Фоторезист что это такое


Фоторезист — Википедия

Фоторезист (от фото и англ. resist) — полимерный светочувствительный материал. Наносится на обрабатываемый материал в процессе фотолитографии или фотогравировки с целью получить соответствующее фотошаблону расположение окон для доступа травящих или иных веществ к поверхности обрабатываемого материала.

Позитивные фоторезисты[править | править код]

В позитивных фоторезистах, проэкспонированные области становятся растворимыми и после проявления разрушаются. Такие фоторезисты, как правило, позволяют получать более высокие разрешения нежели негативные[1][2][3], но стоят дороже[4].

.

Для и фотолитографии при изготовлении микроэлектроники использовались позитивные двухкомпонентные фоторезисты на базе DQN (diazoquinone, DQ и novolac, N) [5]. В дальнейшем, для субмикронных процессов, использующих эксимерные лазеры KrF, ArF, применялись фоторезисты на базе органического стекла, неорганические резисты (Ag + Ge-Se), Polysilyne, двух- и трехслойные резисты (многослойные резисты для техпроцессов 90 нм и более новых)[6].

Распространены[когда?] следующие типы позитивных фоторезистов для g-line (литографы с длиной волны 436 нм, техпроцессы до 0,5 мкм[7][8]): Shipley 1805, Shipley 1813, Shipley 1822 (производитель Microchem[9])

Негативные фоторезисты[править | править код]

В негативных фоторезистах, проэкспонированные области полимеризуются и становятся нерастворимыми, так что после проявления растворяются только не проэкспонированные области. Негативные фоторезисты, как правило, обладают более высокой адгезией по сравнению с позитивными, и более устойчивы к травлению.

В целом, уже к 1972 году были достигнуты пределы классических негативных фоторезистов, и для техпроцессов лучше 2 мкм применялись позитивные фоторезисты[2][10].

Обратимые фоторезисты[править | править код]

Обратимые фоторезисты (image reversal[8]) — это особые фоторезисты, которые после экспонирования ведут себя как позитивные, но могут быть «обращены» посредством термической обработки и последующего экспонирования всего фоторезиста (уже без фотошаблона) ультрафиолетовым излучением. В этом случае, после проявления такие резисты будут вести себя уже как негативные. Основное отличие рисунков полученных таким образом от простого использования позитивного резиста заключается в наклоне стенок фоторезиста; в случае позитивного фоторезиста стенки наклонены наружу, что подходит для процесса травления, а при обращении рисунка фоторезиста, стенки наклонены внутрь, что является преимуществом при процессе обратной литографии.

Фоторезистами называют резисты, экспонируемые светом (фотонами), в отличие от резистов, предназначенных для экспонирования электронами. В последнем случае фоторезисты называют электронными резистами или резистами для электронной (e-beam) литографии. Фоторезисты различаются по длине волны экспонирования, к которой они чувствительны. Наиболее стандартными длинами волн экспонирования являлись т. н. i-линия (365нм), h-линия (405нм) и g-линия (436нм) спектра излучения паров ртути. Многие фоторезисты могут быть проэкспонированы и широким спектром в УФ диапазоне (интегральное экспонирование), для чего обычно применяется ртутная лампа. Следующее поколение резистов было разработано для эксимерных лазеров KrF, ArF (средний и дальний ультрафиолет; 248 нм и 193 нм). Отдельные классы фоторезистов составляют материалы, чувствительные к глубокому (экстремальному) УФ (ГУФ (EUV) литография) и рентгеновскому излучению (Рентгеновская литография). Кроме того, существуют специальные фоторезисты для наноимпринтной (нанопечатной) литографии.

Толщина плёнки фоторезиста является одним из ключевых его параметров. Как правило, для получения высокого разрешения требуется толщина плёнки не более, чем в два раза превышающая требуемое разрешение. Разрешающая способность фоторезиста определяется, как максимальное количество минимальных элементов на единице длины (1мм). R=L/2l, где L — длина участка, мм; l — ширина элемента, мм. И напротив, процессы глубокого травления или обратной литографии, требуют относительно большой толщины плёнки фоторезиста. Толщина плёнки в целом определяется вязкостью фоторезиста, а также методом нанесения. В частности, при нанесении центрифугированием толщина плёнки уменьшается при увеличении скорости вращения.

Перед нанесением фоторезистов на материалы с низкой адгезией сначала наносят подслой (например HMDS), усиливающий адгезию фоторезиста к поверхности. После нанесения, фоторезист иногда покрывают плёнкой антиотражающего покрытия для повышения эффективности экспонирования. С той же целью антиотражающее покрытие порой наносят и до нанесения фоторезиста. Сами фоторезисты наносятся следующими основными методами:

Центрифугирование[править | править код]

Центрифугирование — это наиболее широко распространённый метод нанесения фоторезистов на поверхность, который позволяет создавать однородную плёнку фоторезиста, и контролировать её толщину скоростью вращения.

Окунание[править | править код]

При использовании не подходящих для центрифугирования поверхностей, используется нанесение окунанием в фоторезист. Недостатками этого метода являются большой расход фоторезиста и неоднородность получаемых плёнок.

Аэрозольное распыление[править | править код]

При необходимости нанести резист на сложные поверхности используется аэрозольное распыление, однако толщина плёнки при таком методе нанесения не является однородной. Для аэрозольного напыления, как правило, используют специально предназначенные фоторезисты.

Изготовление печатных плат[править | править код]

Фоторезисты используются для получения рисунка на фольгированном диэлектрике при создании печатных плат. Для травления меди при этом используют хлорид железа или персульфат аммония. Различают два основных типа фоторезистов, используемых при производстве печатных плат: Сухой пленочный фоторезист (СПФ) и аэрозольный «POSITIV». СПФ получил более широкое распространение в производстве, так как обеспечивает равномерный слой. Представляет собой трёхслойную структуру — два слоя защитной плёнки, и слой фоторезиста между ними. К обрабатываемому материалу приклеивается при помощи ламинатора.

Травление[править | править код]

Фоторезисты наиболее часто используются в качестве маски для процессов травления при производстве полупроводниковых приборов для микроэлектроники, в том числе МЭМС, транзисторов, и другого. Фоторезисты предназначенные для травления, как правило, имеют высокую химическую устойчивость к травителям, высокое соотношение глубины травления к разрешению. Глубина травления во многом зависит от толщины плёнки: чем толще плёнка, тем большей глубины травления можно добиться.

Легирование[править | править код]

Фоторезисты также используются в процессах имплантации легирующих примесей посредством ионной имплантации. Обычно, с помощью фоторезиста создаётся рисунок на оксиде покрывающем поверхность, и далее примеси имплантируются уже через окна, образованные в этом оксиде, легируя таким образом лишь отдельные участки материала.

Обратная фотолитография[править | править код]

В процессах обратной (взрывной литографии), после проявления фоторезиста, на плёнку фоторезиста напыляется тонкая плёнка материала. Далее, оставшиеся после проявления участки фоторезиста удаляются, унося с собой осаждённый материал, таким образом, что плёнки материала остаются только в незащищённых фоторезистом местах. Для процесса обратной литографии толщина плёнки резиста должна быть в два и более раз толще чем толщина плёнки осаждаемого материала. Кроме того, для обратной литографии часто используют двух- и трёхслойные процессы, где наносятся несколько слоёв фоторезиста. При этом нижний фоторезист обладает более высокой скоростью проявления, таким образом как бы подтравливая второй слой фоторезиста на который напылён материал. В этой связи нижний слой фоторезиста должен быть нерастворимым в для второго фоторезиста. Кроме того фоторезисты для обратной литографии должны обладать высокой температурной устойчивостью, необходимой учитывая высокие температуры некоторых видов напыления. Такие фоторезисты называют LOR фоторезистами (англ. lift-of-resist).

Пескоструйная гравировка[править | править код]

Также фоторезисты в виде плёнок используются в качестве маски для пескоструйной обработки.

Герметизация[править | править код]

Некоторые виды резистов, такие как Сyclotene, используются, как полимер для создания диэлектрических, закрывающих и герметизирующих слоёв, что позволяет сократить число технологических операций в процессе кристального производства.

Создание различных структур[править | править код]

Фоторезисты нередко используются и не по прямому назначению, а в качестве материала для создания различных структур для микроэлектроники. Например, специальные резисты применяются для создания полимерных волноводов нужной формы на поверхности подложки. Кроме того, из фоторезиста могут быть получены микролинзы. Для этого из фоторезиста сначала формируют нужную форму основания линзы, а затем с помощью температурной обработки оплавляют резист придавая ему форму линзы.

Фоторезисты чувствительные к УФ[править | править код]
  • Позитивные — сульфо-эфиры ортонафтохинондиазида в качестве светочувствительного вещества и новолачные, феноло- или крезолоформальдегидные смолы в качестве пленкообразователя.
  • Негативные — циклоолефиновые каучуки, использующие в качестве сшивающих агентов диазиды; слои поливинилового спирта с солями хромовых кислот или эфирами коричной кислоты; поливинилциннамат.
Фоторезисты чувствительные к ГУФ[править | править код]

Также используются фоторезисты с химическим усилением скрытого изображения, состоящие из светочувствительных ониевых солей и эфиров нафтоловых резольных смол, в которых происходят химические реакции под действием солей.

Электронные резисты и фоторезисты чувствительные к рентгену и ионным потокам[править | править код]
  • Фотолитография и оптика, М. Берлин, 1974; Мазель Е. З., Пресс Ф. П., Планарная технология кремниевых приборов, М., 1974
  • У. Моро. Микролитография. В 2-х ч. М., Мир, 1990.
  • БСЭ, статья «Фоторезист»
  • Photolithography. Theory and Application of Photoresists, Etchants and Solvents. К. Кох и Т. Ринке.
  • Валиев К. А., Раков А. А., Физические основы субмикронной литографии в микроэлектронике, M., 1984;
  • Светочувствительные полимерные материалы, под ред. А. В. Ельцова, Л., 1985. Г. К. Селиванов.
  • Лапшинов Б. А. Технология литографических процессов. Учебное пособие — МИЭМ, 2011
  1. ↑ Positive and Negative Photoresist (англ.) (недоступная ссылка). ECE, Georgia Tech. — «Negative resists were popular in the early history of integrated circuit processing, but positive resist gradually became more widely used since they offer better process controllability for small geometry features. Positive resists are now the dominant type of resist used in VLSI fabrication processes.». Дата обращения 18 декабря 2015. Архивировано 5 декабря 2015 года.
  2. 1 2 Lecture11: Photolithography - I (англ.) (недоступная ссылка). “Instability and Patterning of Thin Polymer films”. Indian Institute of Technology. — «Historically, by 1972 the limitations of negative photoresist were reached. Subsequent developments were all based on positive photo resists.». Дата обращения 18 декабря 2015. Архивировано 22 декабря 2015 года.
  3. ↑ Advanced Photoresist Technology / PSU, EE518, 2006: "Positive: exposed regions dissolve (best resolution)"
  4. ↑ The Photoresist Process and it's Application to the Semiconductor Industry (неопр.). CE435 - INTRODUCTION TO POLYMERS. Dept of Chemical and Biological Engineering. State University of New York (19 апреля 2000). — «...positives are more costly to produce. However, images from this resist are extremely accurate, require minimal processing technique, and involve few processing steps.». Дата обращения 18 декабря 2015.
  5. ↑ Advanced Photoresist Technology / PSU, EE518, 2006: "Two-component DQN resists: DQN, corresponding to the photo-active compound, diazoquinone (DQ) and resin, novolac (N). Dominant for G-line (436nm) and I- line (365nm) exposure and not suitable for very short wavelength exposures"
  6. ↑ Advanced Photoresist Technology / PSU, EE518, 2006: "Deep UV Photoresist ... Limitation of Novolac based Photoresist: Strongly absorb below 250nm, KrF (248nm) marginally acceptable but not ArF (193nm). Photoresist Solution for Submicron Features..."
  7. ↑ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.6517&rep=rep1&type=pdf 2000, PII S 0018-9219(01)02071-0
  8. 1 2 Архивированная копия (неопр.) (недоступная ссылка). Дата обращения 18 декабря 2015. Архивировано 30 апреля 2014 года.
  9. ↑ Microposit S1800 Series Photo Resists Архивная копия от 4 марта 2016 на Wayback Machine
  10. ↑ courses.ee.psu.edu/ruzyllo/ee518/EE518_Adv.PR.Tech.S06.ppt

Фоторезист - это... Что такое Фоторезист?

