Глутаминовая кислота что это такое


Глутаминовая кислота | Химия онлайн

Глутаминовая кислота (глютаминовая кислота, глутамат) – заменимая аминокислота, в плазме крови вместе со своим амидом (глутамином) составляет около 1/3 всех свободных аминокислот.

Глутаминовая кислота входит в состав белков и ряда важных низкомолекулярных соединений. Она является составной частью фолиевой кислоты.

Название кислоты произошло от сырья, из которого она была впервые выделена – клейковина пшеницы.

Глутаминовая кислота — 2-аминопентандиовая или α-аминоглутаровая кислота.

Глутаминовая кислота (Глу, Glu, E) является одной из важнейших аминокислот растительных и животных белков, молекулярная формула — C 5H9NO4.

Глутаминовая кислота впервые была выделена из эндосперма пшеницы в 1866 г. Ритгаузеном, а в 1890 г. синтезирована Вольфом.

Суточная потребность в глутаминовой кислоте выше, чем во всех других аминокислотах и составляет 16 грамм в сутки.

Физические свойства

Глутаминовая кислота представляет собой растворимые в воде кристаллы с температурой плавления 2020С. Это кристаллическая масса коричневого цвета со специфическим кислым вкусом и специфическим запахом.

Глутаминовая кислота растворяется в разбавленных кислотах, щелочах и горячей воде, трудно растворяется в холодной воде и концентрированной соляной кислоте, практически не растворима в этиловом спирте, эфире и ацетоне.

Биологическая роль

Глутаминовая кислота играет важную роль в обмене веществ.

В значительном количестве эта кислота и ее амид содержатся в белках.

Глутаминовая кислота стимулирует окислительно-восстановительные процессы в головном мозге. Глутамат и аспартат содержится в мозге в высоких концентрациях.

Глутаминовая кислота нормализует обмен веществ, изменяя функциональное состояние нервной и эндокринной систем.

Стимулирует передачу возбуждения в синапсах ЦНС, связывает и выводит аммиак.

Находясь в центре азотистого обмена, глутаминовая кислота тесно связана с углеводным, энергетическим, жировым, минеральным и другими видами обмена веществ живого организма.

Участвует в синтезе других аминокислот, АТФ, мочевины, способствует переносу и поддержанию необходимой концентрации K + в мозге, повышает устойчивость организма к гипоксии, служит связующим звеном между обменом углеводов и нуклеиновых кислот, нормализует содержание показателей гликолиза в крови и тканях.

Глутаминовая кислота оказывает положительное влияние на дыхательную функцию крови, на транспорт кислорода и его использование в тканях.

Она регулирует липидный и холестериновый обмены.

Глутаминовая кислота играет важную роль не только в образовании вкусовых и ароматических свойств хлеба, но и оказывает влияние на деятельность основных представителей бродильной микрофлоры ржаных заквасок и теста – дрожжей и молочнокислых бактерий.

Обмен глутаминовой кислоты в организме

Свободная глутаминовая кислота содержится в различных органах и тканях в большом количестве по сравнению с другими аминокислотами.

Глутаминовая кислота участвует в пластическом обмене. Более 20% белкового азота представлено глутаминовой кислотой и ее амидом.

Она входит в состав фолиевой кислоты и глутатиона, участвует в обмене более 50% азота белковой молекулы.

При синтезе аспарагиновой кислоты, аланина, пролина, треонина, лизина и др. аминокислот используется не только азот глутамата, но и его углеродный скелет.

До 60% углерода глутаминовой кислоты может включаться в гликоген, 20-30% — в жирные кислоты.

Глутаминовая кислота и ее амид (глутамин) играют основную роль в обеспечении азотом метаболических превращений — синтеза заменимых аминокислот.

Участие глутаминовой кислоты в пластическом обмене тесно связано с ее детоксикационной функцией – она принимает на себя токсичный аммиак.

Участие глутаминовой кислоты в азотистом обмене может быть охарактеризовано как высокоактивная утилизация и обезвреживание аммиака.

Велика роль глутамата и глутамина в синтезе мочевины, так как оба ее азота могут быть поставлены этими соединениями.

Превращения глутаминовой кислоты регулируют состояние энергетического обмена митохондрий.

Влияние глутаминовой кислоты на обмен веществ

Глутаминовая кислота при введении ее в организм оказывает воздействие на процессы азотистого обмена. После инъекций глутамата натрия возрастает содержание аланина, глутамина, аспарагиновой кислоты в почках, мозгу, сердечной и скелетных мышцах.

Глутаминовая кислота обезвреживает аммиак, образующийся в организме в результате распада. Аммиак связывается с глутаминовой кислотой с образованием глутамина. Синтезированный в тканях глутамин поступает в кровь и переносится ее в печень, где используется для образования мочевины.

Обезвреживающее действие глутаминовой кислоты особенно выражено при повышенном содержании аммиака в крови тканях (при воздействии холода, перегреве, гипоксии, гипероксии, аммиачном отравлении).

Глутаминовая кислота способна связывать аммиак и стимулировать обмен веществ в печени, что дает возможность применять ее при печеночной недостаточности.

Глутаминовая кислота способна увеличивать синтез белка и РНК в печеночной ткани, стимулировать синтез белков и пептидов.

Глутаминовая кислота и ее амид играют существенную роль в синтезе белка:

— значительное содержание глутаминовой кислоты в белке;

— «сберегающий эффект» — предотвращение использования незаменимого азота для синтеза заменимых аминокислот;

— глутаминовая кислота легко превращается в заменимые аминокислоты, обеспечивает достаточный набор всех аминокислот, необходимых для биосинтеза белка.

Кроме анаболического действия глутаминовая кислота тесно связана с процессами метаболизма углеводов: до 60% углерода введеной глутаминовой кислоты обнаруживается в составе гликогена.

Глутаминовая кислота понижает уровень сахара в крови при гипергликемии.

Глутаминовая кислота препятствует накоплению в крови молочной и пировиноградной кислот, сохраняет на более высоком уровне содержание гликогена в печени и мышцах.

Под влиянием глутаминовой кислоты при гипоксии наблюдается нормализация содержания АТФ в клетках.

Углеродный скелет глутаминовой кислоты легко образует углеводы. Глутаминовая кислота не только сама включается в углеводные ресурсы тканей, но и значительно стимулирует окисление углеводов.

Наряду с метионином глутаминовая кислота способна предупреждать жировое перерождение печени, вызванное введением четыреххлористого углерода.

Глутаминовая кислота участвует в минеральном обмене, являясь регулятором обмена калия и связанного с ним метаболизма натрия

Из солей глутаминовой кислоты на распределение калия и натрия в крови и в тканях наибольшее влияние оказывает глутамат натрия. Он увеличивает содержание натрия в скелетных мышцах, сердце, почках, а также калия в сердце, печени и почках при одновременном снижении его уровня в плазме.

Глутаминовая кислота, легко и быстро проникая, через тканевые барьеры с большой скоростью подвергается окислению. Она оказывает воздействие на аминокислотный, белковый, углеводный, липидный обмены, на рапределение калия и натрия в организме.

Эффект воздействия глутаминовой кислоты более выражен при измененном состоянии организма, когда наблюдается дефицит самой кислоты или связанных с ней продуктов обмена веществ.

Влияние глутаминовой кислоты на энергетический обмен митохондрий

Введение глутамата стимулирует дыхание животных, улучшает дыхательную функцию крови, увеличивает напряжение кислорода в тканях.

В условиях кислородного голодания глутамат предотвращает уменьшение содержания гликогена и богатых энергией соединений в печени, мышцах, головном мозге и сердце животных и вызывает снижение уровня недоокисленных продуктов и молочной кислоты в крови и скелетных мышцах.

Влияние глутаминовой кислоты на функциональное состояние нейроэндокринной системы

Глутаминовая кислота может влиять на обмен веществ, функции органов и систем, не только включаясь в тканевые обменные процессы, но и через изменение функционального состояния нервной и эндокринной систем.

Участие нервной системы в механизме действия глутаминовой кислоты определяется особой ролью аминокислоты в обмене веществ головного мозга, так как именно в нервной ткани она наиболее широко вовлекается в разнообразные процессы.

В энергетическом обмене нервной системы глутаминовая кислота занимает центральное место, т.к. не только способна окисляться в мозге наравне с глюкозой, но также и введенная глюкоза в значительной мере превращается в глутаминовую кислоту и ее метаболиты.

Концентрация глутаминовой кислоты в мозге в 80 раз превышает ее концетрацию в крови. В функционально активных участках мозга по сравнению с другими концентрация глутаминовой кислоты в 3 раза больше.

Из всех отделов мозга наибольшее количество глутаминовой кислоты приходится на область двигательного анализатора. Так, уже через несколько минут после перорального или внутреннего введения глутаминовая кислота обнаруживается во всех отделах мозга и гипофизе.

Функцию центрального метаболита глутаминовая кислота выполняет не только в мозге, но и в переферических нервах.

Важное значение глутаминовой кислоты в деятельности нервной системы связано с ее способностью обезвреживать аммиак и образовывать глутамин.

Глутаминовая кислота способна увеличивать артериальное давление, повышать уровень сахара в крови, обеспечивать мобилизацию гликогена в печени и выводить больных из состояния гипогликемической комы.

При длительном приеме глутаминовая кислота стимулирует функции щитовидной железы, что проявляется на фоне дефицита йода и белка в питании.

Подобно нервной системе мышцы относятся к возбудимой ткани с большими нагрузками и резкими переходами от покоя к активности. Глутаминовая кислота увеличивает сократительную способность миокарда, матки. В связи с этим, глутаминовая кислота применяется как биостимулятор при слабости родовой деятельности.

Природные источники

Сыр пармезан, яйца, зеленый горошек, мясо (цыпленок, утка, говядина, свинина), рыба (форель, треска), томаты, свекла, морковь, лук, шпинат, кукуруза.

Области применения

Глутаминовая кислота и глутамин применяются в качестве кормовых и пищевых добавок, приправ, сырья для фармацевтической и парфюмерной промышленности.

В пищевой промышленности глутаминовая кислота и ее соли находят широкое применение в качестве вкусовой приправы, придающей продуктам и концентратам «мясной» запах и вкус, а также как источник легко усвояемого азота.

Мононатриевая соль глутаминовой кислоты – глутамат натрия – один из важнейших носителей вкусовых качеств, применяемых в пищевой промышленности.

В условиях стрессового энергетического дефицита показано дополнительное введение в организм глутаминовой кислоты, так как это нормализует азотистый обмен в организме и мобилизует все органы, ткани и организм в целом.

Применение глутаминовой кислоты как пищевой добавки

Еще с начала XX века на Востоке глутаминовая кислота используется как вкусовая добавка к пище и источника легко усвояемого азота. В Японии глутамат натрия – обязательная принадлежность стола.

Широкая популярность глутаминовой кислоты как пищевой добавки связана с ее способностью улучшать вкус продуктов. Глутамат натрия улучшает вкус мясной, рыбной или овощной пищи и восстанавливает ее натуральные вкусовые качества («глутаминовый эффект»).

