется быстрее этого показателя, а значит, никто не сможет преодолеть такую силу и сбежать. Даже световому лучу это не под силу!

Еще в 18 веке Лаплас размышлял над чрезвычайной концентрацией массы. После общей теории относительности Карл Шварцшильд смог найти математическое решение для уравнения теории, чтобы описать подобный объект. Дальше свою лепту внесли Оппенгеймер, Волькофф и Снайдер (1930-е гг.). С того момента люди начали обсуждать эту тему всерьез. Стало ясно: когда у массивной звезды заканчивается топливо, она не способна противостоять силе гравитации и обязана рухнуть в черную дыру.

В теории Эйнштейна гравитация выступает проявлением кривизны в пространстве и времени. Дело в том, что обычные геометрические правила здесь не работают и массивные объекты искажают пространство-время. Черная дыра обладает причудливыми свойствами, поэтому ее искажение видно отчетливее всего. Например, у объекта есть «горизонт событий». Это поверхность сферы, отмечающая черту дыры. То есть, если вы перешагнете этот предел, то назад пути нет.

Если буквально, то это место, где скорость убегания приравнивается к световой. Вне этого места скорость убегания уступает скорости света. Но если ваша ракета способна разогнаться, то энергии хватит на побег.

Сам горизонт довольно странный с точки зрения геометрии. Если вы расположены далеко, то вам покажется, что смотрите на статическую поверхность. Но если подойти ближе, то приходит осознание, что она движется наружу со световой скоростью! Теперь понятно, почему легко войти, но так сложно сбежать. Да, это очень запутанно, ведь фактически горизонт стоит на месте, но одновременно и мчится со скоростью света. Это как в ситуации с Алисой, которой нужно было бежать максимально быстро, чтобы просто остаться на месте.

При попадании в горизонт, пространство и время переживают такое сильное искажение, что координаты начинают описывать роли радиального расстояния и времени переключения. То есть «r», отмечающая дистанцию от центра, становится временной, а за «пространственность» теперь отвечает «t». В итоге, вы не сможете перестать передвигаться с меньшим показателем r, как и не способны в обычном времени попасть в будущее. Вы придете к сингулярности, где r = 0. Можно выбрасывать ракеты, запускать двигатель на максимум, но вам не убежать.

Термин «черная дыра» придумал Джон Арчибальд Уилер. До этого их называли «остывшими звездами».

Черные дыры

Физик Эмиль Ахмедов об изучении черных дыр, Карле Шварцшильде и гигантских черных дырах:

- Насколько велика черная дыра?

Существует два способа вычислить, насколько что-то велико. Можно назвать массу или какую величину занимает участок. Если брать первый критерий, то нет конкретного предела массивности черной дыры. Можно использовать любое количество, если вы способны сжать ее до необходимой плотности.

Большая часть этих образований появилась после смерти массивных звезд, поэтому можно ожидать, что их вес должен быть равнозначен. Типичная масса для такой дыры должна быть в 10 раз больше солнечной – 1031 кг. Кроме того, в каждой галактике должна проживать центральная сверхмассивная черная дыра, чья масса превосходит солнечную в миллион раз – 1036 кг.

Сравнительный размер сверхмассивной черной дыры TON 618

Чем массивнее объект, тем больше массы охватывает. Радиус горизонта и масса прямо пропорциональны, то есть, если черная дыра весит в 10 раз больше другой, то и ее радиус в 10 раз крупнее. Радиус дыры с солнечной массивностью равняется 3 км, а если в миллион раз больше, то 3 миллиона км. Кажется, что это невероятно массивные вещи. Но не будем забывать, что для астрономии это стандартные понятия. Солнечный радиус достигает 700000 км, а у черной дыры у в 4 раза больше.

- Что случится, если вы упадете в черную дыру?

Допустим, что вам не повезло и ваш корабль не

Читать книгу Астрономия на пальцах. Для детей и родителей, которые хотят объяснять детям Александра Никонова : онлайн чтение

Но вернемся к сверхновым… Я хочу еще немного поводить вас за ручку вокруг этой величайшей звездной катастрофы, чтобы вы как можно полнее ощутили мощь сего природного явления.

Взрыв сверхновой настолько чудовищен, что за какие-то секунды и минуты, сверхновая выделяет больше энергии, чем все звезды во всей галактике за то же время. А звезд в нашей галактике, напомню, 200 миллиардов. Вот какая концентрация!

После взрыва, который длится около месяца (это сущее мгновение по сравнению с сотнями миллионов лет жизни звезды) на месте бывшего гиганта, ранее простиравшегося на миллионы километров, остается крохотная нейтронная звездочка диаметром примерно в 15 километров, окруженная разлетающейся туманностью.

Однако, даже сверхновые – это еще не предел звездных безумств. Существует такое явление, как гиперновые звезды. Это взрывающиеся звезды, мощность которых превышает даже взрывы сверхновых. Так рвутся звезды, масса коих более, чем в 80 раз превышает солнечную. Считается, что именно гиперновые ответственны за самое, пожалуй, опасное космическое явление – так называемые гамма-вспышки.