Фоторезист (от фото и англ. resist) — полимерный светочувствительный материал. Наносится на обрабатываемый материал в процессе фотолитографии или фотогравировки с целью получить соответствующее фотошаблону расположение окон для доступа травящих или иных веществ к поверхности обрабатываемого материала.

Экспонирование производится в ультрафиолетовом диапазоне спектра (фотолитография), электронным лучом (электронно-лучевая литография) или мягким рентгеновским излучением (рентгеновская литография). Воздействие либо разрушает полимер (позитивный фоторезист), или, наоборот, вызывает его полимеризацию и понижает его растворимость в специальном растворителе (негативный фоторезист). При последующей обработке происходит травление в «окнах», образованных засвеченными (позитивный фоторезист) или незасвеченными (негативный фоторезист) участками полимера.

Разрешающая способность фоторезиста определяется как максимальное количество минимальных элементов на единице длины (1мм). R=L/2l, где L — длина участка, мм; l — ширина элемента, мм. Разрешающая способность позитивного фоторезиста считается более высокой, что определило его более широкое использование.

Различают два основных типа фоторезистов, используемых при производстве печатных плат: Сухой пленочный фоторезист (СПФ) и аэрозольный «POSITIV». СПФ получил более широкое распространение в производстве, так как обеспечивает равномерный слой. Представляет собой 3-х слойный «бутерброд» — два слоя защитной пленки, между ними — слой фоторезиста. К обрабатываемому материалу приклеивается при помощи ламинатора. Одним из крупнейших производителей СПФ является компания DuPont (США). Выпуская СПФ под торговым названием Riston, в рулонах по 152 м.

Типичные фоторезисты

В качестве фоторезистов, чувствительных к видимому свету часто применяются:

  • Позитивные — сульфо-эфиры ортонафтохинондиазида в качестве светочувствительного вещества и новолачные, феноло- или крезолоформальдегидные смолы в качестве пленкообразователя.
  • Негативные — циклоолефиновые каучуки, использующие в качестве сшивающих агентов диазиды; слои поливинилового спирта с солями хромовых кислот или эфирами коричной кислоты; поливинилциннамат.

Для работы с дальним ультрафиолетом применяются:

  • Позитивные — сенсибилизированные полиметакрилаты и арилсульфоэфиры, использующие фенольные смолы
  • Негативные — галогенированные полистиролы, диазиды с феноло-формальдегидными смолами

Также используются фоторезисты с химическим усилением скрытого изображения, состоящие из светочувствительных ониевых солей и эфиров нафтоловых резольных смол, в которых происходят химические реакции под действием солей.

Для регистрации электронных, рентгеновских и ионных потоков используются:

  • Позитивные — производные полиметакрилатов, полиалкиленкетонов и др.
  • Негативные — полимеры производных метакрилата, бутадиена и др.

Литература

  • Фотолитография и оптика, М. Берлин, 1974; Мазель Е. З., Пресс Ф. П., Планарная технология кремниевых приборов, М., 1974
  • У. Моро. Микролитография. В 2-х ч. М., Мир, 1990.
  • БСЭ, статья «Фоторезист»
  • Валиев К. А., Раков А. А., Физические основы субмикронной литографии в микроэлектронике, M., 1984;
  • Светочувствительные полимерные материалы, под ред. А. В. Ельцова, Л., 1985. Г. К. Селиванов.

Ссылки

lmplex › Блог › Изготовление печатной платы с помощью плёночного фоторезиста на конкретном примере

Сейчас в продаже имеется плёночный фоторезист, он довольно дёшев, но многие его не используют по той причине, что просто не знакомы с технологией. А она очень проста и позволяет получать печатные платы практически заводского качества.

Сам фоторезист представляет собой тонкую плёнку полимера, которая находится между двумя слоями защитной плёнки.

Работать с фоторезистом можно при освещении обычной лампой накаливания, но следует избегать попадания солнечного света.

Я расскажу как сделать печатную плату на конкретном примере. Мне потребовалось изготовить плату для управления RGB-лентой. Сам рисунок платы я нарисовал в векторном графическом редакторе. Следует заметить, что для работы с фоторезистом следует печатать рисунок в негативе, то есть то, что будет чёрным смоется при проявке. Значит надо напечатать так, чтобы токопроводящие дорожки оставались прозрачными. Через прозрачный участок ультрафиолет воздействует на фоторезист и он полимеризуется, создавая на поверхности фольги надёжный защитный слой.

Для своей платы я вырезал небольшой кусочек стеклотекстолита и отрезал от рулона фоторезиста такой прямоугольник, чтобы он был несколько больше заготовки платы.

Затем надо удалить с фоторезиста один защитный слой и наложить фоторезист на предварительно обезжиренную фольгу.

При небольших размерах платы выдавить воздух из-под плёнки можно просто прогладив поверхность пальцем, при больших площадях удобнее пользоваться резиновым валиком. Под плёнкой не должно остаться никаких воздушных пузырей.

Следующим этапом надо прогладить плату утюгом через два слоя бумаги в течении тридцати секунд, после этой операции плёнка приклеится к фольге.

сли есть в наличии ламинатор для документов, то плёнку можно накатать при его помощи, получится даже быстрее и лучше.

Фотошаблон печатается на прозрачной плёнке. Печатать можно как на струйном, так и на лазерном принтере.
Я использую полиэстеровую плёнку фирмы "Lomond".

Отпечатанный фотошаблон вырезается по контуру.

На самой плате излишки фоторезиста надо обрезать по размеру заготовки.

Фотошаблон накладывается на плату ОТПЕЧАТАННОЙ стороной на фоторезист и прижимается стеклом.
Для более качественного прижима я использую струбцины.

Над всей этой конструкцией на расстоянии 120 миллиметров устанавливается УФ-лампа. При таком расстоянии время экспозиции составляет одну минуту.

После засветки можно увидеть, что фоторезист потемнел в местах воздействия ультрафиолета. После всех этих операций можно снять с фоторезиста наружный защитный слой.

Для удаления незасвеченного фоторезиста применяется раствор кальцинированной соды Na2CO3, в ста граммах воды надо растворить полграмма соды.

Обычно я наливаю раствор в одноразовую тарелку, кладу в него плату, и мягкой кистью удаляю фоторезист с незасвеченных участков. Делать это надо аккуратно — мокрый слой фоторезиста можно легко повредить.

Через пару минут плату можно промыть и взглянуть на полученный результат.

После просушки я приклеиваю скотчем к обратной стороне платы полоску из тонкого пластика, держась за неё можно будет опустить плату в раствор для травления.

Теперь плату можно протравить. Опускаю её в подготовленную для этого ёмкость…

…и наливаю раствор хлорного железа.

Держась за приклеенную полоску плату можно вынуть и проследить за ходом процесса.

Через пятнадцать-двадцать минут всё готово!

Осталось только промыть плату проточной водой и удалить фоторезист. Производители рекомендуют удалять его при помощи раствора едкого натра — NaOH, но я посоветовал бы не связываться с такими опасными веществами без крайней необходимости. Фоторезист отлично удаляется ацетоном.

Надо просто налить на плату немного ацетона и подождать секунд тридцать.

Фоторезист начинает съёживаться и отслаиваться от фольги.

Потом его можно просто стереть тряпочкой.

Вот плата и готова!

Получилось очень аккуратно.

Взято с tehnari.ru

Фоторезист — Википедия. Что такое Фоторезист

Фоторезист (от фото и англ. resist) — полимерный светочувствительный материал. Наносится на обрабатываемый материал в процессе фотолитографии или фотогравировки с целью получить соответствующее фотошаблону расположение окон для доступа травящих или иных веществ к поверхности обрабатываемого материала.

Тон фоторезистов

Позитивные фоторезисты

В позитивных фоторезистах, проэкспонированные области становятся растворимыми и после проявления разрушаются. Такие фоторезисты, как правило, позволяют получать более высокие разрешения нежели негативные[1][2][3], но стоят дороже[4].

.

Для и фотолитографии при изготовлении микроэлектроники использовались позитивные двухкомпонентные фоторезисты на базе DQN (diazoquinone, DQ и novolac, N)[5]. В дальнейшем, для субмикронных процессов, использующих эксимерные лазеры KrF, ArF, применялись фоторезисты на базе органического стекла, неорганические резисты (Ag + Ge-Se), Polysilyne, двух- и трехслойные резисты (многослойные резисты для техпроцессов 90 нм и более новых)[6].

Распространены[когда?] следующие типы позитивных фоторезистов для g-line (литографы с длиной волны 436 нм, техпроцессы до 0,5 мкм[7][8]): Shipley 1805, Shipley 1813, Shipley 1822 (производитель Microchem[9])

Негативные фоторезисты

В негативных фоторезистах, проэкспонированные области полимеризуются и становятся нерастворимыми, так что после проявления растворяются только не проэкспонированные области. Негативные фоторезисты, как правило, обладают более высокой адгезией по сравнению с позитивными, и более устойчивы к травлению.

В целом, уже к 1972 году были достигнуты пределы классических негативных фоторезистов, и для техпроцессов лучше 2 мкм применялись позитивные фоторезисты[2][10].

Обратимые фоторезисты

Обратимые фоторезисты (image reversal[8]) — это особые фоторезисты, которые после экспонирования ведут себя как позитивные, но могут быть «обращены» посредством термической обработки и последующего экспонирования всего фоторезиста (уже без фотошаблона) ультрафиолетовым излучением. В этом случае, после проявления такие резисты будут вести себя уже как негативные. Основное отличие рисунков полученных таким образом от простого использования позитивного резиста заключается в наклоне стенок фоторезиста; в случае позитивного фоторезиста стенки наклонены наружу, что подходит для процесса травления, а при обращении рисунка фоторезиста, стенки наклонены внутрь, что является преимуществом при процессе обратной литографии.