Глутамат натрия усиливает вкус многих пищевых продуктов, а также способствует длительному сохранению вкусовых качеств консервированных продуктов. Это свойство позволяет его широко используют в консервной промышленности, особенно при консервировании овощей, рыбы, мясных продуктов.

Во многих зарубежных странах глутамат натрия добавляют практически во все продукты при консервировании, замораживании или просто при хранении. В Японии, СЩА и других странах глутамат натрия является такой же обязательной принадлежностью стола, как соль, перец, горчица и другие приправы.

Он повышает не только вкусовую ценность пищевых продуктов, но и стимулирует деятельность пищеварительных желез.

Глутамат натрия рекомендуется добавлять в продукты со слабовыраженным вкусом и ароматом: макароннеы изделия, соусы, мясные и рыбные блюда. Так, слабый мясной бульон после добавления в него 1,5-2.0 г глутамата натрия на порцию приобретает вкус крепкого бульона.

Глутамат натрия значительно улучшает также вкус отварной рыбы и рыбных бульонов.

Картофельное пюре становится ароматнее и вкуснее при добавлении в него глутамата натрия в количестве 3-4 г на 1 кг продукта.

При добавлении в офощные изделия глутамат натрия не придает им какого-либо нового вкуса, запаха или цвета, но зато резко усиливает собственный вкус и аромат продуктов, из которых приготавливают блюда, что отличает его от обычных приправ.

С фруктами, некоторыми молочными и зерновыми продуктами, а также очень жирными продуктами глутамат натрия не гармонирует.

В кислой среде действие глутамата натрия на вкус продуктов снижается, т.е. в кислые продукты или кулинарные изделия его необходимо прибавлять больше.

Применение глутаминовой кислоты как кормовой добавки сельскохозяйственных животных

Некоторые заменимые аминокислоты становятся незаменимыми, если они не поступают с пищей, а клетки не справляются с их быстрым синтезом.

Использование глутаминовой кислоты как кормовой добавки особенно эффективно на фоне малобелковой диеты и у растущих организмов, когда потребность в источниках азота возрастает. Под действием глутаминовой кислоты компенсируется дефицит азота.

По эффекту обогащения пищи белковым азотом к глутаминовой кислоте близок ее амид – глутамин.

Эффективность глутаминовой кислоты зависит от ее дозировки. Применение больших количеств глутаминовой кислоты оказывает токсическое действие на организм.

Применение глутаминовой кислоты в медицине

Глутамитновую кислоту широко используют в медицине.

Глутаминовая кислота способствует снижению содержания аммиака в крови и тканях при различных заболеваниях. Она стимулирует окислительные процессы при гипоксических состояниях, поэтому успешно применяют при сердечнососудистой и легочной недостаточности, недостаточности мозгового кровообращения и как профилактическое средство асфиксии плода при патологических родах.

Также глутаминовую кислоту используют при болезни Боткина, печеночной коме, циррозе печени.

В клинической практике применение этой кислоты вызывает улучшение состояния больных при инсулиновой гипокгликемии, судорогах, астенических состояниях.

В детской практике глутаминовую кислоту применяют при задержке психического развития, церебральных параличах, болезни Дауна, полиолимите.

Важной особенностью глутаминовой кислоты является ее защитное действие при различных отравлениях печени и почек, усиление фармакологического действия одних и ослабление токсичности других лекарственных средств.

Антитоксическое действие глутаминовой кислоты обнаружено при отравлении метиловым спиртом, сероуглеродом, окисью углерода, гидразином, четыреххлористым углеродом, нефтегазами, хлористым марганцем, фторидом натрия.

Глутаминовая кислота оказывает влияние на состояние нервных процессов, в связи с этим она широко применяется при лечении эпилепсии, психозов, при  истощении, депрессии, олигофрении, черепно-мозговых травм новорожденных, нарушениях мозгового кровообращения, туберкулезном менингите, параличах, а также при заболеваниях мышц.

Глутамат повышает работоспособность и улучшает биохимические показатели при интенсивной мышечной работе и утомлении.

Глутаминовая кислота может быть использована при патологии щитовидной железы, в частности, при эндемическом зобе.

Глутаминовая кислота используется в сочетании с глицином для больных с прогрессирующей мышечной дистрофией, миопатией.

Глутаминовая кислота используется при лечении пневмоний у детей раннего возраста.

Глутаминовая кислота противопоказана при лихорадочных состояниях, повышенной возбудимости и бурно протекающих психотических реакциях.

Аминокислоты

Классификация аминокислот

Глутаминовая кислота. Свойства, особенности, сфера применения

Глутаминовая кислота (глутамат) 

CAS номер: 56-86-0
Брутто формула: C5H9NO4
Внешний вид: порошок белого цвета
Химическое название и синонимы: L-Glutamic acid, L(+)-Glutamic acid; 2-Aminoglutaric acid
Физико-химические свойства:
Молекулярная масса: 147.13 г/моль
Плотность 1,538
Температура плавления 205 ºC
альфа 32 º (с = 10,2 н. HCl)
Растворимость в воде 7,5 г / л (20 ºC). Очень плохо растворяется в холодной воде.
Опасные продукты разложения, образующиеся в условиях горения - оксиды углерода, оксиды азота (NOx).
Субстанция стабильна при соблюдении рекомендуемых условий хранения. Хранить в плотно закрытой таре, хранящейся в прохладном, сухом, проветриваемом помещении. Защищать от физического повреждения. Защищать от замерзания.

Описание:

Глутаминовая кислота (или соль глутаминовой кислоты - глутамат) является условно незаменимой алифатической (не имеющая в структуре ароматических связей) аминокислотой. Глутамат используется организмом для создания белков. Глутамат является наиболее распространенным возбуждающим (стимулирующим) нейротрансмиттером в центральной нервной системе, а также является метаболическим промежуточным продуктом в цикле Кребса, и соединение, которое может участвовать в устранении токсичного аммиака из организма. Когда глютаминовая кислота объединяется с аммиаком, отходы метаболизма превращаются в глютамин. Глутаминовая кислота осуществляет решающую роль в поддержании сбалансированного соотношения кислотно-щелочных компонентов.

Присутствует в организме в достаточно большом количестве (до 25%) в составе белков и различных химических веществ, а также в несвязанном свободном состоянии. Глутаминовая кислота может быть синтезирована из оксоглутаровой кислоты, образующейся при метаболизме углеводов и биосинтезируется из ряда аминокислот, включая орнитин и аргинин. В нормальном здоровом организме глутаминовая кислота вырабатывается в достаточном количестве, но с возрастом и при наличии различных патологий у человека, ее уровень может снизиться. В таком случае необходимо ее дополнительное потребление, возможно в виде пищевых добавок.

Глутаминовая кислота также является предшественником ГАМК, важного нейротрансмиттера в центральной нервной системе. Глутаминовая кислота помогает транспортировать калий в спинномозговую жидкость и сама является возбуждающим нейротрансмиттером.

Богатыми источниками глутаминовой кислоты являются соя, мясо, птица, рыба, яйца и молочные продукты (особенно сыр). Но также ее много и в растительной пище - зеленый горошек, свекла, кукуруза, морковь, лук, шпинат и др.

Применение:

Соль мононатриевый глутамат (MSG) является обычной пищевой добавкой и усилителем вкуса, который широко распространен в пищевой промышленности. Глутаминовую кислоту часто используют как компонент при производстве спортивного питания и БАДов. Также глутаминовую кислоту используют в медицине при нарушении работы нервной системы. Например, глутаминовая кислота применялась для лечения умственной отсталости, эпилепсии, болезни Паркинсона, мышечной дистрофии и алкоголизма. Перорально глютамин используется для уменьшения осложнений, связанных с серповидноклеточной анемией, и для синдрома короткой кишки у пациентов, получающих нутритивную поддержку в сочетании с рекомбинантным гормоном роста человека. Он также используется при депрессии, раздражительности, беспокойстве, бессоннице, диарее, болезни Крона, муковисцидозе, повышении физической активности и восстановлении после ожогов. Глютамин также используется перорально для истощения ВИЧ, нарушения кишечной проницаемости у людей с ВИЧ, мукозита, вызванного химиотерапией, химиотерапии или антиретровирусной диареи, нейропатии или лимфоцитопении, вызванной химиотерапией, диабетических язв стопы, пролежней и язв, а также для защиты иммунной системы и кишечника, и выполняет барьерную функцию у людей с раком пищевода, проходящих радиохимиотерапию. Он также используется для снижения веса, синдрома дефицита внимания и гиперактивности (СДВГ), цистинурии, язвенной болезни, язвенного колита, панкреатита, мышечной дистрофии, улучшения восстановления после трансплантации костного мозга, а также для поддержки опиатной или алкогольной абстиненции. Он также используется перорально в качестве энтерального питания для предотвращения заболеваемости у пациентов с травмами, предотвращения инфекционных осложнений у критически больных пациентов, а также для лечения миалгии и артралгии, вызванной паклитакселом. У недоношенных детей или детей с низким весом при рождении глютамин используется для снижения заболеваемости и смертности.

Внутривенно глютамин вводят для улучшения восстановления после операции или ожогов, а также после трансплантации костного мозга. Он также используется для предотвращения вызванного химиотерапией мукозита и снижения заболеваемости, связанной с критическими заболеваниями. У недоношенных детей или детей с низким весом при рождении глютамин используется для снижения заболеваемости и смертности.

Еще L-глутаминовая кислота используется в клеточной культуре как компонент раствора незаменимых аминокислот MEM. L-глутаминовая кислота была использована в качестве источника азота в культуре Aspergillus fumigatus NRRL 2436 для производства фумагиллина.

Получение: 

Способ получения L-глутаминовой кислоты биохимическим путем включает использование пирролидонкарбоновой кислоты в качестве сырья. Пирролидонкарбоновую кислоту (далее сокращенно обозначаемую как PCA) получают посредством органического синтеза, экстракции из природных материалов, внутримолекулярной реакции дегидратации глутаминовой кислоты и так далее. Было известно, что L-глутаминовая кислота, которая получается путем гидролитического превращения PCA, является коммерчески полезной. Однако в соответствии с обычным способом L-PCA превращается в L-глутаминовую кислоту, а D-PCA превращается в D-глутаминовую кислоту, а DL-PCA превращается в DL-глутаминовую кислоту соответственно. Соответственно, чтобы получить L-глутаминовую кислоту из D-PCA или DL-PCA, необходим другой процесс, такой как оптическое разрешение или рацемизация, помимо процесса конверсии. И достигается это путем контактирования D-PCA и / или DL-PCA с микроорганизмом в качестве ферментативного агента в водной среде, имеющей диапазон pH -10 в присутствии воздуха и в диапазоне температур 25- 60 с. Предполагается, что как реакции гидролиза, так и оптическая рацемизация происходят одновременно во время этой биохимической реакции, согласно которой L-глутаминовая кислота получена из D-PCA и / или DL-PCA. Хотя подробный механизм с научной точки зрения еще не понят, фактом является то, что только L-глутаминовая кислота образуется без каких-либо следов D-глутаминовой кислоты. Кроме того, L-глутаминовая кислота, конечно, легко образуется из L-PCA, когда она существует в реакционной системе. Большинство микроорганизмов, используемых в данном способе, представляют собой штаммы, принадлежащие к семейству Achromobacteriaceae, Micrococcaceae, Brevibacteriaceae, Corynebacteriaceae, Enterobacteriaceae, Pseudomonadaceae, Bacillaceae, Rhizobiceae, и их можно легко получить в природе и из культур. Однако любой микроорганизм, который может метаболизировать D-PCA в L-глутаминовую кислоту, может быть использован , даже если он не принадлежит ни к одному из этих семейств. (Данный метод принадлежит исследователям Yoshio Kawai, Zushi-shi, Teijiro Uernura and Yasuo Kawai, Tokyo, and Shinji Olrumura, Yokohama, Japan, assignors to Sanko Co., Inc., Kanagawa-lren, Japan, a corporation or Japan No Drawing).