Гамма-излучение – это жесткое излучение, основной фактор поражения ядерного оружия. Именно гамма-лучи вызывают страшную лучевую болезнь, от которой в мучениях помирают люди. Так вот, иногда радиоастрономы засекают в небе невероятно мощные вспышки гамма-излучения, которые длятся от нескольких сотых долей секунды до нескольких суток. Но обычно это секунды. Секунды! Но за эти секунды выделяется в виде гамма-лучей такое количество энергии, которое десяток звезд типа нашего Солнца не излучат и за 10 миллиардов лет!

Можно сказать и по-другому. Одна такая гиперновая вспышка за секунды излучает такую мощность, сколько за те же секунды все звезды Вселенной!

Представляете, кошмар какой?..

По счастью, все гиперновые вспышки ранее регистрировались вне нашей галактики. Потому что если такая вспышка произойдет где-нибудь в нашей Галактике, ну, скажем, на расстоянии до 300 парсеков (примерно 1000 световых лет), жизнь на Земле будет уничтожена полностью или частично. Возможно, подобную катастрофу наша планета уже переживала в своей истории. Есть предположение, что примерно 450 миллионов лет назад на Землю обрушился мощный ливень гамма-излучения, что привело в гибели 60 % всех видов на планете. Эта катастрофа в науке носит название Ордовикско-силурийского вымирания, и ее причины никому неизвестны. Но на роль убийцы гиперновая вполне подходит.

Слава богу, что случаются подобные ужасы очень редко. Хотя что значит редко? Вот вы часто попадаете под машину? Надеюсь, ни разу. Для каждого отдельного человека это событие очень маловероятное. Но людей-то миллиарды! И потому каждый день в мире погибают под колесами 3500 человек. А за год набирается миллион с четвертью. И это только погибших, не считая раненых.

Вот и с гиперновыми так. Астрономы наблюдают эти гамма-вспышки во всех концах Вселенной почти каждый день. Причем любопытно, что гиперновые взрываются гораздо реже сверхновых, а вот наблюдаются они чаще – в год удается засечь примерно пять десятков сверхновых, а гиперновых – сотни. Почему такое противоречие? Да потому что гиперновые обладают такой мощностью, что после взрыва в любом уголке вселенной их излучение достигает Земли и засекается учеными. Скажем, 29 марта 2003 года довольно мощная гиперновая взорвалась от нас на расстоянии в 800 мегапарсек. Заметьте, не парсек, а мегапарсек, то есть миллионов парсек!.. А вот обычные сверхновые, взорвавшиеся очень далеко, могут остаться незамеченными – не добивает! Оттого и регистрируются гиперновые вспышки чаще: они просто заметнее в силу гигантизма явления.

Но поскольку галактик во Вселенной чертова уйма или даже больше, то с учетом частоты регистрируемых вспышек можно сказать, что в одной галактике гиперновая в среднем вспыхивает с частотой раз в 10 миллионов лет. А обычных сверхновых взрывается по нескольку штук за сотню лет. И это все значит, что во Вселенной практически каждый день кто-то «попадает под машину» – на какой-то из планет, а может, и не на одной погибает цивилизация или просто жизнь.

Чтобы лучше осознать труднопредставимую мощь гиперновой, можно привести такой пример. Одну из зафиксированных астрономами мощных гамма-вспышек можно было разглядеть с Земли невооруженным глазом (потому что вместе с гамма-квантами звезда мощно выстреливает и в обычном оптическом диапазоне, то есть нормальным видимым светом), хотя взрыв произошел очень далеко – в 7,5 миллиардах световых лет от Солнечной системы. Так вот, если бы он произошел в соседней галактике, например, в Туманности Андромеды, ночное небо осветила бы вспышка, по яркости равная яркости полной Луны. А если бы взрыв произошел на дальнем от нас краю Млечного Пути, его видимая яркость сравнилась бы с яркостью дневного Солнца. По счастью, этого не случилось.

Но есть и плохие новости! Ближайшим кандидатом на гиперновую в нашей галактике является гигантская звезда Эта в созвездии Киля. Она уже достаточно давно ведет себя нестабильно. И считается, что в ближайшем астрономическом будущем превратится в гиперновую. Со всеми вытекающими отсюда последствиями. Что значит «ближайшее астрономическое будущее»? Это значит, в течении ближайших 10–15 тысяч лет, что по меркам Вселенной практически завтра…

Ладно, а что случается со звездой после смерти?

Как уже говорилось, судьба звезды зависит от ее массы. Если масса звезды меньше предела Чандрасекара, то… Как!? Вы не знаете что такое «предел Чандрасекара»? Неужели мама не пела вам про это колыбельных? Тогда придется объяснить. Слушайте сюда…

Субраманьян Чандрасекар – американский астроном индийского происхождения, который еще в прошлом веке провел расчеты, показавшие, что существует некий предел массы звезды, который кардинально влияет на ее судьбу. Предел этот назвали именем астронома, и равен он 1,38 солнечной массы. То есть если масса звезды не превышает 1,38 массы нашего Солнца, то в конце жизни она превратится в скучного белого карлика из так называемого вырожденного газа, представляющего собой плотно сбитую тяготением смесь ядер атомов и электронов. Белые карлики мы с вами проходили. Это такие угасающие заморыши, выработавшие свое топливо и остывающие медленно и печально. То есть Солнце наше, поначалу раздувшись и сбросив верхние слои, останется белым карликом. А сейчас оно – желтый карлик.