Длины волн и типы экспонирования

Фоторезистами называют резисты экспонируемые светом (фотонами), в отличие от резистов предназначенных для экспонирования электронами. В последнем случае, фоторезисты называют электронными резистами или резистами для электронной (e-beam) литографии. Фоторезисты различаются по длине волны экспонирования, к которой они чувствительны. Наиболее стандартными длинами волн экспонирования являлись т. н. i-линия (365нм), h-линия (405нм) и g-линия (436нм) спектра излучения паров ртути. Многие фоторезисты могут быть проэкспонированы и широким спектром в УФ диапазоне (интегральное экспонирование), для чего обычно применяется ртутная лампа. Следующее поколение резистов было разработано для эксимерных лазеров KrF, ArF (Средний и Дальний ультрафиолет; 248 нм и 193 нм). Отдельные классы фоторезистов составляют материалы чувствительные к глубокому (Экстремальному) УФ (ГУФ (EUV) литография) и рентгеновскому излучению (Рентгеновская литография). Кроме того, существуют специальные фоторезисты для наноимпринтной (нанопечатной) литографии.

Толщина плёнки фоторезиста

Толщина плёнки фоторезиста является одним из ключевых его параметров. Как правило для получения высокого разрешения требуется толщина плёнки не более чем в два раза превышающая требуемое разрешение. Разрешающая способность фоторезиста определяется как максимальное количество минимальных элементов на единице длины (1мм). R=L/2l, где L — длина участка, мм; l — ширина элемента, мм. И напротив, процессы глубокого травления или обратной литографии, требуют относительно большой толщины плёнки фоторезиста. Толщина плёнки в целом определяется вязкостью фоторезиста, а также методом нанесения. В частности при нанесении центрифугированием, толщина плёнки уменьшается при увеличении скорости вращения.

Нанесение фоторезистов

Перед нанесением фоторезистов на материалы с низкой адгезией, сначала наносят подслой (например HMDS) усиливающий адгезию фоторезиста к поверхности. После нанесения, фоторезист иногда покрывают плёнкой антиотражающего покрытия для повышения эффективности экспонирования. С той же целью антиотражающее покрытие порой наносят и до нанесения фоторезиста. Сами фоторезисты наносятся следующими основными методами:

Центрифугирование

Центрифугирование — это наиболее широко распространённый метод нанесения фоторезистов на поверхность, который позволяет создавать однородную плёнку фоторезиста, и контролировать её толщину скоростью вращения.

Окунание

При использовании не подходящих для центрифугирования поверхностей, используется нанесение окунанием в фоторезист. Недостатками этого метода являются большой расход фоторезиста и неоднородность получаемых плёнок.

Аэрозольное распыление

При необходимости нанести резист на сложные поверхности используется аэрозольное распыление, однако толщина плёнки при таком методе нанесения не является однородной. Для аэрозольного напыления, как правило, используют специально предназначенные фоторезисты.

Применения фоторезистов

Изготовление печатных плат

Фоторезисты используются для получения рисунка на фольгированном диэлектрике при создании печатных плат. Для травления меди при этом используют хлорид железа или персульфат аммония. Различают два основных типа фоторезистов, используемых при производстве печатных плат: Сухой пленочный фоторезист (СПФ) и аэрозольный «POSITIV». СПФ получил более широкое распространение в производстве, так как обеспечивает равномерный слой. Представляет собой трёхслойную структуру — два слоя защитной пленки, и слой фоторезиста между ними. К обрабатываемому материалу приклеивается при помощи ламинатора.

Травление

Фоторезисты наиболее часто используются в качестве маски для процессов травления при производстве полупроводниковых приборов для микроэлектроники, в том числе МЭМС, транзисторов, и другого. Фоторезисты предназначенные для травления, как правило, имеют высокую химическую устойчивость к травителям, высокое соотношение глубины травления к разрешению. Глубина травления во многом зависит от толщины плёнки: чем толще плёнка, тем большей глубины травления можно добиться.

Легирование

Фоторезисты также используются в процессах имплантации легирующих примесей посредством ионной имплантации. Обычно, с помощью фоторезиста создаётся рисунок на оксиде покрывающем поверхность, и далее примеси имплантируются уже через окна, образованные в этом оксиде, легируя таким образом лишь отдельные участки материала.

Обратная фотолитография

В процессах обратной (взрывной литографии), после проявления фоторезиста, на плёнку фоторезиста напыляется тонкая плёнка материала. Далее, оставшиеся после проявления участки фоторезиста удаляются, унося с собой осаждённый материал, таким образом, что плёнки материала остаются только в незащищённых фоторезистом местах. Для процесса обратной литографии толщина плёнки резиста должна быть в два и более раз толще чем толщина плёнки осаждаемого материала. Кроме того, для обратной литографии часто используют двух- и трёхслойные процессы, где наносятся несколько слоёв фоторезиста. При этом нижний фоторезист обладает более высокой скоростью проявления, таким образом как бы подтравливая второй слой фоторезиста на который напылён материал. В этой связи нижний слой фоторезиста должен быть нерастворимым в для второго фоторезиста. Кроме того фоторезисты для обратной литографии должны обладать высокой температурной устойчивостью, необходимой учитывая высокие температуры некоторых видов напыления. Такие фоторезисты называют LOR фоторезистами (англ. lift-of-resist).

Пескоструйная гравировка

Также фоторезисты в виде плёнок используются в качестве маски для пескоструйной обработки.

Герметизация

Некоторые виды резистов, такие как Сyclotene, используются, как полимер для создания диэлектрических, закрывающих и герметизирующих слоёв, что позволяет сократить число технологических операций в процессе кристального производства.

Создание различных структур

Фоторезисты нередко используются и не по прямому назначению, а в качестве материала для создания различных структур для микроэлектроники. Например, специальные резисты применяются для создания полимерных волноводов нужной формы на поверхности подложки. Кроме того, из фоторезиста могут быть получены микролинзы. Для этого из фоторезиста сначала формируют нужную форму основания линзы, а затем с помощью температурной обработки оплавляют резист придавая ему форму линзы.

Химия фоторезистов

Фоторезисты чувствительные к УФ
  • Позитивные — сульфо-эфиры ортонафтохинондиазида в качестве светочувствительного вещества и новолачные, феноло- или крезолоформальдегидные смолы в качестве пленкообразователя.
  • Негативные — циклоолефиновые каучуки, использующие в качестве сшивающих агентов диазиды; слои поливинилового спирта с солями хромовых кислот или эфирами коричной кислоты; поливинилциннамат.
Фоторезисты чувствительные к ГУФ

Также используются фоторезисты с химическим усилением скрытого изображения, состоящие из светочувствительных ониевых солей и эфиров нафтоловых резольных смол, в которых происходят химические реакции под действием солей.

Электронные резисты и фоторезисты чувствительные к рентгену и ионным потокам

Литература

  • Фотолитография и оптика, М. Берлин, 1974; Мазель Е. З., Пресс Ф. П., Планарная технология кремниевых приборов, М., 1974
  • У. Моро. Микролитография. В 2-х ч. М., Мир, 1990.
  • БСЭ, статья «Фоторезист»
  • Photolithography. Theory and Application of Photoresists, Etchants and Solvents. К. Кох и Т. Ринке.
  • Валиев К. А., Раков А. А., Физические основы субмикронной литографии в микроэлектронике, M., 1984;
  • Светочувствительные полимерные материалы, под ред. А. В. Ельцова, Л., 1985. Г. К. Селиванов.
  • Лапшинов Б. А. Технология литографических процессов. Учебное пособие — МИЭМ, 2011

Примечания

  1. ↑ Positive and Negative Photoresist (англ.). ECE, Georgia Tech. — «Negative resists were popular in the early history of integrated circuit processing, but positive resist gradually became more widely used since they offer better process controllability for small geometry features. Positive resists are now the dominant type of resist used in VLSI fabrication processes.». Проверено 18 декабря 2015.
  2. 1 2 Lecture11: Photolithography - I (англ.). “Instability and Patterning of Thin Polymer films”. Indian Institute of Technology. — «Historically, by 1972 the limitations of negative photoresist were reached. Subsequent developments were all based on positive photo resists.». Проверено 18 декабря 2015.
  3. ↑ Advanced Photoresist Technology / PSU, EE518, 2006: "Positive: exposed regions dissolve (best resolution)"
  4. ↑ The Photoresist Process and it's Application to the Semiconductor Industry. CE435 - INTRODUCTION TO POLYMERS. Dept of Chemical and Biological Engineering. State University of New York (19 апреля 2000). — «...positives are more costly to produce. However, images from this resist are extremely accurate, require minimal processing technique, and involve few processing steps.». Проверено 18 декабря 2015.
  5. ↑ Advanced Photoresist Technology / PSU, EE518, 2006: "Two-component DQN resists: DQN, corresponding to the photo-active compound, diazoquinone (DQ) and resin, novolac (N). Dominant for G-line (436nm) and I- line (365nm) exposure and not suitable for very short wavelength exposures"
  6. ↑ Advanced Photoresist Technology / PSU, EE518, 2006: "Deep UV Photoresist ... Limitation of Novolac based Photoresist: Strongly absorb below 250nm, KrF (248nm) marginally acceptable but not ArF (193nm). Photoresist Solution for Submicron Features..."
  7. ↑ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.6517&rep=rep1&type=pdf 2000, PII S 0018-9219(01)02071-0
  8. 1 2 http://www.ysu.edu/physics/tnoder/S07-PHYS2536/Notes/Chapter4-Photolithography.pdf
  9. ↑ Microposit S1800 Series Photo Resists
  10. ↑ courses.ee.psu.edu/ruzyllo/ee518/EE518_Adv.PR.Tech.S06.ppt

Ссылки

Изготовление печатной платы с помощью пленочного фоторезиста.

РадиоКот >Лаборатория >Радиолюбительские технологии >

Изготовление печатной платы с помощью пленочного фоторезиста.

Итак, для работы нам понадобятся следующие материалы и инструменты:
1. Фольгированный стеклотекстолит.
2. Пленочный фоторезист.
3. Небольшая иголка.
4. Кальцинированная сода.
5. Ультрафиолетовая лампа на стандартный патрон 220V.
6. Пленка для струйного принтера.
7. Компьютер, струйный принтер, программа для разводки печатных плат.
8. Стирательная резинка.
9. Ножницы.
10. Стекло толщиной 4 мм.
11. Пластиковая емкость.

Для начала нам необходимо изготовить фотошаблон, через который мы впоследствии будем делать экспонирование нашей будущей печатной платы.
Открываем программу для создания печатной платы, тут предпочтения у каждого свои кто то любит P-CAD кто то Eagle сам же я предпочитаю платы делать в Sprint-Layout 4.0. В программе открыли файл будущей печатной платы.

проверили что нет косяков неразведенных цепей и прочего. Провели, нет ничего вызывающего сомнения можно идти дальше.

Нажимаем на кнопочку, и открывается окно для вывода на печать.