Действие на организм: 

L-глутаминовая кислота (L-GA) физиологически существует в виде глутамата. Глутамат играет важную роль в метаболизме аминокислот и, следовательно, в поддержании баланса азота в тело. Глутамат является хорошо известным возбуждающим нейромедиатором в центральной нервной системе. Существуют убедительные доказательства защитной активности L-GA и α-кетоглутарата при винкристин-индуцированной нейротоксичности. Возможная иммуномодулирующая роль L-глютамина может быть объяснена несколькими способами. L-глютамин, по-видимому, играет главную роль в защите целостности желудочно-кишечного тракта и, в частности, толстой кишки. Во время катаболических состояний целостность слизистой оболочки кишечника может быть нарушена с последующей повышенной кишечной проницаемостью и перемещением грамотрицательных бактерий из толстой кишки в организм. Потребность в L-глютамине в кишечнике, а также в клетках, таких как лимфоциты, по-видимому, намного выше, чем в скелетных мышцах, основной ткани для хранения L-глютамина. L-глютамин является предпочтительным топливом для энтероцитов, колоноцитов и лимфоцитов. Следовательно, добавление L-глютамина в этих условиях может сделать несколько вещей. С одной стороны, он может обратить катаболическое состояние, щадя L-глютамин скелетных мышц. Это также может препятствовать транслокации грамотрицательных бактерий из толстой кишки. L-глютамин помогает поддерживать секреторный IgA, который функционирует главным образом за счет предотвращения прикрепления бактерий к клеткам слизистой оболочки. L-глютамин, по-видимому, необходим для поддержки пролиферации митоген-стимулированных лимфоцитов, а также продукции интерлейкина-2 (IL-2) и интерферона-гамма (IFN-гамма). Он также необходим для поддержания активированных лимфокинами клеток-киллеров (ЛАК). L-глютамин может усиливать фагоцитоз нейтрофилов и моноцитов. Это может привести к усилению синтеза глутатиона в кишечнике, что также может играть роль в поддержании целостности слизистой оболочки кишечника путем уменьшения окислительного стресса. Точный механизм возможного иммуномодулирующего действия дополнительного L-глютамина, однако, остается неясным. Вполне возможно, что основной эффект L-глутамина происходит на уровне кишечника. Возможно, энтеральный L-глутамин действует непосредственно на лимфоидную ткань, связанную с кишечником, и стимулирует общую иммунную функцию с помощью этого механизма,

Токсикологические данные:

Острая токсичность. LD50 при оральном применении - крыса -> 30 000 мг / кг.

Глутаминовая кислота - это... Что такое Глутаминовая кислота?

Глутаминовая кислота (2-аминопентандиовая кислота) — алифатическая аминокислота. В живых организмах глутаминовая кислота в виде аниона глутамата присутствуют в составе белков, ряда низкомолекулярных веществ и в свободном виде. Глутаминовая кислота играет важную роль в азотистом обмене.

Глутаминовая кислота также является нейромедиаторной аминокислотой, одним из важных представителей класса «возбуждающих аминокислот»[1]. Связывание глутамата со специфическими рецепторами нейронов приводит к возбуждению последних.

Глутамат как нейромедиатор

Глутаматные рецепторы

Существуют ионотропные и метаботропные (mGLuR 1-8) глутаматные рецепторы.

Ионотропными рецепторами являются NMDA-рецепторы, AMPA-рецепторы и каинатные рецепторы.

Эндогенные лиганды глутаматных рецепторов — глутаминовая кислота и аспарагиновая кислота. Для активации NMDA рецепторов также необходим глицин. Блокаторами NMDA-рецепторов являются PCP, кетамин, и другие вещества. AMPA-рецепторы также блокируются CNQX,NBQX. Каинова кислота является активатором каинатных рецепторов.

«Круговорот» глутамата

При наличии глюкозы в митохондриях нервных окончаний происходит дезаминирование глутамина до глутамата при помощи фермента глутаминазы. Также, при аэробном окислении глюкозы глутамат обратимо синтезируется из альфа-кетоглутарата (образуется в цикле Кребса) при помощи аминотрансферазы.

Синтезированный нейроном глутамат закачивается в везикулы. Этот процесс является протон-сопряжённым транспортом. В везикулу с помощью протон-зависимой АТФазы закачиваются ионы H+. При выходе протонов по градиенту в везикулу поступают молекулы глутамата при помощи везикулярного транспортера глутамата (VGLUTs).

Глутамат выводится в синаптическую щель, откуда поступает в астроциты, там трансаминируется до глутамина. Глутамин выводится снова в синаптическую щель и только тогда захватывается нейроном. По некоторым данным, глутамат напрямую путём обратного захвата не возвращается.[2]

Роль глутамата в кислотно-щелочном балансе

Дезаминирование глутамина до глутамата при помощи фермента глутаминазы приводит к образованию аммиака, который, в свою очередь, связывается со свободным протоном и экскретируется в просвет почечного канальца, приводя к снижению ацидоза. Превращение глутамата в α-кетоглутарат также происходит с образованием аммиака. Далее кетоглутарат распадается на воду и углекислый газ. Последние, при помощи карбоангидразы через угольную кислоту, превращаются в свободный протон и гидрокарбонат. Протон экскретируется в просвет почечного канальца за счет котранспорта с ионом натрия, а бикарбонат попадает в плазму.

Глутаматергическая система

В ЦНС находится порядка 106 глутаматергических нейронов. Тела нейронов лежат в коре головного мозга, обонятельной луковице, гиппокампе, черной субстанции, мозжечке. В спинном мозге — в первичных афферентах дорзальных корешков.

В ГАМКергических нейронах глутамат является предшественником тормозного медиатора, гамма-аминомасляной кислоты, образующейся с помощью фермента глутаматдекарбоксилазы.

Патологии, связанные с глутаматом

Повышенное содержание глутамата в синапсах между нейронами может перевозбудить и даже убить эти клетки, что приводит к таким заболеваниям, как АЛС. Для избежания таких последствий глиальные клетки астроциты поглощают избыток глутамината. Он транспортируется в эти клетки с помощью транспортного белка GLT1, который присутствует в клеточной мембране астроцитов. Будучи поглощённым клетками астроглии, глутаминат больше не приводит к повреждению нейронов.

Содержание глутамата в природе

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.

Глутаминовая кислота относится к условно незаменимым аминокислотам. Глутамат в норме синтезируется организмом. Присутствие в пище свободного глутамата придает ей так называемый «мясной» вкус, для чего глутамат используют как усилитель вкуса. При этом метаболизм природного глутамата и глутамата натрия синтетического не отличается.

Содержание натурального глутамата в пище (имеется в виду пища, не содержащая искусственно добавленного глутамата натрия):

Продукт Связанный глутамат

(мг/100 г)

Свободный глутамат[3]

(мг/100 г)

Молоко коровье 819 2
Сыр пармезан 9847 1200
Яйца птицы 1583 23
Мясо цыпленка 3309 44
Мясо утки 3636 69
Говядина 2846 33
Свинина 2325 23
Треска 2101 9
Макрель 2382 36
Форель 2216 20
Зеленый горошек 5583 200
Кукуруза 1765 130
Свекла 256 30
Морковь 218 33
Лук 208 18
Шпинат 289 39
Томаты 238 140
Зеленый перец 120 32

То есть полностью исключить из рациона глутамат, как предлагают некоторые издания, достаточно проблематично.

Применение

Фармакологический препарат глутаминовой кислоты оказывает умеренное психостимулирующее, возбуждающее и отчасти ноотропное действие.

Глутаминовая кислота (пищевая добавка E620) и её соли (глутамат натрия Е621, глутамат калия Е622, диглутамат кальция Е623, глутамат аммония Е624, глутамат магния Е625) используются как усилитель вкуса во многих пищевых продуктах[4].

Глутаминовая кислота используется в качестве хирального строительного блока в органическом синтезе[5], в частности, дегидратация глутаминовой кислоты приводит к её лактаму ― пироглутаминовой кислоте (5-оксопролину), которая является ключевым предшественником в синтезах неприродных аминокислот, гетероциклических соединений, биологически активных соединений и т.д.[6],[7],[8].

Примечания

  1. Moloney M. G. Excitatory amino acids. // Natural Product Reports. 2002. P. 597―616.
  2. Ашмарин И. П., Ещенко Н. Д., Каразеева Е. П. Нейрохимия в таблицах и схемах. — М.: «Экзамен», 2007
  3. If MSG is so bad for you, why doesn't everyone in Asia have a headache? | Life and style | The Observer
  4. Садовникова М. С., Беликов В. М. Пути применения аминокислот в промышленности. //Успехи химии. 1978. Т. 47. Вып. 2. С. 357―383.
  5. Coppola G. M., Schuster H. F., Asymmetric synthesis. Construction of chiral moleculs using amino acids, A Wiley-Interscience Publication, New York, Chichester, Brisbane, Toronto, Singapore, 1987.
  6. Smith M. B. Pyroglutamte as a Chiral Template for the Synthesis of Alkaloids. Chapter 4 in Alkaloids: Chemical and Biological Perspectives. Vol. 12. Ed. by Pelletier S. W. Elsevier, 1998. P. 229―287.
  7. Nájera C., Yus M. Pyroglutamic acid: a versatile building block in asymmetric synthesis. //Tetrahedron: Asymmetry. 1999. V. 10. P. 2245―2303.
  8. Panday S. K., Prasad J., Dikshit D. K. Pyroglutamic acid: a unique chiral synthon. // Tetrahedron: Asymmetry. 2009. V. 20. P. 1581―1632.

См. также

Ссылки

Глутаминовая кислота — описание, применение, отзывы

Глутаминовая кислота относится к группе заменимых аминокислот и играет важную роль в организме. Ее содержание в организме составляет до 25% от всех аминокислот.

В промышленных масштабах глутаминовую кислоту получают путем микробиологического синтеза. В химически чистом виде она имеет вид белых или бесцветных кристаллов без запаха, имеющих кислый вкус, в воде кристаллы растворяются плохо. Для лучшей растворимости глутаминовую кислоту превращают в соль натрия – глутамат.

Применение глутаминовой кислоты

В пищевой промышленности глутаминовая кислота известна как пищевая добавка под названием Е620. Ее используют в качестве усилителя вкуса в ряде продуктов наряду с солями глутаминовой кислоты – глутаматами.