Но если масса звезды больше солнечной массы в 1,38 раза, гравитация, сжимающая звезду, не остановится на белом карлике, а начнет загонять электроны в протоны, превращая их в нейтроны, и бывшее светило превратится в нейтронную звезду. Тоже знакомый нам вариант. Эта судьба ждет звезды массой от 1,38 до 30 солнечных масс.

Ну а если масса звезды превышает солнечную более чем в 30 раз?

Тогда после вспышки сверхновой и гравитационного коллапса (сжатия) звезды уже ничто не может сопротивляться силе ее мощного тяготения, даже голые нейтроны. И звезда превращается в черную дыру. Это труднопредставимый объект, что ясно уже из самого его названия, которое сколлапсировавшей звезде дали не зря: тяготение такого объекта столь велико, что ничто не может его преодолеть, даже свет, имеющий самую большую скорость во Вселенной – 300 тысяч километров с секунду. Ничто в мире не движется быстрее света, то есть электромагнитной волны. И вот даже она не может вырваться из лап чудовищного тяготения черной дыры. Поэтому дыру и не видно. Такая звезда, испытавшая коллапс, будет выглядеть для стороннего наблюдателя, как черная дыра в пространстве.

Ничто не может остановить схлопывание такой звезды вовнутрь себя. Она будет сжиматься в точку с бесконечной плотностью и бесконечно малым объемом, называемую сингулярностью. Но мы этого уже не дождемся, поскольку течение физического времени зависит от силы тяготения: в поле тяготения все физические процессы с точки зрения внешнего наблюдателя замедляются. И чем сильнее гравитация, тем сильнее замедление. Иными словами «сама для себя» звезда схлопнется в точку мгновенно. Но для нас, наблюдающих этот процесс извне, коллапс звезды будет происходить вечно.

Каковы размеры черной дыры?

Надо сказать, что понятие размера или диаметра для черной дыры достаточно условно, ведь она стремится схлопнуться в ноль, в точку (правда, как мы уже знаем, внешний наблюдатель этого никогда не дождется). Поэтому применительно к черным дырам используют два синонимичных понятия – «сфера Шварцшильда» и чуть более поэтичное «горизонт событий». Вот они и считаются размерами черной дыры.

Сфера Шварцшильда, названная по имени немецкого астронома, – это воображаемая сфера, окружающая коллапсирующую звезду, при попадании вовнутрь которой ничто, даже квант света, уже не может вырваться обратно, удерживаемый колоссальным тяготением. Так сказать, точка невозврата или, вернее, сфера невозврата, поскольку окружает черную дыру со всех сторон.

Применительно к черной дыре сферу Шварцшильда по-другому называют еще горизонтом событий. Потому что никакое событие внутри черной дыры (то есть за сферой Шварцшильда) принципиально не может оказать влияния на наш мир, так как всякое влияние, включая информационное, передается при помощи материи (вещества или излучения). И если даже свет не может вырваться к нам из-за сферы Шварцшильда, чтобы донести какую-нибудь информацию, значит, мы ничего не можем узнать о том, что происходит за горизонтом событий, и все происходящее там никак не может повлиять на события в нашем мире. Отсюда и название такое – горизонт событий. То, что находится за горизонтом событий, просто выключено из нашего мира.

А почему тогда два названия – «сфера Шварцшильда» и «горизонт событий»? Просто «горизонт событий» понятие чуть более широкое, нежели «сфера Шварцшильда», и обозначает оно в теоретической физике такую область пространства-времени, откуда до нас не могут дойти никакие сигналы. Для черных дыр горизонтом событий является сфера Шварцшильда, вот и все.

Мы уже усвоили, что черными дырами становятся звезды тяжелее Солнца более чем в 30 раз. Ничто не может остановить их гравитационного схлопывания. А у звезд полегче для такого трюка просто не хватает собственной массы. Но если бы можно было каким-то чудом сжать наше Солнце так, чтобы оно превратилось в черную дыру, то это случилось бы, когда его диаметр стал бы равен всего 6 (шести) километрам. Напомню, сейчас, до воздействия чудо-пресса, естественный диаметр нашего светила составляет почти полтора миллиона километров. Вот насколько нужно уплотнить вещество, чтобы дальше оно уже само начало обваливаться внутрь себя, уходя в полное небытие.

То есть диаметры черных дыр, оставшихся после взрыва массивных звезд, довольно компактны!

Кстати говоря, радиус в который нужно упихать-уплотнить объект, чтобы он стал черной дырой, называется гравитационным радиусом. Для Земли гравитационный радиус составляет порядка 1 сантиметра. Ясно, что своего тяготения у нашей крошки не хватит, чтобы так сжаться: слишком уж легонькая она у нас.

Мы в этой книге говорим о вещах, которые трудно или попросту невозможно себе представить: об объектах невообразимо маленького размера – протонах, электронах, нейтронах, – и об объектах и расстояниях столь же невообразимо огромных – галактиках, мегапарсеках, гиперновых вспышках.

Но все познается в сравнении. Поэтому данный раздел будет специально посвящен сравнениям, дабы величие и удивительность Вселенной предстали перед вашим внутренним взором во всем своем великолепии.