Т.к фоторезист негативный (белые области на черном поле) то необходимо поставить соответствующую галочку напротив опции негатив, а также отключить ненужные при печати слои.

Также следует подумать над тем отображать зеркально изображение при выводе или нет т.к пленка для струйного принтера имеет только одну рабочую сторону и этой стороной необходимо будет прикладывать впоследствии к заготовке, для того чтобы увеличить контрастность и исключить боковую засветку. Сам обычно рисую на слое Ф2, а надписи располагаю на слое М1, так что в моем случае ничего отзеркаливать не надо.

Теперь жмем кнопку и открывается окно настроек принтера, тут уж у кого как, я например, использую струйный принтер Canon Pixma 1000.
В настройках принтера ставим галочки как на рисунке:

Нажимаем кнопку "Задать" и в открывшимся окошке сдвигаем ползунок интенсивности до упора вправо.

В результате этих действий мы говорим принтеру, что бы он лил побольше краски на те участки, которые будут черными. Далее жмем на кнопочку ОК, в окошке настройки цветов, и кнопку ОК в свойствах принтера.
Таким образом, мы создали фотошаблон, настроили принтер и все это дело у нас готово к печати.
Берем пачку с пленкой

достаем лист и ставим в принтер.
Помним, что у пленки для струйного принтера только одна сторона рабочая. Она МАТОВАЯ, определить ее очень просто к ней липнут пальцы.
Печатаем наш фотошаблон.

После того как напечатали, откладываем, куда-то в сторону минут на 10, чтобы дать ему просохнуть

Пока сохнет наш фотошаблон займемся подготовкой стеклотекстолита и нанесем на него фоторезист.

Из заготовленного ранее стеклотекстолита вырезаем небольшой по размерам кусочек, в идеале примерно с припуском 3-5 мм, больше с каждого края,чем размеры нашей будущей платы.

Берем стирательную резинку

и тщательно проходимся по всей поверхности фольгированного стеклотекстолита. Это необходимо для того, чтобы убрать все пальцы, грязь и прочее, а также обеспечить хорошее прилегание пленочного фоторезиста. После того как прошлись по стеклотекстолиту стирательной резинкой, сдуваем все оставшиеся, после этого пылинки и остатки резинки. Промывать все это ацетоном или каким-то растворителем нельзя, не ляжет фоторезист, если что-то сдуть не получилось, то проходимся чистенькой тряпочкой. Не касаясь очищенной поверхности заготовки руками, (допускается держание за торцы) кладем на стол и отрезаем ножницами кусок фоторезиста.

После того как отрезали, берем иголку, и с матовой стороны подцепляем матовую пленку и сдвигаем ее примерно на 0,5 сантиметра при этом пальцами не касаясь клеевого слоя на самом фоторезисте.

Удерживая кусочек снятой пленки пальцами прикладываем его на край заготовки из стеклотекстолита и разравниваем пальцами с умеренным давлением для того, что бы пленка прилипла, как следует.
После того как пленка прилипла к краю пальцы правой руки помещаем с правой стороны под пленку, на тот кусочек матовой пленки, что снимали вначале.

Теперь, не спеша, правой рукой примерно по 2-3 мм вытаскиваем матовую пленку, одновременно пальцами левой руки прижимая и разравнивая ее по поверхности фольги. Торопиться тут нет смысла т.к чем лучше придавите, тем лучше она ляжет на поверхность фольги стеклотекстолита.
После того как пригладили всю пленку, излишки обрезаем и получаем стеклотекстолит, покрытый пленочным фоторезистом.

Пока мы занимались подготовкой стеклотекстолита и нанесением на него пленочного фоторезиста, наш фотошаблон, который мы приготовили ранее, напечатали на пленке и оставили сушить, подсох. Так что берем ножницы и вырезаем его.

Теперь у нас все готово для начала экспонирования фоторезиста через шаблон.
Берем ультрафиолетовую лампу, я например пользуюсь такой

Просто и экономично а главное городить ничего лишнего не надо. Это энергосберегающая лампа УФ света на стандартный патрон 220V.
Кладем на ровную поверхность стеклотекстолит с нанесенным на него пленочным фоторезистом, а сверху пленку с напечатанным шаблоном, стороной на которой печатали к фоторезисту, для чего это нужно и зачем это говорил ранее.

Сверху все это дело прижимаем стеклом вынутым из полки с книгами.

И поверх всего этого, я обычно ставлю две коробки с компактами, это обеспечивает еще лучший прижим фотошаблона к плате и определяет расстояние на которое удалена ультафиолетовая лампа от поверхности.
Время и расстояние подобрать под конкретную лампу очень просто. Берем маленький кусочек стеклотекстолита наносим на него фоторезист. Потом делаем шаблон, на котором пишем циферки 1,2,3,4,5,6,7,8, и т.д , это будет время в минутах. Ставим лампу, включаем, берем какой-то непрозрачный материал, например, еще один кусочек стеклотекстолита, и постепенно через указанные промежутки двигаем его постепенно закрывая части с циферками. После этого проявляем и смотрим на результат. Где он самый лучший, то время для этого расстояния и оставляем.

После этого включаем лампу на 10 минут.

Пока наша лампа будет светить в течение 10 минут и формировать нашу плату, пойдем в ванну и приготовим раствор для проявления фоторезиста.
В пластиковую посуду подходящего размера, куда поместиться плата, наливаем 0,25 литра воды (половина 0,5 л. бутылки из-под сока), температура воды не играет никакой роли, я наливаю прямо из-под крана. Достаем с полки пакетик с кальцированной содой. (Если у вас нет на полке кальцинированной соды, то его туда надо сначала положить, а уже потом доставать. Если же у вас нет полки, то дальше можно не читать - все равно ничего не получится. Прим. Кота)

Берем чайную ложку и набираем в нее соды, после чего тщательно до растворения всех комочков размешиваем ее в воде.

После того как вся сода растворилась, дожидаемся, окончания экспонирования, как помним, раньше оно у нас было 10 минут. Как только время вышло, снимаем стекло и наш фотошаблон. Берем плату и идем в ванную, при этом, не забыв захватить с собой иголку.
Придя в ванную, иголкой аккуратно подцепляем вторую (прозрачную) пленку и снимаем ее.

После того как сняли вторую пленку, кладем плату в пластиковую ёмкость с разведенной содой и ждем примерно секунд 30. По истечении этого времени, рисунок начинает проявляться, видны будущие дорожки и в тех местах, где дорожек быть не должно, фоторезист растворяется. Теперь берем ненужную зубную щетку и начинаем ей водить по нашей плате для того, что бы ускорить процесс смывания фоторезиста с ненужных нам участков.
Показатель того, что фоторезист смылся там, где надо, поверхность меди светлая и блестящая, как и до приклеивания фоторезиста.
После того как смыли весь ненужный фоторезист и оставили нужный, вытаскиваем плату из раствора соды и промываем под струей воды. Делается это для того, что бы смыть с поверхности платы проявляющий раствор. После того как промыли под струей воды, откладываем в сторону, и выливаем ненужный нам проявляющий раствор.

Теперь дело осталось за малым наливаем в другую пластиковую емкость раствор хлорного железа и травим. После того как протравили, вынимаем, снова промываем под струей воды, на этот раз для того, что бы смыть остатки хлорного железа.
Вот и весь нехитрый процесс, по окончании которого мы получаем печатную плату высокого качества.

Таким образом, мы сделали печатную плату, на ней виден фоторезист, который был нам нужен. Осталось только снять его. Берем ватку, мочим в ацетон, и сначала промокаем всю поверхность платы, потом трем. Примерно через 1-2 минуты фоторезист начинает сползать кусками, полностью оттираем весь фоторезист. Дальше, как обычно, лудим, сверлим дырки, обрезаем, выравниваем и запаиваем компоненты.

Возможные косяки на выходе после проявления фоторезиста:
1.Фоторезист полностью растворяется в соде - недостаточное время экспонирования или большое расстояние до лампы.
2.Фоторезист не смывается вообще нигде - прозрачный фотошаблон на темных участках, вследствие чего, через них проходят ультрафиолетовые лучи и засвечивают, то чего не надо засвечивать.
3.Фоторезист не смывается вообще нигде, но на тех участках где он должен смыться он слегка мутноватый, виден рисунок, и рисунок четкий - прозрачный шаблон на темных участках, но в данном случае он гораздо темнее, чем в предыдущем варианте.
4.Фоторезист смылся, как надо, но дорожки получаются шире, чем на фотошаблоне, особенно это заметно на тех дорожках, что проходят между выводов микросхем (слипание), например, на фотошаблоне дорожка при измерении линейкой 1 мм на плате 1,2-1,5 мм - недостаточный прижим фотошаблона к поверхности заготовки, еще такое может быть, когда сам стеклотекстолит кривой, поэтому рекомендую обратить на его ровность внимание при покупке, т.к сам с кривизной продаваемого стеклотекстолита сталкивался не однократно.

Ну вроде все.
Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?

Позитивный фоторезист. Виды фоторезиста.

ПОЗИТИВНЫЕ И НЕГАТИВНЫЕ ФОТОРЕЗИСТЫ

Фоторезисты -- это светочувствительные материалы с изменяющейся по действием света растворимостью, устойчивые к воздействию травителей и применяемые для переноса изображения на подложку.

Фоторезисты являются многокомпонентными мономерно-полимерными материалами, в состав которых входят: светочувствительные (поливинилциннаматы -- в негативные фоторезисты и нафтохинондиазиды - в позитивные) и пленкообразующие (чаще всего это различные фенолформальдегид-ные смолы, резольные и новолачные смолы) вещества, а также растворители (кетоны, ароматические углеводороды, спирты, диоксан, циклогексан, диметилформамид и др.).

В процессе фотолитографии фоторезисты выполняют две функции: с одной стороны, являясь светочувствительными материалами, они позволяют создавать рельеф рисунка элементов, а с другой, обладая резистивными свойствами, защищают технологический слой при трав-лении.

Как уже отмечалось, рельеф образуется в результате того, то под действием актиничного излучения, падающего через фотошаблон на определенные участки слоя фоторезиста, он изменяет свои первоначальные свойства. Для большинства фоторезистов актиничным является ультрафиолетовое излучение..

В основе создания рельефа в пленке негативных фоторезистов лежит использование фотохимической реакции фотоприсоединения - фотополимеризацш, а в пленке позитивных фоторезистов - реакции фоторазложения - фотолиза.

При фотополимеризации происходит поперечная сшивк; молекул полимера, в результате чего они укрупняются. Поел* экспонирования под действием актиничного излучения изменяется структура молекул полимера, они становятся трехмерными и их химическая стойкость увеличивается.

При фотолизе в фоторезисте под воздействием актиничного излучения у молекул полимера происходит обрыв слабых связей, и образуются молекулы менее сложной структуры. Таким образом, фотолиз является процессом, противоположных фотополимеризации. Получающийся в результате фотолиз, полимер обладает пониженной химической стойкостью.