Глутаминовую кислоту добавляют в полуфабрикаты, различные продукты быстрого приготовления, кулинарные изделия, концентраты бульонов. Она придает пище приятный мясной вкус.

В медицине применение глутаминовой кислоты оказывает незначительное психостимулирующее, возбуждающее и ноотропное действие, что используют в лечении ряда заболеваний нервной системы.

В середине 20 века врачи рекомендовали применение глутаминовой кислоты внутрь в случае мышечно-дистрофических заболеваний. Также ее назначали спортсменам с целью увеличения мышечной массы.

Значение глутаминовой кислоты для организма

Роль глутаминовой кислоты переоценить трудно, она:

  • Участвует в синтезе гистамина, серотонина и ряда других биологически активных веществ;
  • Обезвреживает вредный продукт распада – аммиак;
  • Является медиатором;
  • Входит в цикл превращений углеводов и нуклеиновых кислот;
  • Из нее синтезируется фолиевая кислота;
  • Участвует в обмене энергии с образованием АФТ в головном мозге.

В организме глутаминовая кислота входит в состав белков, она присутствует в плазме крови в свободном виде, а также как составная часть ряда низкомолекулярных веществ. Тело человека содержит запас глутаминовой кислоты, в случае ее недостаточности она прежде всего поступает туда, где необходима больше всего.

Важную роль глутаминовая кислота играет в передаче нервных импульсов. Связывание ее с определенными рецепторами нервных клеток приводит к возбуждению нейронов и ускорению передачи импульсов. Таким образом, глутаминовая кислота выполняет нейромедиаторные функции.

При избытке этой аминокислоты в синапсе возможно перевозбуждение нервных клеток и даже их повреждение, что ведет к заболеваниям нервной системы. В этом случае защитную функцию берут на себя глиальные клетки, которые окружают и защищают нейроны. Клетки нейроглии поглощают и обезвреживают избыток глутаминовой кислоты в головном мозге и периферических нервах.

Глутаминовая аминокислота увеличивает чувствительность мышечных волокон к калию путем увеличения проницаемости клеточных мембран для него. Этот микроэлемент играет важную роль в сокращении мышц, увеличивая силу мышечного сокращения.

Глутаминовая кислота в спорте

Глутаминовая кислота – довольно распространенный компонент спортивного питания. Это заменимая аминокислота для организма человека, причем превращения других аминокислот происходят именно через глутаминовую аминокислоту, которая играет интегрирующую роль в обмене азотистых веществ. Если в организме не хватает какой-то аминокислоты, возможна компенсация ее содержания путем превращения из тех аминокислот, которые содержатся в избытке.

В том случае, если физическая нагрузка на организм очень высока, а поступление белка с пищей ограничено или не соответствует потребностям организма, происходит феномен азотистого перераспределения. В этом случае белки, входящие в структуру внутренних органов, идут на построение волокон скелетных и сердечных мышц. Поэтому в спорте глутаминовая кислота играет незаменимую роль, ведь она является промежуточным этапом в превращениях тех аминокислот, которых не хватает организму.

Превращение глутаминовой кислоты в глутамин с целью нейтрализации аммиака – одна из главных ее функций. Аммиак весьма токсичен, но это неизменный продукт обмена веществ – на его долю приходится до 80% всех азотистых соединений. Чем больше нагрузка на организм, тем больше образуется токсичных продуктов азотистого распада. В спорте глутаминовая кислота берет на себя снижение уровня аммиака, связывая его в нетоксичный глутамин. Кроме того, по отзывам, глутаминовая кислота быстро восстанавливает состояние спортсменов после соревнований, так как связывает избыток лактата, который отвечает за чувство мышечной боли.

У спортсменов при недостатке уровня глюкозы в момент интенсивной физической нагрузки глутаминовая кислота превращается в источник энергии – глюкозу.

По отзывам, глутаминовая кислота хорошо переносится, не имеет побочных эффектов и совершенно безвредна для организма. Проведенные исследования показали, что 100 г белковой пищи содержат 25 г глутаминовой кислоты. Эта аминокислота – естественный компонент животной пищи, а отрицательные отзывы о глутаминовой кислоте несколько преувеличены.

Глутамин — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 1 марта 2016; проверки требуют 14 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 1 марта 2016; проверки требуют 14 правок.
Глутамин

({{{картинка}}})
({{{картинка3D}}})
({{{картинка2}}})
Систематическое
наименование
2-​аминопентанамид-​5-​овая кислота
Сокращения Глн, Gln, Q
CAA,CAG
Хим. формула O=C(Nh3)-Ch3-Ch3-CH(Nh3)-COOH
Рац. формула C5H10N2O3
Молярная масса 146,14 г/моль
Рег. номер CAS [56-85-9]
PubChem 5961
Рег. номер EINECS 200-292-1
SMILES
InChI
ChEBI 18050
ChemSpider 5746
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе

Глутамин (также Глютамин) (2-аминопентанамид-5-овая кислота) — одна из 20 стандартных аминокислот, входящих в состав белка. Глутамин полярен, не заряжен и является амидом моноаминодикарбоновой глутаминовой кислоты, образуясь из неё в результате прямого аминирования под воздействием глутаминсинтетазы.

В растворе глутамин медленно гидролизуется до глутаминовой кислоты[1].

Распространение в природе[править | править код]

Глутамин весьма распространен в природе, для человека не является незаменимой аминокислотой, то есть может синтезироваться в достаточном количестве. Его концентрация в крови составляет 500—900 мкмоль/л, что выше концентрации любой другой аминокислоты.[2]

Пищевые источники[править | править код]
  • Животные источники: говядина, курица, рыба, яйца, молоко, йогурт, рикотта, творог, молочные продукты.
  • Растительные источники: капуста, свёкла, бобы, шпинат, петрушка. Небольшое количество свободного L-глутамина найдено в овощных соках и продуктах брожения, таких как мисо[3].

Функции[править | править код]

  • Интеграция азотистого обмена.
  • Синтез других аминокислот, в том числе и гистидина.
  • Обезвреживание аммиака.
  • Биосинтез углеводов.
  • Участие в синтезе нуклеиновых кислот
  • Синтез фолиевой кислоты (итероилглутаминовая кислота).
  • Окисление в клетках мозговой ткани с выходом энергии, запасаемой в виде АТФ.
  • Нейромедиаторная функция.
  • Превращение в аминомасляную кислоту (ГАМК).
  • Участие в синтезе cAMP — посредника некоторых гормональных и нейромедиаторных сигналов.
  • Участие в синтезе cGMP, который также является посредником гормональных и медиаторных сигналов.
  • Участие в синтезе ферментов, осуществляющих окислительно-восстановительные реакции (НАД).
  • Участие в синтезе серотонина (опосредованное, через триптофан).
  • Способность повышать проницаемость мышечных клеток для ионов калия.
  • Синтез н-аминобензойной кислоты.
  • Укрепляет иммунитет
  • Ускоряет восстановление после тренировок, предотвращает развитие перетренированности
  • Оказывает антикатаболическое действие (подавляет секрецию кортизола)

Глутамин на сегодняшний день является популярной аминокислотой для пищевых добавок используемых в бодибилдинге и пауэрлифтинге, в связи с распространенным мнением о способности этой аминокислоты ускорять метаболические процессы в мышцах и замедлять катаболические процессы после тяжелых тренировок. Также считается, что глутамин помогает быстрее восстанавливаться после интенсивных физических нагрузок.

В случае белка теплового шока HSP70 известно, что его активность увеличивается при добавлении глутамина в пищу. Исследователи использовали такой подход: одна группа добровольцев в течение недели три раза в день выпивала раствор глутамина, а вторая группа — раствор, не содержащий глутамина (плацебо). На восьмой день проводили тест с физической нагрузкой. После него у добровольцев брали кровь, выделяли из неё мононуклеарные клетки и уже в них анализировали интенсивность протекания аутофагии и количество HSP70. Оказалось, что прием глутамина значительно снижает проявление аутофагии, что согласовывалось с повышением количества HSP70.[4]

Глутаминовая кислота - инструкция, показания, способ применения

Состав

действующее вещество: 1 таблетка содержит L-глутаминовой кислоты 250 мг;

вспомогательные вещества: целлюлоза микрокристаллическая, повидон, кальция стеарат;

оболочка: смесь для пленочного покрытия Opadry II Blue: гипромеллоза, лактозы моногидрат, полиэтиленгликоль, титана диоксид (Е 171), индигокармин (Е 132), хинолиновый желтый (Е 104).

Лекарственная форма. Таблетки, покрытые пленочной оболочкой.

Основные физико-химические свойства: таблетки круглой формы с двояковыпуклой поверхностью, покрытые пленочной оболочкой голубого цвета.

Фармакотерапевтическая группа. Средства, действующие на нервную систему.

Код АТХ N07X X.

Фармакологические свойства

Фармакодинамика.

Заменимая аминокислота, которая участвует в процессах переаминирования аминокислот в организме, в белковом и углеводном обменах, стимулирует окислительные процессы, способствует обезвреживанию и выведению из организма аммиака, повышает стойкость организма к гипоксии. Способствует синтезу ацетилхолина и АТФ, переносу ионов калия, играет важную роль в деятельности скелетных мышц. Глутаминовая кислота принадлежит к нейромедиаторным аминокислотам, которые стимулируют передачу возбуждения в синапсах центральной нервной системы.

Фармакокинетика.

Глутаминовая кислота хорошо всасывается при приеме внутрь. Быстро элиминируется из крови, накапливаясь преимущественно в мышечной и нервной тканях, в печени и почках, проникает через гематоэнцефалический барьер и мембраны клеток. Частично глутаминовая кислота во время всасывания переаминируется до образования аланина. Под влиянием фермента глутаматдекарбоксилазы превращается в мозге в медиатор – гамма-аминомасляную кислоту.

Около 4-7 % ее выводится с мочой в неизмененном виде, остальное количество утилизируется в процессе метаболических превращений.

Клинические характеристики.

Показания

Лечение эпилепсии, в основном малых приступов с эквивалентами, соматогенных, инволюционных, интоксикационных психозов, реактивных состояний с явлениями депрессии, истощения; при задержке психического развития у детей, болезни Дауна, при детских церебральных параличах, полиомиелите (острый и восстановительный периоды), при прогрессирующей миопатии, для устранения и предупреждения нейротоксических явлений, которые могут возникнуть при применении изониазида и других препаратов группы гидразида изоникотиновой кислоты.

Противопоказания

Лихорадочные состояния, повышенная возбудимость, резко выраженные психотические реакции, печеночная и/или почечная недостаточность, нефротический синдром, язвенная болезнь желудка и двенадцатиперстной кишки, заболевания органов кроветворения, анемия, лейкопения.

Взаимодействие с другими лекарственными средствами и другие виды взаимодействий.

Совместно с тиамином и пиридоксином (препараты витаминов группы В) Глутаминовую кислоту можна использовать для профилактики и лечения нейротоксических явлений, вызванных употреблением пациентом лекарственных препаратов ГИНК-группы (гидразида изоникотиновой кислоты, например, фтивазид, изониазид).

При миопатии и мышечной дистрофии Глутаминовая кислота эффективна в сочетании с пахикарпином или гликоколом.