В нашей Солнечной системе самой большой планетой является Юпитер. Если диаметр Земли почти 13 тысяч километров, то диаметр Юпитера – 143 тысячи км. Две трети всей планетарной массы в Солнечной системе – это Юпитер. В нем могло бы поместиться 1300 таких планет, как Земля.

Диаметр Солнца составляет почти 1 400 000 км. Внутри Солнца могут поместиться миллионы таких планет, как Земля. Настоящий гигант! 99,8 % массы Солнечной системы сосредоточены в Солнце. А из 0,2 % оставшегося материала сделались планеты (причем 70 % планетарной массы, как мы уже знаем, пришлось на Юпитер).

Температура солнечной поверхности составляет примерно 6000 градусов по Цельсию, а внутри Солнца, где идут термоядерные реакции, температура достигает 20 миллионов градусов. Каждую секунду Солнце теряет 4 миллиона тонн своей массы, они улетают в виде излучения. Это и есть дефект массы от ежесекундного превращения 700 миллионов тонн водорода в 696 тонн гелия.

Но мы помним, что Солнце относится к классу желтых карликов, что более чем прозрачно намекает на весьма скромные габариты нашей звездули. Бывают звезды в 10, 20, 30 раз тяжелее Солнца. Да, они все плохо кончают, как мы теперь знаем, но ведь и Солнышко наше не бессмертно, просто пыхнет оно не так эффектно в конце своего жизненного пути. Однако, с точки зрения пополнения звездного зоопарка, любопытно было бы поискать во Вселенной самых больших «зверей».

Для начала давайте посмотрим четыре рисунка ниже. Там сравнительные величины разных звезд. Художнику пришлось сделать несколько рисунков в разных масштабах, в противном случае невозможно было бы нарисовать на странице или самый большой или самый маленький объект.

Сравнительные размеры некоторых звезд. Обратите внимание, на каждом следующем рисунке самым маленьким кружком указана та звезда, которая на прежнем рисунке была самой большой. Иначе вы бы просто не разглядели Солнца и тем более красного карлика Волк-359 уже на втором рисунке.

Раньше астрономы полагали, что звезд тяжелее Солнца более чем в 150 раз быть не может. Однако не так уж давно в галактике Большое Магелланово облако была найдена звезда, масса которой превышает солнечную в 265 раз! Своего названия у звезды нет, только некрасивый номер – R136a1. Причем по тому, как интенсивно звезда теряет массу, ученые установили, что при рождении она была аж в 320 раз тяжелее Солнца. Скорее всего такие гиганты получаются при слиянии нескольких близко расположенных звезд.

Яркость этого монстра почти в 9 миллионов раз превышает яркость Солнца. Если бы у нас стояла задача запустить вокруг этого чудовища Землю так, чтобы на ней была возможна жизнь, то орбита Земли была бы в 3000 раз дальше от R136a1, чем от Солнца. Но лучше бы вам этого не делать и поискать звезды поскромнее и поспокойнее, потому что R136a1 – будущая гиперновая и может лопнуть практически в любой момент. Просто счастье, что этот перегретый паровоз находится не в нашей галактике!

Однако во Вселенной существуют и другие гигантские светящиеся объекты. Они настолько огромны и так ярки, что их даже звездами не называют. Они были открыты в середине прошлого века и названы квазарами.

Квазар сияет как целая галактика, то есть он один выделяет энергии как сотни миллиардов звезд! При этом размерами не превышает нашу Солнечную систему. То есть штука, конечно, достаточной крупная, больше любых, самых крупных звезд, но все же достаточно компактная – по сравнению с размерами целой галактики, квазар просто крошка, песчинка, пылинка! И вот такая «пылинка» светит мощнее целой галактики, а то и нескольких, например, квазар S50014+81 излучает свет в 60 000 раз мощнее, чем весь Млечный Путь! Невероятно! Но факт…

Что представляют из себя эти удивительные квазары, пока точно неизвестно. Ясно только, что это самые древние объекты нашего мира. Это ясно из того, что все открытые квазары находятся очень далеко, буквально «на краю Вселенной». То есть свет от них к нам идет миллиарды лет, и мы сейчас видим квазары, какими они были миллиарды лет тому назад, то есть на заре Вселенной (а возраст Вселенной, кстати, 13,7 миллиарда лет). Поэтому правильнее про квазары было бы сказать не «находятся», а «находились».

Предполагается, что квазары – это ядра молодых галактик. То есть квазар представляет из себя гигантскую черную дыру, которая активно всасывает в себя вещество – водород, гелий. Летя под действием сверхмощного поля тяготения к этой адской черной дыре, вещество, прежде, чем кануть в ней безвозвратно, успевает приобрести огромную скорость и разогреться. Отсюда и излучение.

То есть сама черная дыра, как мы уже и говорили, ничего из себя излучить не может. Она – черный вселенский пылесос, только втягивающий в себя и убивающий все, что попадает в пределы ее гравитации. Но прежде чем пропасть в черном небытии, вещество успевает издать последний вопль ужаса. Который пораженные астрономы и фиксируют в виде необыкновенно мощного излучения во всех диапазонах. Это крик убиваемой материи.