Многие полимерные вещества, из которых изготовляю: фоторезисты, содержат функциональные группы, поглощающие свет в ультрафиолетовой области спектра. Собственная светочувствительность полимера при введении в него специальные добавок -- стабилизаторов и сенсибилизаторов* может изменяться в широких пределах. Одна и та же добавка для различных полимеров может служить и стабилизатором и сенсибилизатором. Объясняется это тем, что эффект действия добавок определяется не только их химическим составом, но и энергетическим взаимодействием с исходным полимером.

В зависимости от характера протекающих в фоторезисте фотохимических реакций определяется и тин фоторезиста -- позитивный или негативный.

Негативные фоторезисты под действием актиничного излучения образуют защищенные участки рельефа. После термообработки - задубливания - в результате реакции фотополимеризации освещенные при экспонировании участки не растворяются в проявителе и остаются на поверх-ности подложки. При этом рельеф представляет собой негатив-ное изображение элементов фотошаблона.

В качестве негативных фоторезистов применяют составы на основе сложного эфира поливинилового спирта

и коричной кислоты С 6 Н 5 --СН = СН--СООН. Эти составы называют поливинилциннаматами (ПВЦ) и их формула имеет вид R 1 -- n , где R 1 -- макромолекула поливинилового спирта, содержащая большое количество атомов; R 2 - светочувствительные циннамоильные группы, представ-ляющие собой продукты коричной кислоты.

Молекулы ПВЦ представляют собой длинные спирали, состоящие из десятков тысяч атомов (молекулярная масса до 200 тыс. ед.). При поглощении фотонов ультрафиолетового излучения в результате фотохимической реакции фотополимеризации происходит разрыв слабой двойной связи -- С = С -циннамоильной группы и образовавшиеся свободные связи сшивают молекулы полимера в химически стойкую трехмерную структуру.

В зависимости от способов получения и свойств исходных продуктов фоторезисты на основе ПВЦ могут обладать различными характеристиками по светочувствительности, разрешающей способности, кислотостойкое и др.

Фоторезисты на основе ПВЦ представляют собой белый порошок, растворяющийся в органических растворителях (смесях толуола с хлорбензолом, ацетата этиленгликоля с метаксилолом и др.). Проявителями для этих фоторезистов служит трихлорэтилен или его смесь с изопропиловым спиртом. Время проявления 0,5 -- 1 мин. Фоторезисты на основе ПВЦ имеют удовлетворительную кислотостойкость: они не выдерживают воздействия концентрированной плавиковой кислоты, но устойчивы к травителям с небольшим ее содержанием.

Повышенной кислотостойкос

Перенос изображения при помощи пленочного фоторезиста

Появление в широкой продаже специальной светочувствительной (далее СЧ) пленки позволило мастеру располагать в домашней мастерской доступным, простым, быстрым и недорогим процессом для точного переноса черно-белого штрихового рисунка на медь и ее сплавы. Это могут быть шкалы, шильдики, передние панели, таблички и т.д. Наибольшее распространение процесс получил у радиолюбителей – изготовление печатных плат. Точное повторение рисунка, здесь, кроме прочего, позволяет широко применять SMD компоненты со всеми их преимуществами. Для кустарных занятий это, прежде всего экономия на трудоемких операциях сверления, дешевизна компонентов, монтаж хорошо соответствующий требованиям ВЧ схем. В относительно низковольтных схемах, обратную незадействованную сторону стеклотекстолитовой платы можно применить как одну из стенок прибора, в том числе экранированную. На материале с двухсторонним фольгированием можно спроектировать более компактное устройство при разумной плотности монтажа – разместив части схемы на разных сторонах платы.


Словом, это еще одна степень свободы для мастера и радиолюбителя, не требующая особенных затрат. Кроме прочего, процесс не предполагает токсичных (как например фоточувствительный лак – старший брат пленке) и едких (сильная щелочь для проявки лаковой пленки) химикатов. Все работы могут быть выполнены в комнатных условиях без специального оборудования. Если принять во внимание существование травильных растворов для меди и сплавов, более культурных, чем скажем хлорное железо, например на основе перекиси водорода и лимонной кислоты, к выполнению работ можно, под присмотром, допустить и детей, барышень. Например, это может быть мастеркласс по выполнению декоративных работ по металлу, изготовление бижутерии. По сравнению с помянутым фоточувствительным лаком, опускается целый пласт работ по нанесению и сушке лака, а это возможная причина неудач.

По сравнению с широко распространенным ЛУТом, описанный процесс не требует иметь в своем распоряжении лазерный принтер, годятся и более дешевые и распространенные струйные. Кроме того, струйный принтер даже более предпочтителен – он не нагревает пленку при печати, точность изображения получается высокой без всякого шаманства с корректировкой и предварительным прогревом. Для печатных плат это ценное свойство.


Итак, рассмотрим последовательность работы на примере изготовления несложной печатной платы.

Что было использовано для работы

ПК со специализированной программой для трассировки печатных плат, принтер струйный, пленка прозрачная для печати на струйном принтере.

Фольгированный стеклотекстолит, пленка СЧ (искать в радиомагазинах, на АлиЭкспресс), кусок стекла (оргстекла) для прижима, ультрафиолетовая (УФ) лампа (мягкий УФ – черная «лампа Вуда» или УФ светодиодная), часы (таймер). Посуда для химикатов – кюветы или плоские емкости, лучше металлические эмалированные (нагрев). Химикаты – кальцинированная сода (искать в хозяйственном магазине), любой из травильных растворов для меди и её сплавов, мелочи.

Приступим

Фотошаблон. Печатную плату проектируем, используя специальное программное обеспечение. О, это волшебный процесс, вроде складывания головоломки – сплошное удовольствие. Приходится удерживать в уме и учитывать не один фактор. В сложных местах заставляет поскрипеть мозгами, но тем приятнее результат. Здесь использовалась простая программа Sprint-Layout. Зеленый слой М2 – как и положено, для нижних дорожек. Следует сказать, что при контактной печати – экспонировании заготовки текстолита с приклеенной пленкой, фотошаблон следует прикладывать напечатанной стороной. Это исключит муар вокруг дорожек, нечеткую границу изображения – даже ничтожная толщина пленки дополнительно рассеивает лучи света.


Пример экспонирования с неправильно напечатанным и приложенным фотошаблоном. Хорошо видны нечеткие, увеличенные границы рисунка – результат рассеивания лучей света в толще пленки фотошаблона. После травления многие дорожки и площадки будут замкнуты.

В случае «зеленого» слоя в Sprint-Layout, при печати не нужно задавать зеркальность - изображение на пленке придется перевернуть краской к СЧ пленке. В настройках печати следует только установить параметр «негатив» - наша пленка именно такая, негативная.

Забравшись в принтерные настройки печати, попросим его не жадничать с чернилами – фотошаблон нам нужен плотный, чтобы краска не просвечивала. Для не слишком тонких линий мне хорошо удавалась двукратная печать на одном и том же месте. Фотошаблон печатался как обычно, давал ему 5…10 минут высохнуть и печатал еще раз на этой же пленке с теми же настройками. Если аккуратно вставлять лист, принтер вполне попадает.

Фотошаблон сушим, вырезаем.

Заготовка фольгированного материала. Подбираем подходящий кусок материала, вырезаем заготовку с припуском 3…5 мм. Чем больше нравится, хоть ножовкой по металлу, хоть специальным резаком с зубом из ножовочного полотна, хоть ножницами по металлу. Выравниваем края, притупляем острые кромки. Сторона с фольгой тщательно зачищается. Если текстолит свежий, розовый, можно обойтись канцелярской резинкой – ластиком. В его состав входит толченое стекло. Если материал старый, лежалый, с зеленью, применяем мелкую шлифовальную шкурку. Чуть крупнее «нулёвки» или ей родимой. Несколько раз сменяем направление движений – вдоль и поперек. Отдраивая фольгу не допускать прикосновения пальцев, держать заготовку только за торцы, как глянцевое фото. Можно воспользоваться и свежими ХБ рабочими перчатками. Удобно держать в перчатке левую нерабочую руку. Обезжиривать заготовку растворителями не нужно, это может даже снизить адгезию (прилипание) пленки.

Наклеивание СЧ пленки. Наша пленка чувствительна к УФ свету, недолго работать с ней в неярком естественном или искусственном свете можно. Ножницами отрезаем от рулона кусочек плёнки, несколько превышающий размер фольгированной заготовки, прячем рулон со света.

СЧ пленка с двух сторон покрыта тонкой защитной пленкой. Для наклеивания на подготовленный медный слой, защитную пленку с одной из сторон нужно снять. Удобно это делать в процессе наклеивания. Примерно так.

Иглой поддеваем защитную пленку на краю кусочка и поровнее пришлепываем освобожденную часть на медь. Остальное очевидно. На небольших заготовках разглаживать можно подушечками пальцев. Как при поклейке обоев – от середины к краю, выгоняя вероятные пузырьки воздуха. Быть их под пленкой не должно. Добиться этого нетрудно. Такое наклеивание минимизирует количество мусора и отпечатков пальцев попавших внутрь.

Ножницами обрезаем выступающие части пленки.

Экспонирование. Для экспонирования подготовленной заготовки собираем бутерброд – на медную с наклеенной СЧ пленкой сторону заготовки кладем (краской вниз, к пленке) фотошаблон и прижимаем его кусочком стекла.

Здесь, нужно сказать пару слов.

О стекле. Стекло обычное, оконное, так сказать стеклянное, УФ пропускает не очень охотно. Этой пропущенной части, тем не менее, вполне хватает для обработки СЧ пленки или лака. Чем стекло толще, тем меньше УФ пропускает. Стекла толщиной 1…4 мм вполне работают. Время экспозиции – от единиц минут до полутора десятков, в зависимости от мощности ламп и расстояния до них. Стекло органическое пропускает УФ значительно лучше, работать будет значительно быстрее.

Прижим фотошаблона – важный момент. При неплотном его прилегании к заготовке обязательно будут дефекты описанные выше – муар, нечеткие границы, низкое разрешение. Заготовки из фольгированного слоистого пластика (текстолит, стеклотекстолит) тем более ровные, чем они толще. Заготовки тонкие, даже свежие, часто слегка изогнутые. Дефект усугубляется при сколь ни будь значительных размерах заготовки. Ровное стекло в таком случае прижимает фотошаблон неудовлетворительно.

Для равномерного и плотного прилегания гибкого фотошаблона при контактной печати с успехом используют разрежение. Вроде ламинирования или вакуумной упаковки. Давление внешнего воздуха надежно прижимает рисунок. Существуют самодельные приспособления для быстрого вакуумного прижима, например [1]. Остроумная радиолюбительская идея позволяет сделать равномерный и вполне надежный прижим очень простыми средствами – проложив между стеклом и фотошаблоном полиэтиленовый матрасик наполненный воздухом.

Обычный прижим фотошаблона стеклом.

Прижим с использованием матрасика.

Матрасик легко спаять из куска полиэтиленовой пленки жалом паяльника через слой бумаги. Хорошо работают и пакетики подходящего размера с вживленной герметичной застежкой-молнией. Стекло для прижима лучше выбрать более толстое, тяжелое. «Оконной» толщины 4мм вполне хватает.