Особенности применения

Во время лечения необходимо систематически проводить исследование мочи и крови. При возникновении побочных эффектов рекомендуется уменшать дозы лекарственного средства.

Глутаминовую кислоту можна применять также для снятия нейротоксичных явлений, связанных с приемом других препаратов.

После приема Глутаминовой кислоты следует прополоскать рот слабым раствором натрия гидрокарбоната.

Лекарственное средство содержит лактозу, поэтому его не следует назначать пациентам с редкими наследственными формами непереносимости галактозы, дефицитом лактазы или синдромом глюкозо-галактозной мальабсорбции.

Применение в период беременности или кормления грудью.

Данное лекарственное средство не применять в период беременности или кормления грудью.

Способность влиять на скорость реакции при управлении автотранспортом или другими механизмами.

Учитывая возможное влияние лекарственного средства на нервную систему, следует с осторожностью применять препарат при управлении автотранспортом или работе с другими механизмами.

Способ применения и дозы

Взрослым назначать в разовой дозе 1 г 2-3 раза в сутки.

Детям разовые дозы составляют: 3-6 лет – 250 мг, 7-9 лет – 0,5-1 г; с 10 лет – по 1 г.

Кратность приема – 2-3 раза в сутки.

При олигофрении – по 100-200 мг на 1 кг массы тела больного в течение нескольких месяцев.

Принимать за 15-30 минут до еды, при развитии диспептических явлений – во время или после еды.

Курс лечения – от 1-2 до 6-12 месяцев.

Дети.

Лекарственное средство не применять детям до 3 лет.

Передозировка

Возможно усиление проявлений побочных реакций.

Лечение: терапия симптоматическая, промывание желудка, применение энтеросорбентов.

Побочные реакции

Со стороны крови и лимфатической системы: снижение содержания гемоглобина, лейкопения. Со стороны желудочно-кишечного тракта: рвота, диарея.

Со стороны нервной системы: головная боль, повышенная раздражительность, бессонница. Со стороны иммунной системы: аллергические реакции, включая сыпь, зуд, гиперемию.

Срок годности

4 года.

Условия хранения

Хранить в оригинальной упаковке при температуре не выше 25 ºС.

Хранить в недоступном для детей месте.

Упаковка

По 10 таблеток в блистерах.

По 10 таблеток в блистере, по 3 блистера в пачке.

Категория отпуска. Без рецепта.

Производитель

АО «КИЕВСКИЙ ВИТАМИННЫЙ ЗАВОД».

Местонахождение производителя и адрес места осуществления его деятельности.

04073, Украина, г. Киев, ул. Копыловская, 38.

Web-сайт: www.vitamin.com.ua.

Глутаминовая кислота — Википедия. Что такое Глутаминовая кислота

Глутаминовая кислота
Общие
Систематическое
наименование
2-Аминопентандиовая кислота
Сокращения Глу, Glu, E
GAA,GAG
Традиционные названия Аминоглутаровая кислота, глутаминовая кислота, глутамат
Хим. формула C5H9NO4
Рац. формула C 40,82 %, H 6,17 %, N 9,52 %, O 43,5 %
Физические свойства
Состояние белый кристаллический порошок
Молярная масса 147,1293 ± 0,006 г/моль
Плотность 1,4601
1,538 (25° С)
Термические свойства
Т. плав. 160 °C
Т. кип. 205 °C
свыше 205 °C
Химические свойства
pKa 2,16, 4,15, 9,58
Растворимость в воде 7.5 г/л[1]
Изоэлектрическая точка 3,22
Классификация
Рег. номер CAS 56-86-0
PubChem 611
Рег. номер EINECS 200-293-7
SMILES
InChI
Кодекс Алиментариус E620
ChEBI 18237
ChemSpider 591
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Глутами́новая кислота (2-аминопентандиовая кислота) — органическое соединение, алифатическая дикарбоновая аминокислота. В живых организмах глутаминовая кислота входит в состав белков, ряда низкомолекулярных веществ и в свободном виде. Глутаминовая кислота играет важную роль в азотистом обмене.

Глутаминовая кислота также является нейромедиаторной аминокислотой, одним из важных представителей класса «возбуждающих аминокислот»[2]. Связывание глутамата со специфическими рецепторами нейронов приводит к возбуждению последних.

Глутаминовая кислота относится к группе заменимых аминокислот и играет важную роль в организме. Её содержание в организме составляет до 25% от всех аминокислот.

Физико-химические свойства

Глутаминовая кислота представляет собой белое кристаллическое вещество, плохо растворимое в воде, этаноле, нерастворимое в ацетоне и диэтиловом эфире.

Глутамат как нейромедиатор

Глутамат (соль глутаминовой кислоты) — наиболее распространённый возбуждающий нейротрансмиттер в нервной системе позвоночных[3]. В химических синапсах глутамат запасается в пресинаптических пузырьках (везикулах). Нервный импульс запускает высвобождение глутамата из пресинаптического нейрона. На постсинаптическом нейроне глутамат связывается с постсинаптическими рецепторами, такими, как, например, NMDA-рецепторы, и активирует их. Благодаря участию последних в синаптической пластичности глутамат вовлечён в такие когнитивные функции, как обучение и память[4]. Одна из форм синаптической пластичности, называемая долговременной потенциацией, имеет место в глутаматергических синапсах гиппокампа, неокортекса и в других частях головного мозга. Глутамат участвует не только в классическом проведении нервного импульса от нейрона к нейрону, но и в объёмной нейротрансмиссии, когда сигнал передаётся в соседние синапсы путём суммации глутамата, высвобожденного в соседних синапсах (так называемая экстрасинаптическая или объёмная нейротрансмиссия)[5] В дополнение к этому, глутамат играет важную роль в регуляции конусов роста и синаптогенеза в процессе развития головного мозга, как это было описано Марком Мэтсоном.

Транспортёры[6] глутамата обнаружены на нейрональных мембранах и мембранах нейроглии. Они быстро удаляют глутамат из внеклеточного пространства. При повреждении мозга или заболеваниях они могут работать в противоположном направлении, вследствие чего глутамат может накапливаться снаружи клетки. Этот процесс приводит к поступлению большого количества ионов кальция в клетку через каналы NMDA-рецепторов, что, в свою очередь, вызывает повреждение и даже гибель клетки — что получило название эксайтотоксичности. Механизмы клеточной смерти при этом включают:

  • повреждение митохондрий избыточно высоким внутриклеточным кальцием,
  • Glu/Ca2+-опосредованной промоцией факторов транскрипции проапоптотических генов или снижением транскрипции анти-апоптотических генов.

Эксайтотоксичность, обусловленная повышенным высвобождением глутамата или его сниженным обратным захватом, возникает при ишемическом каскаде и ассоциирована с инсультом, а также наблюдается при таких заболеваниях, как боковой амиотрофический склероз, латиризм, аутизм, некоторые формы умственной отсталости, болезнь Альцгеймера[7].[8] В противоположность этому, снижение высвобождения глутамата наблюдается при классической фенилкетонурии, приводящей к нарушению экспрессии глутаматных рецепторов[9] Глутаминовая кислота участвует в реализации эпилептического припадка. Микроинъекция глутаминовой кислоты в нейроны вызывает спонтанную деполяризацию, и этот паттерн напоминает пароксизмальную деполяризацию во время судорог. Эти изменения в эпилептическом очаге приводят к открытию вольтаж-зависимых кальциевых каналов, что снова стимулирует выброс глутамата и дальнейшую деполяризацию.

Роли глутаматной системы в настоящее время отводится большое место в патогенезе таких психических расстройств, как шизофрения и депрессия. Одной из наиболее активно изучаемых теорий этиопатогенеза шизофрении в настоящее время является гипотеза NMDA-рецепторной гипофункции: при применении антагонистов NMDA-рецепторов, таких, как фенциклидин, у здоровых добровольцев в эксперименте появляются симптомы шизофрении. В связи с этим предполагается, что гипофункция NMDA-рецепторов является одной из причин нарушений в дофаминергической передаче у больных шизофренией. Были также получены данные о том, что поражение NMDA-рецепторов иммунно-воспалительным механизмом («антиNMDA-рецепторный энцефалит») имеет клинику острой шизофрении.[источник не указан 21 день]

Глутаматные рецепторы

Существуют ионотропные и метаботропные (mGLuR1–8) глутаматные рецепторы.

Ионотропными рецепторами являются NMDA-рецепторы, AMPA-рецепторы и каинатные рецепторы.

Эндогенные лиганды глутаматных рецепторов — глутаминовая кислота и аспарагиновая кислота. Для активации NMDA рецепторов также необходим глицин. Блокаторами NMDA-рецепторов являются PCP, кетамин, и другие вещества. AMPA-рецепторы также блокируются CNQX, NBQX. Каиновая кислота является активатором каинатных рецепторов.

«Круговорот» глутамата

При наличии глюкозы в митохондриях нервных окончаний происходит дезаминирование глутамина до глутамата при помощи фермента глутаминазы. Также при аэробном окислении глюкозы глутамат обратимо синтезируется из альфа-кетоглутарата (образуется в цикле Кребса) при помощи аминотрансферазы.

Синтезированный нейроном глутамат закачивается в везикулы. Этот процесс является протон-сопряжённым транспортом. В везикулу с помощью протон-зависимой АТФазы закачиваются ионы H+. При выходе протонов по градиенту в везикулу поступают молекулы глутамата при помощи везикулярного транспортера глутамата (VGLUTs).

Глутамат выводится в синаптическую щель, откуда поступает в астроциты, там трансаминируется до глутамина. Глутамин выводится снова в синаптическую щель и только тогда захватывается нейроном. По некоторым данным, глутамат напрямую путём обратного захвата не возвращается.[10]

Роль глутамата в кислотно-щелочном балансе

Дезаминирование глутамина до глутамата при помощи фермента глутаминазы приводит к образованию аммиака, который, в свою очередь, связывается со свободным протоном и экскретируется в просвет почечного канальца, приводя к снижению ацидоза. Превращение глутамата в α-кетоглутарат также происходит с образованием аммиака. Далее кетоглутарат распадается на воду и углекислый газ. Последние, при помощи карбоангидразы через угольную кислоту, превращаются в свободный протон и гидрокарбонат. Протон экскретируется в просвет почечного канальца за счёт котранспорта с ионом натрия, а бикарбонат попадает в плазму.

Глутаматергическая система

В ЦНС находится порядка 106 глутаматергических нейронов. Тела нейронов лежат в коре головного мозга, обонятельной луковице, гиппокампе, чёрной субстанции, мозжечке. В спинном мозге — в первичных афферентах дорзальных корешков.

В ГАМКергических нейронах глутамат является предшественником тормозного медиатора, гамма-аминомасляной кислоты, образующейся с помощью фермента глутаматдекарбоксилазы.

Патологии, связанные с глутаматом

Повышенное содержание глутамата в синапсах между нейронами может перевозбудить и даже убить эти клетки, что приводит к таким заболеваниям, как АЛС. Для избежания таких последствий глиальные клетки астроциты поглощают избыток глутамата. Он транспортируется в эти клетки с помощью транспортного белка GLT1, который присутствует в клеточной мембране астроцитов. Будучи поглощённым клетками астроглии, глутамат больше не приводит к повреждению нейронов.