Когда все окрестное вещество поджирается сверхмассивной черной дырой, процесс катастрофического излучения подуспокаивается. И еще какое-то время бывший квазар светит с меньшей интенсивностью, доедая остатки вещества вокруг себя. Тогда он называется активным ядром молодой галактики, которое светит сильно, но не так ярко, как квазар. Ну а потом, когда в пределах досягаемости вещества уже не остается, свечение вокруг дыры гаснет. Черная дыра затаилась, как паук в ожидании случайной мошки.

Такие гигантские молчащие черные дыры существуют в центрах многих галактик. В том числе и в нашей. Нужно только понимать, что бывают разные черные дыры: есть черные дыры, оставшиеся на месте взорвавшихся звезд, и они довольно компактны. А бывают гигантские, сверхмассивные черные дыры в центрах галактик, оставшиеся со времен формирования Вселенной, когда огромные массивы газа только-только начинали свою гравитационную концентрацию. Тогда из сравнительно небольших сгустков получались обычные звезды, из огромных массивов вещества получались гигантские и быстро сгорающие звезды, а также супергигантские звездоподобные газовые массивы, сразу превратившиеся в сливающиеся друг с другом черные дыры, ставшие центрами формирования галактик. Сначала они были жадно поглощающими вещество квазарами, потом – активными ядрами галактик, а теперь – просто тихими черными дырами. И вокруг этих супердыр нынче кружатся миллиарды звезд, составляющих галактику. Масса этих черных дыр может составлять от сотен тысяч до миллиардов масс Солнца. Скажем, черная дыра в серединке галактики NGC 488 весит как 20 миллиардов Солнц! И если черные дыры, оставшиеся после взрыва сверхновых довольно компактны, то эта старинная черная дырища так велика, что в нее уместились бы полтора десятка Солнечных систем.

Часто возникает вопрос: а что будет, если нырнуть в черную дыру? Понятно, что обратно не выберешься, но, быть может, можно вынырнуть в другой, параллельной Вселенной? Действительно, есть такая теория, что внутри себя черная дыра выворачивается в другую Вселенную и там выглядит белой дырой. Белыми дырами называют гипотетические объекты, которые, в отличие от черных дыр, не всасывают в себя беспрестанно вещество и излучение, а, напротив, беспрестанно его извергают. В нашей Вселенной никаких таких белых дыр пока не обнаружено, они остаются выдумкой кабинетных ученых, но вдруг они все же существуют и являются «оборотной стороной» наших черных дыр, просто находятся в параллельных мирах? Правда, проверить сию гипотезу нельзя, поскольку эти гипотетические Вселенные ограждены от нас горизонтами событий, и информацию оттуда никоим образом получить невозможно.

Поэтому мы сейчас эти научные спекуляции обсуждать не будем, а ответим на вопрос, что будет с любопытным мальчиком, который захочет нырнуть в черную дыру и посмотреть, чего там происходит.

Начнем ответ с более легкого объекта – с белого карлика или нейтронной звезды. Что вам больше нравится в качестве орудия самоубийства? Давайте возьмем нейтронную звезду – по сути гигантское атомное ядро диаметром в пару десятков километров. Напомню: это все, что осталось от гигантской сверхновой после взрыва – вещество чудовищной плотности и с чудовищной силой притяжения.

Итак, пытливый мальчик вниз головой кидается в эту звезду. Так как мальчик имеет некую длину, одни части мальчика будут ближе к звезде (голова), а другие части мальчика – дальше (ботинки). А поскольку чем ближе к звезде, тем сильнее сила притяжения, головенка безрассудного мальчика будет притягиваться сильнее, чем ботинки, то есть она будет лететь к звезде быстрее мальчиковых ног. По сути, мальчика, начиная с головы, вытянет в длинную макаронину. Этот эффект вытягивания мальчиков в макаронины называется действием приливных сил. Приливные силы от Луны, которые действуют на Землю, вызывают в земных океанах приливы и отливы. Вот примерно то же самое, только в совершенно карикатурных масштабах случится с нашим мальчиком – приливные силы, начав вытягивать его с головы, просто разорвут глупого героя, а когда остатки несчастного коснутся поверхности звезды, электроны мальчика вдавит в его протоны, и мальчик превратится в нейтронную пасту, которую равномерно размажет по поверхности нейтронного шара.

В общем, падение мальчика вниз головой на звезду будет напоминать выдавливание тюбика с зубной пастой. Сначала – длинная макаронина, а потом размазывание. Прелестно!

Так, одного мальчика мы уже истратили. Теперь берем другого и кидаем в черную дыру – интересно же, что будет! А будет примерно то же самое. Сначала его «отмакаронит» приливными силами, а потом разберет на элементарные частицы, которые канут в черном небытии сингулярности. Но мы этого уже не увидим.

Или увидим?

Это зависит от величины черной дыры, в которую затянуло наш объект. Если мальчик падает в черную дыру, оставшуюся после взрыва массивной сверхновой, то есть дыра эта сравнительно невелика по размерам, его разорвет еще до достижения горизонта событий. Например, если черная дыра образовалась из звезды массой в 10 Солнц и ее радиус Шварцшильда составляет 30 км, мальчика превратят в макаронину и разорвут приливные силы на расстоянии 300 км от горизонта событий. То есть мы сполна насладимся этим печальным зрелищем отмакаронивания или, говоря на европейский манер, спагеттификации.