Собираем в стопочку - заготовку с наклеенной СЧ пленкой накрываем фотошаблоном. Поверх него кладем наш матрасик из пакетика с молнией слегка заполненный воздухом и прижимаем все это стеклом.

Время экспонирования зависит, в том числе и от расположения и мощности УФ лампы. Очень простой способ его определения – эмпирическим путем. Делаем фотошаблон с циферками 1…10 в ряд и засвечиваем их в рабочем положении столько минут сколько подписано. То есть – закрываем непрозрачным материалом всё кроме цифры «10» и экспонируем 1 минуту, передвигаем шторку дальше, открывая и цифру «9». Засвечиваем минуту, открываем еще цифру и.т.д. После проявки наиболее четкие отпечатки считать нужным временем. Их запомнить, а лучше записать в рабочей тетради.


На экспериментальном отпечатке видно, что диапазон времени для хорошего результата значителен, берем середину – 6…7 мин оставляя себе возможность некоторой неточности.

После экспонирования, облученные места на голубоватого цвета пленке обесцвечиваются. Рисунок хорошо видно.


Экспонированная заготовка. Черные пятна – краска с фотошаблона. Она легко удаляется вместе с оставшейся защитной пленкой.

Проявка. Заранее готовим проявитель – слабый раствор кальцинированной соды (Na2CO3, карбоната натрия). Он продается в хозяйственных магазинах как средство для мытья, чистки и смягчения воды.

Удобной посудиной для частых некрупных работ (проявка и травление) – герметичные пищевые контейнеры. Следует только подобрать с хорошей герметичной, но открывающейся без особенных усилий крышкой иначе не избежать аварий. Приготовление – чайная ложка соды на 0,5 л воды. Растворы можно использовать многократно, хранить прямо в контейнерах, при необходимости обрабатывая в них некрупные заготовки. Контейнеры можно ставить на не очень горячую поверхность для подогрева. В зимнее время использую чугунную варочную поверхность недавно протопленной дровяной плиты в мастерской, в летнее – старый фотоглянцеватель положенный набок.

Кальцинированная сода гигроскопична, длительное ее хранение требует герметичной посуды. Удобно ее сразу после приобретения пересыпать из картонной коробки или полиэтиленового пакета в пластиковую банку с герметичной крышкой, например ведерко из под клея ПВА, водоэмульсионной краски и т.д.

Экспонированная заготовка из под УФ лампы немедленно помещается в корыто с проявителем. В отличие от аналогичного процесса с фотолаком, выдерживать засвеченную заготовку в темноте не нужно.

Важно не забыть удалить вторую защитную пленку с СЧ пленки – подцепить край иглой и пинцетиком ее. Иначе проявитель просто не доберется до чувствительного слоя.

Заготовку удобно подержать в растворе пяток минут и после набухания незасвеченных областей пленки, помочь им раствориться мягкой кистью. Процесс не мгновенный.

Проявление в растворе кальцинированной соды. Остатки.

Травление. Делалось старым добрым хлорным железом. В таком же корытце. В углу платки просверлил маленькое отверстие для проволочной ручки. Провод медный обмоточный в лаковой изоляции. Проволочка должна торчать из раствора за край банки. За нее удобно вытягивать заготовку для осмотра. Этой же проволочкой приподнял один край платки в толще раствора, заготовка при этом расположена лицом вниз. Продукты химической реакции при этом свободно удаляются с поверхности травления восходящими потоками (при подогреве), не мешая поступлению свежего раствора. Травление быстрое и почти без всяких ухищрений.

Удаление пленки с медных дорожек делается ацетоном. Это единственный пахучий момент во всем процессе. Тряпочкой пропитанной ацетоном нужно пропитать пленку, чтобы она разбухла. Через минутку-другую она начнет стираться. Вариант для работы с детьми – иметь такую же емкость (плоскую герметичную, как и для проявителя и травильного раствора) с ацетоном. Собрав заготовки, погружают их в растворитель на заведомо избыточное время. Вымачивание происходит в закрытой емкости. Для активации процесса, посудину можно периодически покачивать. Пленка должна набухнуть и отвалиться самостоятельно. Загрузку заготовок в растворитель и их извлечение (сушку) можно делать вне рабочего помещения. В конце концов, затвердевшую в УФ пленку можно снять мелкой шкуркой.

Дальнейшие эволюции. Наш рисунок вытравлен. Если речь идет о печатных платах, за этим следует еще несколько этапов – сверление отверстий (если есть элементы с проволочными выводами; возможно, предварительно придется накернить центры), удаление мелкой шкуркой заусенцев, покрытие жидким флюсом, лужение.

При декоративных работах или получении технических изображений (шильдики, шкалы) невыразительный вытравленный рисунок следует сделать контрастным, заполнив темным цветом углубления. Эффектно выглядит искусственная патина, наведенная простыми реактивами.

Список используемой литературы

1. В.А. Бастанов 300 практических советов. Московский рабочий, 1993 г. Совет №80 Малогабаритная светокопировальная установка с вакуумным устройством.

Babay Mazay, декабрь, 2019 г.

Пленочный фоторезист. Изготовление печатных плат в домашних условиях. - Avislab

В этой статье я расскажу, как можно изготовить печатные платы в домашних условиях с  минимальным дискомфортом для домашних и минимальными затратами. Лазерно-утюжная технология рассматриваться не будет  в виду сложности достижения требуемого качества. Я ничего не имею против ЛУТ, но она меня более не устраивает по качеству и повторяемости результата. Для сравнения на фото ниже приведен результат, полученный при применении ЛУТ (слева) и с помощью плёночного фоторезиста (справа). Толщина дорожек 0,5 мм.

При применении ЛУТ край дорожки получается рваным, а на поверхности могут быть раковины. Это обусловлено пористой структурой тонера, вследствие чего травящий раствор все же проникает к закрытым тонером зонам. Меня это не устраивает, поэтому перешел на фоторезистивную технологию.

В этой статье по возможности будут применяться инструменты, посуда и реактивы, которые можно найти дома или купить в магазине бытовой химии.

Фоторезистивная технология изготовления печатных плат

На слой меди наносится фоточувствительный слой. Далее через фотошаблон засвечиваются (обычно ультрафиолетом) определенные участки, после чего в специальном растворе смываются ненужные участки фоточувствительного слоя. Таким образом, формируется необходимый рисунок на медном слое. Далее следует обычное травление. Наносить фоторезист на текстолит можно разным способом.

Наиболее популярные способы - это использование аэрозольного фоторезиста POSITIV 20. Этот способ схож с нанесением аэрозольных красок. Требует аккуратности для обеспечения равномерного слоя и сушки.

И применение пленочного фоторезиста. Наноситься путем наклеивания специальной пленки подобно тому, как наклеиваются декоративные пленки. Сухой пленочный фоторезист обеспечивает постоянную толщину фоточувствительного слоя, прост в применении. К тому же он индикаторный, т.е. засвеченные участки хорошо видны.

Что такое плёночный фоторезист?

Пожалуйста, не путайте с аэрозольным фоторезистом. Пленочный фоторезист состоит из трех слоев пленки. В середине фоточувствительная пленка, покрыта с двух сторон защитными пленками. Со стороны, которая приклеивается к текстолиту - мягкая, с другой - жесткая. Пленочный фоторезист обладает рядом преимуществ перед аэрозольным. Во-первых, он не воняет при нанесении, не требует сушки. Очень удобен при работе с небольшим количеством плат. В отличии от аэрозольного фоторезиста, где толщину слоя тяжело угадать, толщина пленочного фоторезиста одинакова всегда. Это упрощает подбор времени засветки. Пленочный фоторезист индикаторный. Т.е. визуально видны засвеченные участки.

Выбор текстолита

Если Вы хотите получить качественную печатную плату с проводниками менее 0.4мм и расстоянием между проводниками 0.2 мм Вам понадобиться нормальный текстолит. На фото ниже приведено два куска текстолита.  Понятно, что на поцарапанный, грязный текстолит пленка фоторезиста ляжет плохо. Возьмите сразу нормальный. И храните хотя бы в газетке, чтобы не царапать его. "Левый" текстолит можно применить, если на плате толстые дорожки (0.5...1 мм) и между проводниками, хотя бы 0.4мм., и Вам не придется показывать плату посторонним людям.

Подготовка и очистка текстолита

Текстолит разрезаем на заготовки нужного размера. В домашних условиях это можно сделать ножовкой по металлу. Текстолит толщиной до 1мм можно резать обычными канцелярскими ножницами. Заусенцы убираем напильником либо наждачной бумагой. При этом не царапаем поверхность текстолита! Если поверхность медной фольги грязная, или хотя бы замацана пальцами - фоторезист может не пристать - прощай качество. Так как после "разделки" мы имеем "грязный" текстолит, следует провести химическую очистку.

Химическую очистку медного покрытия перед наклейкой фоторезиста будем проводить с применением бытовой химии. Очищаем поверхность текстолита средством для борьбы с накипью "Cillit". В его состав входит ортофосфорная кислота, именно она убирает все загрязнения. Поэтому, пальцы в эту жидкость не суем. Если нет подходящей посудины, можно положить текстолит на дно ванной и просто полить этой жидкостью. Через 2 минуты (передерживать не стоит) хорошенько промываем проточной водой. На поверхности не должно быть пятен. В противном случае следует повторить операцию. Остатки воды удаляем бумажной салфеткой. Стараемся не доводить салфетку до состояния, когда из нее полезет бумажная ворса. Именно из-за ворсы я не применяю тканевых салфеток. Если на поверхности меди останутся даже мельчайшие ниточки, пленка фоторезиста в этом месте ляжет с пузырьком. Сушим текстолит утюгом через бумагу. Поверхность текстолита пальцами не трогать!

В некоторых источникам можно найти рекомендацию обезжиривать поверхность спиртом. Лично у меня при очистке спиртом результат был значительно хуже. Фоторезист не везде приклеивался нормально. После "Cillit" результат всегда на много лучше.

Наклейка Фоторезиста

Наклейка фоторезистивной пленки – самая ответственная операция при производстве плат этим способом. От аккуратности выполнения этой операции зависит качество полученного результата. Все операции с фоторезистом можно выполнять при слабом электрическом освещении. После просушки текстолит должен остыть. Фоторезист можно клеить и на теплый текстолит, но при этом у вас будет только одна попытка. К теплой поверхности пленка фоторезиста прихватывается намертво. Отрезаем кусок фоторезиста с небольшим запасом, таким образом, чтобы он полностью покрывал нашу заготовку + 5 мм с каждой стороны. Осторожно острым ножом с краю поддеваем мягкую пленку (если фоторезист в рулоне, обычно это внутренняя сторона). Вер

Фоторезист. Инструкция. Памятка. — DRIVE2

Материалов посвященных фоторезисту в сети Интернет огромное количество, но временные характеристики у всех свои, т.к. у всех разные условия и оборудование.