Содержание глутамата в природе

Глутаминовая кислота относится к условно незаменимым аминокислотам. Глутамат в норме синтезируется организмом. Присутствие в пище свободного глутамата придаёт ей так называемый «мясной» вкус, для чего глутамат используют как усилитель вкуса.

Содержание натуральных глутаматов в пище:

Продукт Свободный глутамат[11][неавторитетный источник?]

(мг/100 г)

Молоко коровье 2
Сыр пармезан 1200
Яйца птицы 23
Мясо цыплёнка 44
Мясо утки 69
Говядина 33
Свинина 23
Треска 9
Макрель 36
Форель 20
Зеленый горошек 200
Кукуруза 130
Свекла 30
Морковь 33
Лук 18
Шпинат 39
Томаты 140
Зеленый перец 32

В промышленных масштабах глутаминовую кислоту получают путём микробиологического синтеза. В химически чистом виде она имеет вид белых или бесцветных кристаллов без запаха, имеющих кислый вкус, в воде кристаллы растворяются плохо. Для лучшей растворимости глутаминовую кислоту превращают в соль глутамат натрия.

Применение

Фармакологический препарат глутаминовой кислоты оказывает умеренное психостимулирующее, возбуждающее и отчасти ноотропное действие.[уточнить]

Глутаминовая кислота (пищевая добавка E620) и её соли (глутамат натрия Е621, глутамат калия Е622, диглутамат кальция Е623, глутамат аммония Е624, глутамат магния Е625) используются как усилитель вкуса во многих пищевых продуктах[12].

Глутаминовую кислоту и её соли добавляют в полуфабрикаты, различные продукты быстрого приготовления, кулинарные изделия, концентраты бульонов. Она придаёт пище приятный мясной вкус.

В медицине применение глутаминовой кислоты оказывает незначительное психостимулирующее, возбуждающее и ноотропное действие, что используют в лечении ряда заболеваний нервной системы. В середине 20 века врачи рекомендовали применение глутаминовой кислоты внутрь в случае мышечно-дистрофических заболеваний. Также её назначали спортсменам с целью увеличения мышечной массы.

Глутаминовая кислота используется в качестве хирального строительного блока в органическом синтезе[13], в частности, дегидратация глутаминовой кислоты приводит к её лактаму ― пироглутаминовой кислоте (5-оксопролину), которая является ключевым предшественником в синтезах неприродных аминокислот, гетероциклических соединений, биологически активных соединений и т. д.[14],[15],[16],[17].

Примечания

  1. ↑ L-Glutamic acid (англ.). Chemical book.
  2. ↑ Moloney M. G. Excitatory amino acids. // Natural Product Reports. 2002. P. 597―616.
  3. ↑ Meldrum, B. S. (2000). «Glutamate as a neurotransmitter in the brain: Review of physiology and pathology». The Journal of nutrition 130 (4S Suppl): 1007S-1015S.
  4. ↑ McEntee, W. J.; Crook, T. H. (1993). «Glutamate: Its role in learning, memory, and the aging brain». Psychopharmacology 111 (4): 391—401. DOI:10.1007/BF02253527 PMID 7870979
  5. ↑ Okubo, Y.; Sekiya, H.; Namiki, S.; Sakamoto, H.; Iinuma, S.; Yamasaki, M.; Watanabe, M.; Hirose, K.; Iino, M. (2010). «Imaging extrasynaptic glutamate dynamics in the brain». Proceedings of the National Academy of Sciences 107 (14): 6526. DOI:10.1073/pnas.0913154107.
  6. ↑ Shigeri, Y.; Seal, R. P.; Shimamoto, K. (2004). «Molecular pharmacology of glutamate transporters, EAATs and VGLUTs». Brain Research Reviews 45 (3): 250—265. DOI:10.1016/j.brainresrev.2004.04.004 PMID 15210307
  7. ↑ Robert Sapolsky (2005). «Biology and Human Behavior: The Neurological Origins of Individuality, 2nd edition». The Teaching Company. «see pages 19 and 20 of Guide Book»
  8. ↑ Hynd, M.; Scott, H. L.; Dodd, P. R. (2004). «Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer?s disease». Neurochemistry International 45 (5): 583—595. DOI:10.1016/j.neuint.2004.03.007 PMID 15234100
  9. ↑ Glushakov, AV; Glushakova, O; Varshney, M; Bajpai, LK; Sumners, C; Laipis, PJ; Embury, JE; Baker, SP; Otero, DH; Dennis, DM; Seubert, CN; Martynyuk, AE (2005 Feb). «Long-term changes in glutamatergic synaptic transmission in phenylketonuria». Brain : a journal of neurology 128 (Pt 2): 300-7. DOI:10.1093/brain/awh454 PMID 15634735
  10. Ашмарин И. П., Ещенко Н. Д., Каразеева Е. П. Нейрохимия в таблицах и схемах. — М.: «Экзамен», 2007
  11. ↑ If MSG is so bad for you, why doesn’t everyone in Asia have a headache? | Life and style | The Observer
  12. ↑ Садовникова М. С., Беликов В. М. Пути применения аминокислот в промышленности. //Успехи химии. 1978. Т. 47. Вып. 2. С. 357―383.
  13. ↑ Coppola G. M., Schuster H. F., Asymmetric synthesis. Construction of chiral moleculs using amino acids, A Wiley-Interscience Publication, New York, Chichester, Brisbane, Toronto, Singapore, 1987.
  14. ↑ Smith M. B. Pyroglutamte as a Chiral Template for the Synthesis of Alkaloids. Chapter 4 in Alkaloids: Chemical and Biological Perspectives. Vol. 12. Ed. by Pelletier S. W. Elsevier, 1998. P. 229―287.
  15. ↑ Nájera C., Yus M. Pyroglutamic acid: a versatile building block in asymmetric synthesis. //Tetrahedron: Asymmetry. 1999. V. 10. P. 2245―2303.
  16. ↑ Panday S. K., Prasad J., Dikshit D. K. Pyroglutamic acid: a unique chiral synthon. // Tetrahedron: Asymmetry. 2009. V. 20. P. 1581―1632.
  17. ↑ A. Stefanucci, E. Novellino, R. Costante, and A. Mollica. PYROGLUTAMIC ACID DERIVATIVES: BUILDING BLOCKS FOR DRUG DISCOVERY // HETEROCYCLES, 2014, V. 89, No. 8, pp. 1801―1825.

См. также

Ссылки

Глутамин | Химия онлайн

Глутамин (глютамин) — заменимая аминокислота, содержащая не один, а два атома азота, поэтому является источником для построения аминокислот в организме.

Глутамин является резервом аминогрупп и входит в состав белков.

Глутамин представляет собой нейтральный и безвредный промежуточный продукт белкового и углеводного обмена растений. Поступающий в растение нитратный азот (соли азотной кислоты) быстро, уже в корнях, восстанавливается в аммиак.

Этот аммиак в растении не накапливается, а превращается в аминокислоты и амиды, среди которых много аспарагина и глютамина. Аминная группа аспарагина и глутамина идет на образование новых аминокислот, которые в дальнейшем связываются в белки.

Глутамин — 5-амид-2-аминопентандиовая или δ-амид-α-аминоглутаровая кислота.

Глутамин (Гли, Gln, Q) — является амидом моноаминодикарбоновой глутаминовой кислоты, химическая формула

O=C (Nh3) -Ch3-Ch3-CH (Nh3) -COOH.

Глутамин Впервые выделен Е. Шульце в 1877 из сахарной свеклы.

Суточная потребность в глутамине составляет 16 грамм.

Потребность организма человека при стрессе в глутамине возрастает, не менее 18-22 гр в сутки.

Физические свойства

Глутамин представляет собой бесцветные кристаллы с температурой плавления 1840С (с разл.), плохо растворим в воде и этаноле, не растворим в эфире.

Биологическая роль

Глутамин – наиболее распространенная свободная аминокислота в организме человека, которая метаболизируется практически во всех тканях. Во внеклеточной жидкости, глутамин составляет около 25%, а в скелетных мышцах более 60 % от всех аминокислот.

Концентрация свободного глутамина сильно варьирует в различных органах и тканях. Плазма содержит очень небольшую часть свободного глутамина в организме. Мышцы представляют собой основной источник глутамина. Больше всего глутамина содержится в сердечной мышце.

При критических состояниях свободный глутамин истощается очень быстро, организм компенсирует уровень свободного глутамина за счет распада белков мышечной ткани и повышенного синтеза глутамина.

Глутамин служит не только для синтеза белка как одна из аминокислот, но и является важным компонентом различных метаболических процессов. Он является также «топливом» для мозга, в мозге глутамин превращается в глутаминовую кислоту, и наоборот. Он повышает мозговую деятельность и умственную активность.

Глютамин играет ключевую роль в регуляции синтеза глутатиона -трипептида, состоящего из глютаминовой кислоты, цистеина и глицина.

Глутамин служит межорганным транспортером азота в организме. Примерно 1/3 всего азота транспортируется в крови в виде глутамина.

Глутамин  транспортирует аммиак к месту его детоксикации, обычно к печени и почкам.

Глутамин участвуя в переносе аммиака, используется в синтезе пуриновых оснований и нуклеиновых кислот, в процессе переаминирования и ряде других обменных превращений.

Глутамин участвует в синтезе белков скелетной и гладкой мускулатуры, поэтому его добавки будут полезны лицам, соблюдающим гипокальциевую диету и культуристам, а также тем, кто вынужден соблюдать длительный постельный режим.

Глутамин полезен после хирургического вмешательства (когда израсходованы многие белки, а глутамин идет на их построение).

Глутамин участвует в регуляции метаболических процессов. Являясь важным источником углерода и азота для различных субстратов, глутамин используется непосредственно для синтеза белка, а также служит предшественником для синтеза других аминокислот. Аминогруппа, получаемая при гидролизе глутамина до глутамата используется для синтеза аланина, аспарагиновой кислоты, фосфосерина.

Парентеральное введение глутамина может изменить метаболический ответ организма на стресс.

Глутамин является источником энергии. Синтез глутамина требует доставки энергии и связан с сохранностью клеточной структуры.

Быстроделящиеся клетки, в том числе клетки слизистой оболочки кишечника, поджелудочной железы, легочных альвеол и клетки иммунной системы, используют глутамин для энергетических и пластических нужд.

Глутамин – главный источник энергии для клеток (энтероциты, колоноциты) желудочно-кишечного тракта.

Велика роль глутамата и глутамина в синтезе мочевины, так как оба ее азота могут быть поставлены этими соединениями.

Тонкий кишечник – главный орган, потребляющий глутамин. При стрессе, потребность тонким кишечником в  глутамине возрастает, что усиливает его дефицит.

Глутамин необходим для поддержания целостности кишечника, т.к. восстанавливает слизистые оболочки толстого кишечника, уменьшает воспаление желудка.

Функционирование иммунной системы также зависти от доступности глутамина. Стресс, вызывая дефицит глутамина, нарушает функцию иммунной системы. Потребление глутамина клетками иммунной системы увеличивается в 10 раз по сравнению с другими клетками.