Но если мы имеем дело со старой заслуженной черной дырой размером эдак в десять тысяч солнечных масс, то ее радиус Шварцшильда будет равен 30 тысячам километров. А вот приливные силы начнут деформировать и разрывать объект намного ближе к звезде, то есть уже после того, как мальчик пролетит за горизонт событий. Таким образом, в этом случае мальчик пролетит за горизонт событий живым и здоровым, даже не заметив этого. Его раздавит уже потом, но мы этого уже не увидим, так как свет из-за горизонта событий до нас никак дойти не может. Да и сам мальчик своего ужасного конца не увидит, ибо у него вылезут глаза на лоб.

В этой связи нельзя не упомянуть одну удивительную гипотезу, которая гласит: вполне возможно, что все мы живем внутри черной дыры. То есть вся наша вселенная представляет собой гигантскую черную дыру – для внешнего наблюдателя, конечно, а не для нас. Как вы знаете, гравитационный радиус объекта (после которого он схлопывается в черную дыру) зависит от его массы. Напомню для сравнения, что гравитационный радиус Земли, например, 1 см. К сожалению, мы точно не знаем массу нашей Вселенной и ее существующий радиус. А иначе могли бы сказать, действительно мы живем внутри черной дыры или нет. Но поскольку изнутри это незаметно, никаких неприятностей нам не доставляет и воспринимается как черная дыра только с точки зрения внешнего наблюдателя (если он, конечно, вне нашей Вселенной существует), то и наплевать!

18 интересных фактов о черных дырах

Черные дыры являются одним из самых интересных объектов во Вселенной. Это небесные тела чрезвычайно сильной гравитации, из которых ничто не может вырваться - ни планета, ни луна, ни даже свет.

Все, что пересекает горизонт событий - границу, в пределах которой скорость убегания черной дыры больше скорости света - резко движется к неизвестной судьбе.

В последние годы физики обнаружили много неизвестных фактов о черных дырах. Некоторые открытия заложили основу для будущего, в то время как некоторые все еще поражают воображение исследователей. Вот 18 самых интригующих фактов и теорий черных дыр, которые вы должны знать.

1. Черная дыра была открыта Карлом Шварцшильдом в 1916 году

Карл Шварцшильд | Изображение предоставлено: Викимедиа

Хотя объекты с интенсивными гравитационными полями (из которых свет не может уйти) рассматривались в 18 веке, именно Карл Шварцшильд дал первое современное решение общей теории относительности в 1916 году, характеризующее черную дыру.

В 1958 году Дэвид Финкельштейн опубликовал свою интерпретацию как область пространства, из которой ничто не может вырваться. Американский физик-теоретик Джон Уилер затем связал термин «черная дыра» с объектами с гравитационным коллапсом, предсказанным в начале 20-го века.

Он использовал термин «черная дыра» во время презентации, которую он дал в Институте космических исследований имени Годдарда НАСА в 1967 году.

2. Их нельзя наблюдать непосредственно

Первое фото Черной дыры

Первое в мире изображение черной дыры в ядре эллиптической галактики Мессье 87

Поскольку свет не может избежать массивного гравитационного притяжения черной дыры, вы не можете непосредственно наблюдать его. Тем не менее, вы можете увидеть, как его гравитация влияет на близлежащие небесные тела и газ.

Астрономы изучают звезды, чтобы увидеть, вращаются ли они вокруг черной дыры. Когда звезда и черная дыра находятся близко друг к другу, испускается излучение, которое обычно фиксируется космическими телескопами и спутниками.

В 2019 году ученые сняли первое в мире изображение черной дыры, расположенной на расстоянии 500 миллионов триллионов километров. Он был сфотографирован сетью 8 телескопов по всему миру. Эта сверхмассивная черная дыра имеет ширину в 40 миллиардов километров и в 6,5 миллиардов раз больше массы Солнца.

3. Типы черных дыр

Существует четыре типа черных дыр (три реальных и одна гипотетическая) -

Звездные черные дыры: это маленькие черные дыры с массами от 5 до нескольких десятков масс Солнца. Они образованы гравитационным коллапсом большой звезды.

Сверхмассивные черные дыры: самые большие черные дыры с массами от сотен тысяч до миллиардов солнечных масс. Их происхождение остается открытой областью исследования.

Промежуточные черные дыры значительно более массивны, чем звездные черные дыры, но меньше, чем сверхмассивные черные дыры. Наиболее убедительные доказательства таких небесных тел получены от некоторых активных галактических ядер с низкой светимостью.

Изначальные черные дыры - это гипотетические черные дыры, которые могли образоваться вскоре после Большого взрыва. Их массы могут быть намного меньше, чем звездные массы. Стивен Хокинг подробно изучил эти черные дыры и обнаружил, что они могут весить всего 100 микрограммов.

4. Черная дыра имеет три слоя

Черная дыра имеет три слоя: сингулярность, внешний и внутренний горизонт событий.

Центр черной дыры называется сингулярностью. Это область, где вся масса сжимается до почти нулевого объема. Таким образом, особенность имеет почти бесконечную плотность и порождает огромную гравитационную силу.

Внешний горизонт событий - это самый внешний слой, из которого материалы все еще могут вырваться из гравитации черной дыры. Гравитационное притяжение этого слоя не такое сильное, как в центральном или среднем слое.