4 года назад я уже делал платы по методу ЛУТ и мне не понравилось, потом делал платы по методу Фоторезист и мне понравилось :), делал я тогда стабилизаторы тока для моторчиков заслонок для OPEL ASTRA H и даже какое-то их количество продал, люди до сих пор стучатся с просьбой продать или сделать :)

За не надобностью и 2 сменами места жительства я умудрился растерять все знания и материалы для фоторезиста, удалось найти только УФ Ерайзер и то с началом работ стало ясно, что он не канает и надо переходить на нормальную УФ Лампу.

Для восстановления процесса создания плат с применением фоторезиста было прочитано много материалов и просмотрено роликов на YouTube, сделано много ошибок и куплено оборудование, химия, материалы.

Приступим!

Не забываем про технику безопасности! Ну как всегда всё на свой страх и риск! Дома не повторять!

Материалы и химия:

1. Фоторезист сухой пленочный ПФ-ВЩ, 300x1000мм
2. Cтеклотекстолит фольгированный, FR4 100х150мм 18/0 (1.5мм, 18мкм)
3. Сода кальцинированная (150-200гр.) (Для проявки фоторезиста)
4. Аммоний персульфат 250 г. (Для травления меди)
5. Сода каустическая (гидроксид натрия) 250 г. (Для снятия остатков фоторезиста)
6. Изопропанол (Для обезжиривания печатных плат)
7. Сплав «Розе» (Для лужения)
8. Плёнка A4 Lomond LazerFilm для лазерной печати 10л (Печатать на глянцевой стороне)

Оборудование:

1. Ламинатор Fellowes Lunar A4
2. Лампа энергосберегающая УФ 26Вт, 220Вт, Е27, Lh36-FS/BLB/E27
3. Настольная лампа из О`Кея
4. Лазерный принтер
5. Ванночки (Для химии)
6. Пинцет диэлектрический
7. Нож канцелярский
8. Кисточка
9. Ложка пластиковая
10. Стекло от Фото-рамки 10*15 см
11. Пару канцелярских зажимов

Описание процесса.

Наклеиваем фоторезист.

С помощью ламинатора приклеиваем фоторезист к плате.
Я использую подложку из бумаги, чтобы избыточный фоторезист не приклеился к валам. Сняв небольшую часть матовой плёнки, она обычно на внутренней стороне фоторезиста, приклеиваем его к бумаге, подкладываем текстолит, выравниваем и запускам в ламинатор, постепенно отклеивая остаток матовой подложки.
Прогоняем через ламинатор 3 раза. Остужаем, отрезаем излишки.

Наклеиваем фоторезист

Готовый результат. Идеально!

Засвечивание.

Собираем следующий бутерброд:
1. Подложка
2. Текстолит с фоторезистом
3. Шаблон распечатанный в негативе
4. Стекло
Скрепляем всё это скрепками, следим чтоб не что не куда не уехало.

Бутерброд на месте

Отправляем на засветку в УФ на 3,5 минуты. Время получено опытным путём. Расстояние ~7-10 см.

Засвечиваем 3,5 минуты

После кладём на бумажную подложку и прогоняем через ламинатор ещё раз, это нужно для закрепления эффекта засвечивания. Помогает, проверено :)

Закрепляем результат

Проявка.

Далее сразу на проявку.
Я использую раствор из 1-2 грамм (чуть больше половины чайной ложки) кальцинированной соды и 100 мл воды.
Отклеиваем с фоторезиста глянцевую плёнки и опускаем в раствор. Спустя минуту начинает проявляться рисунок дорожек, можно брать кисточку и начинать стирать растворяющийся фоторезист, можно тереть не бояться.

Промываем плату под проточной водой.

Травление.

Травим плату в растворе 30 гр персульфат аммония и 100 мл воды в течении 40 минут. Если платя хорошо проявлена, то через 2 минуты медный слой меняет цвет на более матовый. Для прохождения реакции нужна температура порядка 40-50 градусов. Для этого используем еще одну ванночку с только, что скипятившейя водой. С течением реакции вода начинает голубеть :)

Примечание. До это пользовался хлорным железом, надоели рыжие разводы и пятна на сантехнике, аммоний решает! никакого больше железа.

Спустя 40 минут должно прекратиться выделение кислорода, пропасть пузырики. Плату можно вынимать и промывать под проточной водой.

Очистка.

Для снятия засвеченного фоторезиста используем раствор 1-2 грамм каустической соды на 100 мл тёплой воды.

Дорожки отклеиваются.

Когда всё отклеилось, промываем под проточной водой.

Лужение.

В маленькую кастрюльку наливаем воду, добавляем чайную ложку лимонной кислоты, кидаем пару гранул «Розе» кипятим. При 95 градусах гранулы начинают плавиться, опускаем плату дорожками вниз и юлозим по расплавленному сплаву. Когда дорожки покроются ровным слоем сплава вынимаем плату и остужаем.

Как-то так я теперь делаю печатные платы. Пока удавалось сделать дорожки 0,2 мм, меньше просто не пробовал, но думаю не проблема.

Фоторезист. Первые шаги. — DRIVE2

Здравствуйте, мои дорогие подписчики и гости!
Ну и тяжек оказался путь к самосовершенству! Нет, я это не про учения Будды или Христа, я это о постижении Кунг-Фу ФР!

Мало того, что этот путь оказался довольно затратным, он оказался сродни искусству самопознания, медитации. И не познав себя, его не откроешь ;)

Но оно того стоило! Обрёв в течении почти суток тренировки своё кармическое Я, я всё-же познал этот Запретный Плод качества, прикоснулся к истокам совершенства!

Путь этот не для слабых духом. Покинь тот путь всяк ищущий легкой наживы. Это Искусство Самосовершенствования тела и духа электронщика. И моим Гуру был CAMOKAT-BETEPAHA, его опыт стал мне подспорьем. Мой Вам поклон, Маэстро!

Как я и упоминал выше, почти сутки я познавал эту науку.
Начал с приготовления основы — фольгированного стеклотекстолита. Взял под опыты специально древний невесть откуда взявшийся кусок. Собственно, вот он:

Страшного вида, не правда-ли? Сняв вековой налет шкуркой 240, очистил на чистовую металлической кухонной "губкой", кстати, она ооооочень помогает побороть такие проблемные места, как уголки плат! Отрезав кусочек, которого не жалко, имеем следующую заготовку:

Перед нанесение фоторезиста заготовку обязательно обезжириваем. Чем дышать ацетоном, я предпочел воспользоваться кухонным моющим средством и губкой (благо это дело жена не видела)))) Фоторезист накатывал по рецепту CAMOKAT-BETEPAHA на мокрую по аналогии с тонировочной пленкой, благо опыт небольшой был. Выгнав воду, воздух и мусор между пленкой и медью, отправляем оную в ламинатор.

Тут чуть отвлекусь. До приобретения этого аппарата я был уверен, что купив его, я обязательно буду делать отдельное включение прогрева, стабилизацию температуры валов, реверс, регулировку силы прижатия валов. Но увидел, что многоуважаемый CAMOKAT-BETEPAHA пользуется точно такой-же моделью ламинатора

Поправьте меня, если не прав. Где-то у Вас видел его фото.

Ну так вот, я задался вопросом, когда его приобрел, почему такой умнейший человек, как Степан Палыч не стал доводить до ума этот агрегат? Решил не лезть пока в его потроха и попробовать что получится. Работой аппарата остался более, чем удовлетворен. Ему не нужны доработки, он итак прекрасно справляется со своими обязанностями!

А пробовать пришлось множество раз. Разумеется, нанести ФР с первой попытки идеально не вышло. Первый блин комом. Ну до ладно, наука требует жертв)))

А жертв этих оказалось не одна или даже две, или даже три! Я извел чуть не треть рулона ФР (500х300мм) пока добился хорошего результата на выходе всей процедуры.

Накатать РФ идеально получилось со второго раза. После ламинатора образовалась небольшая дрожь на поверхности ФР, но это пустяк, по заверению Степана Палыча.

Вот так примерно вышло. Я не пользовался подложкой из пленки для ламинирования и алюминиевым скотчем — при достаточной степени выгона воды (тут главное не переусердствовать и помнить, что после выгона воды отлепить ФР от меди вряд-ли удастся!) пленочка уверенно держится за плату и никуда не убегает при прокате через ламинатор.

Принтер, зараза, запоганил первый лист пленки стартовой страницей. Из остатков пустого места был напечатан трафарет тестовой платы:

Минимальную толщину линий и расстояние между ними принял 0,1мм, далее 0,15мм, 0,2мм, 0,25мм, 0,3мм и 0,4мм. Сверху цифрами время засветки от 1 до 10 минут.

ФР наклеен. Справа видны под пленкой и ФР множество пузырей — это мой косяк. Клеил пленку на скотч с торцов к плате и после кривой поклейки решил было оторвать пленку — не тут то было! ФР пошел вместе со скотчем. оставил как есть — плата ведь тестовая…

Уложил в коробку от принтера (МФУ). Накрыл стеклом 2-ух миллиметровым от фоторамки, прижал чем нашел под рукой, поставил на скорую руку УФ — лампу и в путь!

10 минут — и любуемся тем, что вышло…

А вышло нифига не гуд. Справа запоротый участок — это понятно откуда. После "проявки" в растворе кальцинированной соды (2 чайные ложки на 0,5 литра воды комнатной температуры) дорожки или смывались совсем, или ФР между ними не вымывался до конца, оставляя "бахраму" на краях. Смыв это безобразие раствором каустической соды (NaOH — осторожно! Щелочь!), накатал по-новой и вперед. Вышло неплохо, но на лицо недосвет. Врезал лампу в бок коробки на расстоянии порядка 25см от платы. Стало лучше, но все-равно я не был доволен результатом. "Бахрома" по краям дорожек заставляла думать о засвете.

Потому в очередной попытке была снята пленка с поверхности ФР после ламинатора и на голый РФ уложен фотошаблон, рисунком вниз, разумеется. После засветки с трудом отодрал шаблон от поверхности платы, чуть повредив слой фоторезиста. Вышло совсем худо. Смотрим фото ниже, без комментариев…

Время от времени поражался, почему ФР не смывается с платы при "проявке" кальцинированной содой? — забывал снять пленку с поверхности фоторезиста после засветки)))

И лишь переместив свою лампочку 26Вт из коробки на стол, обрел я счастье!

От стола 15-17см и результат на лицо:

Даже 0,1мм при выдержке до 2-ух минут включительно неплохо проступили. По результатам были выбраны для себя время выдержки 1,5 минуты и 0,15мм минимальная ширина дорожек и расстояний между ними для начала. Но рабочими по прежнему буду пользоваться 0,3мм, прибегая к минимуму лишь в крайних случаях.

В своих попытках познать суть процесса катал плату с ФР через ламинтор вплоть до 5 раз. Но лучшим и вполне достаточным принял 1 прогон! И после засвета не прогонял!

Первый пошел! — первопроходцем суждено стать плате управления травилкой.

Водные процедуры — последний раз по-старинке!

Что имеем!