Легкие, как и мышцы, являются источником глутамина, выделение которого может увеличиваться при стрессе.

Выброс глутамина из мышц и легких за счет распада собственных белков служит для поддержания нормальной структуры и функции слизистой оболочки кишечника.

При стрессе, когда в некоторых тканях повышено содержание свободных радикалов, повреждающих клетки, потребность в глутамине увеличивается.

Глутамин обладает сильным антиоксидантным действием за счет витаминов (С, Е, β-каротин) и селена, который блокирует образование эндогенных свободных радикалов.

Организм имеет большой резерв глутамина и может синтезировать его в достаточных количествах. При стрессе, критических состояниях, травмах, хирургическом вмешательстве, сепсисе и других критических состояниях развивается глубокий дефицит глутамина, т.к. потребление глутамина резко возрастает и синтез становится недостаточным.

После стресса организм должен очиститься от продуктов распада, и восстановить растраченные запасы. Длительность периода восстановления зависит от многих факторов: характера и интенсивности нагрузок, общей тренированности, режима питания и сна, состояния различных систем организма.

Однако в спорте часто практикуются нагрузки, не оставляющие времени на адекватное восстановление. Поэтому 80-90 % профессиональных спортсменов используют глютамин.

Природные источники

Говядина, курица, рыба, яйца, молоко, йогурт, рикотта, творог, молочные продукты, капуста, свёкла, бобы, шпинат, петрушка.

Области применения

Глутамин применяется при снижении умственной активности и истощении нервной системы. Дистрофических изменениях в мышцах, истощении (кахексия), как следствие тяжелых заболеваний или перенесенных травм. При бодибилдинге, заболеваниях соединительной ткани и аутоиммунных заболеваниях, в том числе полимиозитах, рассеянном склерозе и склеродермии.

Введение глютамина тяжелым больным ослабляет потерю мышечной массы,  улучшает функцию всасывания.

Глутамин применяется при слабости, импотенции, желудочно-кишечных заболеваниях, в том числе пептических язвах. Профилактике лучевой болезни и онкологических заболеваний, алкоголизме.

Также глутамин применяется при лечении артрита, фиброза, таких заболеваний соединительных тканей как полимиозит, склеродермия, а также тканевых повреждений, являющихся последствием лучевой терапии и рака.

.Глутаминовая кислота и глутамин применяются в качестве кормовых и пищевых добавок, приправ, сырья для фармацевтической и парфюмерной промышленности.

Применение глутамина для парентерального питания

Применение глутамина при парентеральном питании (лекарственные средства) улучшает эндокринную, иммунную, метаболическую и барьерную функции.

Глутамин защищает от стресс-язв желудка и язв, вызванных введением нестероидных противовоспалительных средств, от тяжелого энтероколита, вызванного химио- или лучевой терапией.

Парентеральное введение глутамина приводит к заметному улучшению состояния больных алкоголизмом.

Аланин-глутамин и глицин-глутамин – два синтетических дипептида, обладающих высокой стабильностью и растворимостью, позволили решить проблему доставки достаточного количества глутамина пациенту и сделало возможным включение этой аминокислоты в парентеральное питание.

Внутривенное введение аланин-глутамина улучшает азотистый баланс и белковый обмен, улучшает иммунную функцию, снижает частоту инфекционных осложнений, восстанавливает функцию кишки, защищает печень.

Эффективность введения дипептидов глутамина для парентерального и/или энтерального питания

Ожоги, травмы, операции, инфекции, сепсис, трансплантация костного мозга. Кишечная дисфункция, воспалительные заболевания кишечника, синдром короткой кишки, повреждение слизистых оболочек при критических состояниях, а также при лучевой и химиотерапии.

Дисфункция иммунной системы, СПИД, злокачественные новообразования.

Аминокислоты

Классификация аминокислот

Что такое Глютаминовая и Глутаминовая кислота: в чём разница

На сегодняшний день спортивные занятия становятся не просто данью моде, но и входят в привычный образ жизни большинства современных жителей. Не секрет, что для достижения оптимального результата в тренажерном зале необходимо принимать дополнительно специальные добавки, которые будут поддерживать организм, ведь изнуряющие занятия создают дополнительный стресс на организм. Люди, ведущий активный образ жизни, едят здоровое питание, пьют витамины, минералы, аминокислоты и сывороточный протеин, и это только основной минимум.Дополнительный прием аминокислот насыщают мышечные белки, благодаря чему в самих тканях дополнительно задерживается азот, что способствует лучшему росту спортивных показателей, и улучшает внешний вид. Одной из самых популярных спортивных аминокислот является глютаминовая, но также в продаже встречается глутаминовая кислота – какая между ними принципиальная разница? Ведь много людей часто путает эти два понятия, а они имеют некоторые существенные отличия. Стоит разобраться, чтобы понять – какую из этих аминокислот лучше принимать?

Глютамин – описание, фармакологические свойства

Глютамин – аминокислотное соединение, отнесенное к классу условно незаменимых, которое входит в состав протеинов и обеспечивает оптимальное развитие мышечных тканей, а также поддерживает нормальную функциональность иммунитета. Вещество относится к классу условно незаменимых по той причине, что его достаточно в повседневной пище, оно хорошо накапливается в мышечной ткани, ведь по большей части именно мышечные белки и состоят на 60% из глютамина. К животным источникам в пище можно отнести все виды мяса, рыбы, сыры и молоко, а в составе растительных продуктов — это бобовые, орехи, свекла и капуста.

Основные эффекты аминокислоты в спортивных дисциплинах:

  • Активное участие в построении новых мышечных тканей, но при этом конкретных доказательств в помощи телостроения не найдено
  • Обладает энергетическими свойствами, как и глюкоза
  • Участвует в подавлении катаболического гормона кортизола
  • Повышает защитные силы организма
  • Улучшает восстанавливаемость после ранее перенесенных физических нагрузок.

В целом, это неплохое дополнение к повседневному рациону тренирующегося человека, но не более. Не стоит возлагать больших надежд на подобные вещества, ведь они только улучшают качество пищи, а напрямую на анаболические процессы не влияют.

Как правильно принимать медикамент: по 4-8 грамм в сутки, разделенных на 2-3 приема. Сутра перед завтраком, затем днем перед тренировкой и вечером перед сном. В нетренировочные дни можно разделить просто равномерно прием добавки на три раза. Предпочтительнее всего пить спортивную добавку на пустой желудок, за полчаса до приема пищи. Стоит также отметить, что в рекомендуемых дозировках добавка безвредная и хорошо сочетается с любыми другими добавками – витамины, минералы, протеин или аминокислоты ВСАА, креатин. Их можно смело смешивать с глютамином в одном напитке.

Глутаминовая кислота – описание, фармакологические свойства

Глутаминовая кислота – алифатическая дикарбоновая аминокислота, которая состоит во многих белковых структурах, принимает важную роль в азотистом обмене и балансе организма. Вещество содержится преимущественно в протеиновых структурах и относится к соединениям с нейромедиаторными эффектами. Глутаминовую кислоту можно относить к аминокислотам возбуждающего типа действия. Глутамат, после связывания с рецепторами нейронов, вызывает стимулирующие эффекты. Примерное количество глутамина — 25% во всех тканях организма. Аминокислота относится к заменимым, но при этом играет важнейшую роль в запуске многих функциональных процессов. Глутамин и глутаминовая кислота отличаются тем, что первый компонент – это соль аминокислоты и самый активный возбуждающий нейротрансмиттер, который находится в нервной системе живого человека.

Препарат активно применяется в современной медицине для лечения болезней, таких как психозы, шизофрении, эпилептические припадки, депрессии, прогрессирующая мышечная слабость, длительный период после хирургических вмешательств. Так как медикамент действует стимулирующе в головном мозге, то он помогает бороться с признаками астении, вялости, которые возникают на фоне различных психических отклонений. Глутаминовая кислота относится к группе ноотропов, убирает токсическое влияние аммиака на организм, повышает устойчивость к кислородному голоданию, нормализует обменные процессы, улучшает функциональность эндокринной и нервной системы. Участвует в производстве АТФ, ацетилхолина, других аминокислотных соединений, нормализует тканевый гликолиз.

Чем отличается глютамин от глутаминовой кислоты

Принципиальные отличия между глютамином и глутаминовой кислотой все же существуют. Во-первых, глутаминовая кислота в организме синтезируется из многих других аминокислот, если ее не хватает в организме и она нужна для запуска своих функциональных особенностей. Это вещество не принято употреблять среди спортсменов, так как ее основная функция – усиление активности центральной системы. Такая особенность среди спортивных занятий будет интересна разве что выступающему спортсмену, который показывает свои лучшие физические качества, будь-то сила или выносливость, но никак не мышечный объем.

Глютамин – производное глутаминовой кислоты, которое больше принимает участие в улучшении белкового обмена и повышении азотистого баланса. Средство используется преимущественно среди культуристов и любителей спортзала, целенаправленно наращивающих мышечные объемы. Также еще одно важное отличие, глутаминовая кислота – это полноценный лекарственный ноотропный препарат, а глютамин – биологически активная добавка для спортсменов, которая не имеет весомой доказательной базы.

 

Глутамин и глутаминовая кислота - в чем разница?

24.09.2014

 

Рассмотрим разницу между таким веществом как глутамин и глутаминовая кислота
 Если рассматривать и сравнивать такие аминокислоты как глутамин и глутаминовую кислоту, любой опытный химик или биолог сразу скажет о тесной химической взаимосвязи между данными элементами. Аминокислота под названием глютамин обычно имеет наибольшую степень концентрации непосредственно в плазме крови, в мышцах и жидкостях, а также в спинном и головном мозге.

 Форма выпуска Глютамина и ГК

 Отличия глютамина от глютаминовой кислоты
 В медицине давно известен тот факт, что именно аминокислота под названием глутамин способствует подтягиванию кожи, кроме того, глютамин способен контролировать кислотно-щелочной баланс в организме человека. В медицине принято считать, что именно благодаря поступлению в организм необходимых полезных микроэлементов, осуществляется процесс формирования новых клеток кожи. Кроме того, вещество глутамин значительно замедляет процесс старения кожи.

 Из всего выше сказанного можно подытожить и сделать вывод, что при сбалансированном и нормальном питании человеческий организм наполняется здоровьем и энергией, то касается и кожи человека, на которую также влияет правильно подобранная диета. Доктора утверждают, что при неправильном питании организм человека не способен нормально функционировать. Не сбалансированное питание чаще всего приводит к тому, что в организме человека накапливается кислота. Кислотно-щелочной баланс в организме значительно меняет свое количество и как правило это может привести к разрушению клеток и тканей в человеческом организме.

 Органы мишени Глютамина и ГК

 Доктора склонны утверждать, что в тех случаях, когда у человека в организме не достаточное количество глутамина для нормального функционирования, в таком случае человеческий организм пытается извлечь глутамин, например, из белков мышечной массы. Благодаря своему строению, организм человека может довольно легко превратить белок мышечной массы в необходимый для него глутамин и энергию. При вышеописанном случае человек теряет мышечную массу, и его кожа становится дряблой и обвисшей. Кроме того, аминокислота под названием глутамин может исчезать из организма человека в случае сильного нервного потрясения или перевозбуждения, а также при различного рода травмах.