Внутренний горизонт событий - это центральный слой. Это регион, откуда вещество не может убежать. Он толкает вещество к центру черной дыры, где гравитационное воздействие является наиболее сильным.

5. Черная дыра может быть размером до 0,1 миллиметра

Черная дыра может иметь массу, столь же малую, как луна Земли, и огромную, в десять миллиардов раз превышающую массу Солнца.

Его масса пропорциональна размеру горизонта событий, который измеряется как радиус Шварцшильда. Это радиус, при котором скорость выхода равна скорости света.

Более того, ни одна черная дыра не является бесконечно маленькой. Минимальная масса выше или равна массе Планка, которая составляет около 22 микрограммов.

6. Черные дыры вращаются вокруг оси

Когда звезда падает в очень маленькое пространство, она все еще сохраняет всю эту массу. Чтобы сохранить момент импульса, скорость вращения черной дыры увеличивается.

Поскольку черная дыра вращается, ее масса заставляет вращаться и близлежащее пространство-время. Этот регион называется эргосферой. Это регион (за пределами горизонта событий), где происходят различные интересные эффекты.

Чем меньше горизонт событий, тем быстрее он вращается. Однако существует ограничение скорости, с которой черная дыра может вращаться [не раскрывая свою сингулярность остальной Вселенной].

Самая тяжелая звездная черная дыра (GRS 1915+105) в Млечном Пути вращается 1150 раз в секунду. А в галактике NGC 1365 есть черная дыра, которая вращается со скоростью 84% скорости света. Он достиг предела космической скорости и не может вращаться быстрее.

7. Они производят звук

Наблюдение Чандрой скопления галактик Персей выявило волнообразные особенности, которые кажутся звуковыми волнами | Предоставлено: НАСА.

В 2003 году астрономы, использующие рентгеновскую обсерваторию Чандра НАСА, обнаружили звуковые волны от сверхмассивной черной дыры, расположенной в 250 миллионах световых лет от Земли.

Когда черная дыра втягивает что-то, ее горизонт событий заряжает частицу близко к скорости света, производя звук. Космические телескопы улавливают звуковые волны, которые уже прошли миллионы световых лет от их источника (черной дыры).

Но звук не может распространяться в вакууме, тогда как мы слышим черные дыры? На самом деле, космическое пространство не полный вакуум. Он состоит из нескольких атомов водорода (плюс другие газы) на кубический метр, которые служат средой для очень низкочастотных звуковых волн.

8. Черные дыры искажают пространство и время

Симуляция, показывающая, как черная дыра искажает пространство-время

Из-за сильного гравитационного воздействия черная дыра может исказить пространство-время в ближнем соседстве. Согласно общей теории относительности, чем ближе вы к черной дыре, тем медленнее проходит время.

Горизонт событий - это граница вокруг черной дыры, где каждая материя, включая свет, теряет способность убегать. Гравитационная сила постоянна на горизонте событий.

Вращающаяся черная дыра порождает странный эффект, называемый перетаскиванием кадра. В этом случае пространство и время, близкие к черной дыре, фактически тянутся вокруг нее. Космос тянется так сильно, что невозможно двигаться в противоположном направлении. Это бесконечный регресс искажений, когда нет возможности двигаться вперед.

В целом, классические законы физики в том виде, в каком мы их знаем, перестают действовать внутри горизонта событий, на самом деле невозможно представить что-либо с бесконечной плотностью и нулевым объемом.

9. Черные дыры могут убить тебя ужасным способом

Если бы вы упали в черную дыру, ваше тело растянулось бы в длинную, похожую на спагетти нить.

Предполагая, что это маленькая черная дыра, вы будете искажены огромной приливной силой тяжести. Приливная сила - это разница между силой тяжести на голове и ногах. Сила, действующая на вашу голову (если вы падаете головой вперед), будет намного сильнее, чем сила, действующая на ваши ноги.

Эта разница заставит вас почувствовать, что что-то разрывает вас на части, растягивает с головы до ног. Чем ближе ваша голова к черной дыре, тем быстрее она движется. Но нижняя половина вашего тела находится дальше и поэтому не движется к центру так быстро.

Когда приливная сила превышает молекулярные силы, которые связывают вашу плоть, ваше тело разорвется на две части, и эти две части разорвутся на две другие части, и так далее. Вы были бы вытеснены через ткань пространства-времени, как зубная паста через трубку.

10. Черные дыры не засасывают

Все внутри горизонта событий рушится до одномерной сингулярности

Люди обычно думают о черной дыре как о космическом вакууме, который высасывает вещество со всего вокруг. Это распространенное заблуждение. Черные дыры похожи на любое другое небесное тело, но имеют огромное гравитационное влияние на пространство в их окрестностях. Это гравитационное притяжение просто заставляет вещество вокруг них быстро ускоряться.

Даже если вы замените наше Солнце черной дырой равной массы, Земля не упадет. У черной дыры будет то же гравитационное поле, что и у Солнца. Земля и другие планеты будут продолжать вращаться вокруг черной дыры, когда она вращается вокруг Солнца сегодня.

А поскольку Солнце недостаточно велико, оно никогда не превратится в черную дыру.