Плата готова. На фото — только из ванны с каустической содой. Еще не выровненная.
На сегодняшний день плата спаяна, идет процесс наладки. Ждите, скоро будет))

Ну как вам результаты? Убив день на эксперименты, теперь скорость изготовления плат довольно высокая с неизменно отличным качеством выходного продукта. Я думаю, оно того стоило! Рад как мальчишка))

За сим откланиваюсь и до скорых записей)

Фотолитография — Википедия

Фотолитогра́фия — метод получения определённого рисунка на поверхности материала, широко используемый в микроэлектронике и других видах микротехнологий, а также в производстве печатных плат. Один из основных приёмов планарной технологии, используемой в производстве полупроводниковых приборов.

Суть процесса фотолитографии сводится к тому, что вначале на обрабатываемую поверхность наносится тонкая фоточувствительная полимерная плёнка (фоторезист). Затем эта плёнка засвечивается через фотошаблон с заданным рисунком. Далее проэкспонированные участки удаляются в проявителе. Получившийся на фоторезисте рисунок используется для таких технологических этапов планарной технологии, как травление, электроосаждение, вакуумное напыление и другие. После проведения одного из этих процессов оставшийся, не удалённый при проявлении, фоторезист также удаляется.

Принципиальное отличие фотолитографии от других видов литографии заключается в том, что экспонирование производится светом (видимым или ультрафиолетовым), тогда как в других видах литографии для этого используется рентгеновское излучение (рентгеновская литография), поток электронов (электронно-лучевая литография) или ионов (ионно-лучевая литография) и другое.

Наименьшие размеры деталей рисунка, достижимые в фотолитографии (разрешение), определяются: длиной волны используемого излучения, качеством применяемой при экспонировании оптики, свойствами фоторезиста и достигают 100 нм. Применение специальных методов (иммерсионная литография) теоретически позволяет получить разрешение до 11 нм[источник не указан 1578 дней].

Очистка и подготовка поверхности[править | править код]

Первоначально подложка (при производстве монолитных микросхем это обычно пластина из монокристаллического кремния) очищается от загрязнений в ультразвуковой ванне в различных органических растворителях: ацетоне и метаноле и полосканием в изопропаноле. В случае значительных загрязнений поверхности, её обрабатывают смесью серной кислоты и пероксида водорода (H2SO4 + H2O2) с последующим применением процесса RCA очистки.

Различные материалы подложки имеют различное сцепление (адгезию) фоторезиста с ней. Например, такие металлы, как алюминий, хром и титан имеют высокую адгезию, в то время как благородные металлы — золото, серебро или платина — имеют очень плохую адгезию. В случае низкой адгезии перед нанесением фоторезиста рекомендуется наносить тонкий подслой адгезива, увеличивающий сцепление фоторезиста с поверхностью, например, гексаметилдисилазан (ГМДС). Кроме этого, иногда и поверх фоторезиста наносят антиотражающие покрытия.

Нанесение фоторезиста[править | править код]

Установки центрифугирования для нанесения фоторезиста

Наиболее широко распространённый метод нанесения фоторезистов на поверхность — это центрифугирование. Этот метод позволяет создавать однородную плёнку фоторезиста и контролировать её толщину скоростью вращения пластины (порядка нескольких тысяч оборотов в минуту). Как правило, используется при работе с большими круглыми пластинами.

При использовании не подходящих для центрифугирования поверхностей, например для покрытия небольших поверхностей, используется нанесение погружением в фоторезист. Недостатками этого метода являются большой расход фоторезиста и неоднородность получаемых плёнок.

При необходимости нанести резист на сложные поверхности используется аэрозольное распыление, однако толщина плёнки при таком методе нанесения также не является однородной.

Предварительное задубливание[править | править код]

После нанесения резиста необходимо провести его предварительную сушку (задубливание). Для этого образец выдерживается несколько минут в печи, при температуре 100—120оС. Этот этап необходим для испарения растворителя, содержащегося в фоторезисте, что способствует улучшению адгезии, исключению прилипания к фотошаблону, возможности нанесения второго слоя фоторезиста и имеет положительное влияние в некоторых других аспектах.

Экспонирование[править | править код]

Длины волн экспонирования в литографии Схемы 4х различных видов экспонирования. Показаны контактный метод экспонирования, экспонирование с микрозазором и проекционные методы экспонирования

Процесс экспонирования заключается в засветке фоторезиста через фотошаблон, содержащий желаемый рисунок, светом видимого или ультрафиолетового диапазона, что и отличает процесс фотолитографии от других видов литографии. К примеру, в случае рентгеновской, ионно-лучевой и электронной литографии, для экспонирования используются рентгеновские лучи, ионы и электроны соответственно.

Наиболее стандартными длинами волны экспонирования в фотолитографии являются i-линия (365 нм), h-линия (405 нм) и g-линия (436 нм). Как бы то ни было, большинство фоторезистов могут быть проэкспонированы и широким спектром в ультрафиолетовом диапазоне (интегральное экспонирование), для чего обычно применяется ртутная лампа. В случае фотолитографии в глубоком (жёстком) ультрафиолете используются длины волн около 13,5 нм и специальные фоторезисты. Среди источников излучения, использующихся в фотолитографии, наиболее распространены:

Экспонирование может проводиться как с использованием фотошаблона, так и без него (безмасочная литография). В последнем случае рисунок на фоторезисте формируется непосредственно перемещающимся лазерным или электронным лучом или их группой, сфокусированным на поверхности фоторезиста. В случае же применения фотошаблонов чаще используются проекционные методы экспонирования, когда рисунок с фотошаблона переносится на фоторезист с использованием системы оптических линз. В некоторых вариантах литографии маска может находиться в контакте с фоторезистом, или в непосредственной близости, при наличии микрозазора.

Существуют технологии, позволяющие уменьшить искажения и изготовить микросхемы с меньшими проектными нормами:

При производстве полупроводниковых приборов для экспонирования больших по площади пластин (150, 200, 300 мм в диаметре) используют такие аппараты, как степперы и сканеры, в которых небольшой фотошаблон экспонируется на пластину многократно с помощью перемещения экспонируемой поверхности.

Основными параметрами экспонирования являются длина волны, время экспонирования и мощность источника излучения. Как правило, каждый фоторезист имеет определённое значение дозы (мДж/см2), необходимой для его экспонирования, поэтому важно правильно подобрать параметры экспонирования. При недостаточной дозе могут возникнуть проблемы с проявлением фоторезиста, а чрезмерное экспонирование может вызвать повреждения плёнки фоторезиста. От мощностных параметров зависит производительность фотолитографических установок, измеряемая в пластинах в час (wph).

Дополнительно стоит отметить такой метод фотолитографии, как «выжигание», при котором необходимые окна в полимерном слое выжигаются под воздействием на них мощного светового потока, испаряющего нанесённую на материал плёнку или прожигающего сам материал насквозь. Этот способ применяется для изготовления малотиражных офсетных форм и в некоторых системах ризографии.

Вторичное задубливание[править | править код]

Вторичное задубливание производится непосредственно после экспонирования и не является обязательным шагом. Этот этап требуется лишь в случаях применения химически усиленных фоторезистов, применения обращаемого фоторезиста, потребности в релаксации толстых плёнок фоторезиста и в некоторых других ситуациях.

Проявление[править | править код]

В процессе проявления части фоторезиста удаляются специальной жидкостью — проявителем (например гидроксид тетраметиламмония), формируя окна в плёнке фоторезиста. В случае использования позитивного фоторезиста удаляется проэкспонированная область, а в случае негативного — не проэкспонированная.

Определённые фоторезисты проявляются определённым проявителем и не проявляются другими. Как правило, проявитель разбавляется водой (1:2, 1:4), при этом степень разбавления контролирует скорость проявления, которая также зависит от полученной фоторезистом дозы при экспонировании.

Финальное задубливание[править | править код]

Окончательное задубливание фоторезиста также является не обязательным шагом, хотя нередко помогает улучшить его свойства. В частности, сушка при 130—140оС повышает химическую и температурную устойчивость проявленного фоторезиста для таких последующих этапов, как электроосаждение, сухое и жидкостное травление.

Обработка поверхности[править | править код]

Как правило, фотолитография тесно связана с технологическим этапом, для которого собственно и требуется получаемый из фоторезиста рисунок. Наиболее распространённым процессом на этом этапе является травление, хотя нередко применяются и такие процессы как электроосаждение и напыление при проведении обратной фотолитографии.

Травление[править | править код]

Травление является наиболее часто используемым в совокупности с фотолитографией процессом при производстве печатных плат и полупроводниковых приборов для микроэлектроники. Существуют два основных вида травления: жидкостное (жидкое) и сухое травление. Сухое травление подразделяется на физическое распыление, ионное распыление; газофазное химическое травление; реактивное ионное травление. В зависимости от задач, применяют тот или иной тип травления. Жидкостное травление применяют в основном при изготовлении печатных плат, а также для вытравливания жертвенного слоя при изготовлении МЭМС, и других применений, где требуется изотропное травление (то есть травление во всех направлениях). Плазменное, и в особенности глубокое плазменное травление, применяют когда необходимо протравить структуру относительно глубоко, сохраняя при этом, как можно более вертикальный угол наклона стенок, то есть протравить анизотропно, только в вертикальном направлении. Результат травления тесно связан с параметрами фоторезиста, что во многом и определяет его выбор.

Электроосаждение[править | править код]
Схема основных этапов процесса фотолитографии

В процессе электроосаждения, окна в фоторезисте используются для осаждения в них материала из электролита.

Напыление. Обратная литография[править | править код]

В случаях, когда требуется получить рисунок из материала плохо подвергающегося травлению, используют процесс обратной (взрывной) литографии. В процессе обратной литографии на нанесённый и проявленный фоторезист напыляется тонкий слой материала (обычно металла), из которого требуется сформировать рисунок. На следующем этапе производится снятие фоторезиста, так что напылённый материал остаётся только в окнах, не защищённых фоторезистом, а плёнка, попавшая на фоторезист, уносится вместе с ним, то есть осуществляется так называемый «взрыв». Для обратной литографии, как правило, используются специальные LOR (lift-of-resist) фоторезисты. Существуют многочисленные модификации этого метода, например, когда используются два или даже три слоя фоторезистов с разной скоростью проявления. В целом, для аккуратного снятия фоторезиста требуется чтобы плёнка фоторезиста была в два и более раз толще, чем плёнка напылённого материала, а также чтобы стенки фоторезиста имели отрицательный наклон, что исключит возможность их покрытия напыляемым материалом.

Снятие фоторезиста[править | править код]

Финальным этапом процесса фотолитографии является снятие фоторезиста. Для удаления фоторезиста с обработанной поверхности используют либо обработку в специальной жидкости — снимателе (например, диметилсульфоксид, N-метилпирролидон, смесь серной кислоты и перекиси водорода), либо обработку в кислородсодержащей плазме. Как правило, определённые сниматели подходят только к определённым группам фоторезистов. В процессах обратной фотолитографии, вместе с фоторезистом удаляется и покрывающая его плёнка материала. Если на предыдущих этапах применялись усилители адгезии или антиотражающие покрытия, они, как правило, также удаляются снимателем.


Смотрите также