11. Сверхмассивные черные дыры существуют в центрах большинства галактик

Рентгеновское изображение Стрельца А | Предоставлено: НАСА.

Исследователи полагают, что в ядре большинства галактик, включая Млечный Путь, есть сверхмассивная черная дыра. Эти большие черные дыры фактически удерживают галактики вместе в космосе.

Стрелец А, черная дыра, расположенная в центре Млечного Пути, в 4 миллиона раз массивнее Солнца. На расстоянии всего 26 000 световых лет от Земли Стрелец А является одной из очень немногих черных дыр во Вселенной, где астрономы могут фактически наблюдать поток материи поблизости.

12. Во Вселенной есть бесчисленные черные дыры

Одна наша галактика состоит из более чем 100 миллионов звездных черных дыр, плюс сверхмассивный Стрелец А в ее ядре. Почти 100 миллиардов галактик, каждая из которых имеет ядро ​​сверхмассивного монстра и 100 миллионов черных дыр звездной массы (в то время как другие типы еще изучаются), это все равно что пытаться подсчитать количество песчинок на Земле.

13. Любой объект может быть превращен в черную дыру

Звезды не единственные вещи, которые в конечном итоге превращаются в черные дыры. Теоретически вы можете превратить все в черную дыру.

Например, если вы уменьшите размер Солнца до 6 километров в поперечнике, сохраняя при этом всю его массу, он станет черной дырой. Его плотность достигнет астрономических уровней, которые сделают гравитационную силу невероятно сильной.

Та же теория может быть применена к Земле и любому другому объекту, такому как мобильный телефон, автомобиль или даже ваше собственное тело. Однако мы не знаем такой техники, которая может уменьшить объем до бесконечно малой точки, сохраняя при этом 100 процентов массы объекта.

14. Со временем они испаряются

В 1974 году Стивен Хокинг предположил, что черные дыры излучают небольшое количество фотонных частиц, что заставляет их постепенно терять массу и исчезать со временем. Этот процесс испарения называется «излучение Хокинга».

Излучение черного тела происходит за счет квантовых эффектов вблизи горизонта событий. Поскольку процесс невероятно медленный, только самые маленькие черные дыры успели бы полностью испариться в течение 13,8 миллиардов лет (эпоха Вселенной).

15. Сверхмассивные черные дыры определяют количество звезд в галактике

Существует сбалансированная связь между деятельностью черных дыр и количеством звезд. Слишком много звезд сделало бы галактику слишком горячей, чтобы жизнь могла эволюционировать, тогда как недостаточное количество звезд может помешать формированию жизни.

Новое исследование показывает, как сверхмассивные черные дыры регулируют звездообразование в массивных галактиках. История звездообразования в близлежащих массивных галактиках зависит от массы центральной сверхмассивной черной дыры.

16. Они являются гигантским источником энергии

Черные дыры создают энергию более эффективно, чем маленькие звезды, такие как Солнце.

Поскольку гравитационное влияние очень сильно вблизи горизонта событий, вещество, ближайшее к краю горизонта событий, вращается намного быстрее, чем вещество на внешнем горизонте событий (внешний слой черной дыры).

Вещество движется так быстро, что нагревается до миллионов градусов по Цельсию, превращая массу в энергию в форме излучения (известного как излучение черного тела).

Черная дыра может преобразовать 10% массы в энергию. Чтобы поместить это в перспективу, ядерный синтез превращает только 0,7% массы в энергию.

Исследователи даже исследовали, возможно ли физически использовать этот вид энергии для строительства электростанций или космических кораблей.

17. Черные дыры могут создать новые вселенные

Это может показаться странным, но некоторые физики считают, что черные дыры могут открыть новые миры. Наша вселенная, возможно, родилась внутри черной дыры, и черные дыры в нашей вселенной могут порождать новые собственные вселенные.

Чтобы понять, как это работает, представьте себе нашу нынешнюю Вселенную: все, на что вы смотрите, стало возможным благодаря ряду событий, произошедших в прошлом, и определенным условиям, которые объединились для создания жизни.

Если вы внесете изменения в эти условия / события хотя бы на небольшое количество, все будет по-другому. Теоретически, сингулярность может изменить эти условия, создав новую, слегка измененную вселенную.

18. Информация может спастись от черной дыры

Что происходит с информацией о частицах, проходящих через черные дыры? Физики пытались ответить на этот вопрос десятилетиями.

Законы квантовой физики утверждают, что информация не может быть уничтожена окончательно. Однако, если информация не может вырваться из черной дыры, то, по сути, она была уничтожена. Это, кажется, нарушает правила квантовой механики.

По словам Стивена Хокинга, информация никогда не попадает в черную дыру.

«Информация хранится не во внутренней части черной дыры, как можно было ожидать, а на ее границе, горизонте событий» - Стивен Хокинг

Когда объект входит в черную дыру, его информация захватывается и сохраняется на горизонте событий. Хотя объект может быть разрушен внутри черной дыры, информация останется размытой на горизонте событий.

Информация может сбежать вместе с излучением Хокинга, но в бесполезной и хаотичной форме. На самом деле, это может произойти в другой вселенной. Хокинг предположил, что черные дыры не являются вечными тюрьмами, которые они когда-то считали.

Документальный фильм про черные дыры


Смотрите также