 Медики, а также спортивные тренера в один голос утверждают, что именно модифицированный глутамин способен останавливать катаболизм мышц, что в свою очередь позитивно влияет на качество тренировок в спортивном зале. Один из главных плюсов аминокислоты под названием глутамин — это способность данного вещества замедлять процесс образования жировых клеток непосредственно в самих тканях печени, кроме того, глутамин берет участие в нейтрализации продуктов, которые относятся к метаболизму жиров из организма человека.

 Азот и Глютамин

 Отличие глутаминовой кислоты от глутамина
 И так, в обозначении глутаминовой кислоты четко сказано, что данная аминокислота имеет причастие к классу заменимых аминокислот, которые могут образовываться из различных других аминокислот. Кроме того, глутаминовая кислота также классифицируется, как нейромедиаторная и возбуждающая аминокислота.

В том случае, когда соединяются воедино анион глутамина и нейроновые рецепторы, значительно повышаются возбуждающие процессы в нейронах, что в свою очередь значительно усиливает нервные импульсы в организме. Необходимо всегда помнить о том, что именно глутаминовая кислота иногда может стать причиной расстройства желудка.

 В том случае, когда рассматривать глутамин и глутаминовую кислоту со спортивной стороны можно с уверенностью сказать, что это совершенно два разных вещества. Для того, чтобы немного разогреть ЦНС доктора советуют употреблять именно глутаминовую кислоту. Благодаря тому, что глутаминовая кислота является эффективным стимулятором нервной системы, ее используют для возбуждения, а также для выплеска энергии. В том случае, когда необходимо прибавить рост мышц, восстановить организм, а также улучшить общее состояние иммунитета — доктора советуют употреблять именно модифицированный глутамин. Кроме того, доктора советуют использовать глутамин для сброса лишних килограмм, а также во время диеты.

 Рекомендован прием

 Медики склонны утверждать, что из-за повышения физических нагрузок, а также с психическими изменениями потребность в количестве глутамина значительно возрастает. Кроме того на повешения уровня глутамина влияет различные нагрузки, которым подвергается человеческий организм.

 Печальным фактом является то, что с возрастом человеческий организм все меньше способен вырабатывать аминокислоту под названием глутамин самостоятельно, именно из-за этого доктора советуют искусственное вливание глутамина в организм. Очень важно правильно соблюдать способ приема и количество глутамина для наиболее эффективного результата.

 Таблица сравнение Глютамина и ГК

 Вывод: это совсем разные вещества, в глютамине есть азот, что как известно увеличивает азотистый баланс, а значит ускоряет синтез мышечного белка. От Глютаминовой кислоты такого эффекта НЕТ!
 По приему в Мире Спорта - если есть по 1-2 грамма ГК то эффекта не будет, нужно ее употреблять (как рекомендуют многие спортсмены) по 15 грамм так как и глютамина. Глютаминовая кислота идет больше как "топливо" ЦНС.
 Глютаминовая кислота это предшественник глютамина, для синтеза глютамина с кислоты нужна энергия, это в первую очередь энергетические затраты, так как для мышце главное глюатамин (кислота+азот), для ЦНС - лучше глютаминовая кислота, так как это трофика мозга.

 Дозировка

 Стоимость или экономичность: итак, Глютаминовая кислота 10 таб по 0,25 грамма 2,5 грамма или 5,5 грн пластинка, цена за грамм -2,2 грн!!!!!!!!!! Цена Островита Глютамин 0,75 грн/грамм. Где тут выгода?!
 Логически подумать, что если глютамина нужно в сутки на 110 кг около 20 грамм, то и Глютаминовой кислоты аналогично. Никак не 1-2 грамма как пишут на упаковке производители, на упаковке это терапевтическая доза, а тут спортивная!
 Но если даже принимать глютамин порошок по 2 грамма, его хватит (Островит Глютамин 500 грамм) на 250 дней, то ГК нужно будет купить на такое же количество дней 100 пластинок!!!

 Так что нет смысла покупать аптечный вариант в 3 раза дороже! Во вторых отечественного производства!

Гамма-аминомасляная кислота — Википедия

Гамма-​аминомасляная кислота

({{{картинка}}})
({{{картинка3D}}})
Систематическое
наименование
4-​аминобутановая кислота
Хим. формула C4H9O2N
Состояние твёрдое
Молярная масса 103,120 г/моль
Плотность 1,11 г/см³
Температура
 • плавления 203 °C
 • кипения 247,9 °C
Константа диссоциации кислоты pKa{\displaystyle pK_{a}} 4,05
Растворимость
 • в воде 130 г/100 мл
Рег. номер CAS 56-12-2
PubChem 119
Рег. номер EINECS 200-258-6
SMILES
InChI
RTECS ES6300000
ChEBI 16865
ChemSpider 116
ЛД50 12 680 мг/кг (мыши, перорально)
Токсичность слаботоксичное вещество, ирритант
Пиктограммы ECB
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.
 Медиафайлы на Викискладе
Метаболизм ГАМК, вовлечение глиальных клеток Производство, высвобождение, действие и деградация ГАМК при стереотипном ГАМКергическом синапсе

γ-Аминомасляная кислота (сокр. ГАМК, GABA) — органическое соединение, непротеиногенная аминокислота, важнейший тормозной нейромедиатор центральной нервной системы (ЦНС) человека и других млекопитающих. Аминомасляная кислота является биогенным веществом. Содержится в ЦНС и принимает участие в нейромедиаторных и метаболических процессах в мозге.

Гамма-аминомасляная кислота в организме образуется из другой аминокислоты — глутаминовой с помощью фермента глутаматдекарбоксилазы.

В нервной системе[править | править код]

γ-Аминомасляная кислота выполняет в организме функцию ингибирующего медиатора центральной нервной системы. При выбросе ГАМК в синаптическую щель происходит активация ионных каналов ГАМКA- и ГАМКC-рецепторов, приводящая к ингибированию нервного импульса. Лиганды рецепторов ГАМК рассматриваются как потенциальные средства для лечения различных расстройств психики и центральной нервной системы, к которым относятся болезни Паркинсона и Альцгеймера, расстройства сна (бессонница, нарколепсия), эпилепсия.

Установлено, что ГАМК является основным нейромедиатором, участвующим в процессах центрального торможения.

Вместе с тем, ГАМК не связана исключительно с синаптическим торможением в ЦНС. На ранних этапах развития мозга ГАМК опосредует преимущественно синаптическое возбуждение[2]. В незрелых нейронах ГАМК проявляет возбуждающие и деполяризующие свойства в синергичном взаимодействии с глутаматом. Возбуждающее поведение ГАМК обусловлено высокой внутриклеточной концентрацией ионов хлора, накапливаемого при помощи транспортного белка NKCC, таким образом, открытие ГАМК-рецепторов приводит к потере этих анионов и возникновению ВПСП на мембране нейрона. Во взрослом мозге возбуждающая функция ГАМК сохраняется лишь частично, уступая место синаптическому торможению[3].

Под влиянием ГАМК активируются также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение.

Действие ГАМК в ЦНС осуществляется путём её взаимодействия со специфическими ГАМКергическими рецепторами, которые в последнее время подразделяют на ГАМКA- и ГАМКB-рецепторы и др. В механизме действия целого ряда центральных нейротропных веществ (снотворных, противосудорожных, судорожных и др.) существенную роль играет их агонистическое или антагонистическое взаимодействие с ГАМК-рецепторами. Бензодиазепины потенцируют действие ГАМК.

Наличие ГАМК в ЦНС было обнаружено в середине 1950-х годов, в 1963 году осуществлён её синтез (Krnjević K., Phillis J. W.[4][5]). В конце 1960-х годов под названием «Гаммалон» ГАМК была предложена для применения в качестве лекарственного средства за рубежом, затем — под названием «Аминалон» — в России.

По экспериментальным данным, ГАМК при введении в организм плохо проникает через гематоэнцефалический барьер, однако есть свидетельства того, что ГАМК транспортируется в мозг с помощью специфических мембранных транспортеров GAT2 и BGT-1[6].

За пределами нервной системы[править | править код]

В 2007 году была впервые описана ГАМКергическая система в эпителии дыхательных путей. Система активируется под воздействием аллергенов и может играть роль в механизмах астмы[7].

Другая ГАМКергическая система описана в яичках, она может влиять на работу клеток Лейдига[8].

Исследователи больницы St. Michael, Торонто, Канада, установили в июле 2011 года, что ГАМК играет роль в предотвращении и, возможно, обратном развитии сахарного диабета у мышей[9].

ГАМК обнаружена в бета-клетках поджелудочной железы в концентрациях, сопоставимых с таковыми в ЦНС. Секреция ГАМК в бета-клетках происходит совместно с секрецией инсулина. ГАМК опосредованно ингибирует секрецию глюкагона, связанную с повышением концентрации глюкозы в крови.[10]

ГАМК в виде пищевых добавок применяется при умственной отсталости, после инсульта и травм мозга, для лечения энцефалопатии и ДЦП.[11] Нет достаточных доказательств эффективности таких препаратов.[12]

  1. Popp A., Urbach A., Witte O.W., Frahm C. Adult and embryonic GAD transcripts are spatiotemporally regulated during postnatal development in the rat brain (англ.) // PLoS ONE (англ.)русск. : journal / Reh, Thomas A.. — 2009. — Vol. 4, no. 2. — P. e4371. — doi:10.1371/journal.pone.0004371. — Bibcode: 2009PLoSO...4.4371P. — PMID 19190758.
  2. Yehezkel Ben-Ari. Excitatory actions of gaba during development: the nature of the nurture // Nature Reviews. Neuroscience. — 2002-9. — Т. 3, вып. 9. — С. 728—739. — ISSN 1471-003X. — doi:10.1038/nrn920.
  3. ↑ Frontiers | Excitatory actions of GABA during development (неопр.). www.frontiersin.org. Дата обращения 13 декабря 2018.
  4. Krnjević K., Phillis J. W. Iontophoretic studies of neurones in the mammalian cerebral cortex // The Journal of Physiology. — 1963. — Vol. 165(2). — P. 274—304. — PMID 14035891.
  5. Krnjević Krešimir. From ‘soup physiology’ to normal brain science // The Journal of Physiology. — 2005. — Vol. 569. — P. 1—2. — doi:10.1113/jphysiol.2005.096883. [исправить]
  6. Diegel J. G., Pintar M. M. A possible improvement in the resolution of proton spin relaxation for the study of cancer at low frequency (англ.) // J. Natl. Cancer Inst. — 1975. — Vol. 55, no. 3. — P. 725—726. — PMID 1159850.
  7. Xiang Y. Y. et al. A GABAergic system in airway epithelium is essential for mucus overproduction in asthma (англ.) // Nat. Med. — 09 июля 2007. — Vol. 13, no. 7. — P. 862—867. — doi:10.1038/nm1604. — PMID 17589520.
  8. Mayerhofer A. Neuronal Signaling Molecules and Leydig Cells // The Leydig cell in health and disease (англ.) / Eds.: Payne A. H., Hardy M. P. — Humana Press, 2007. — P. 299. — (Contemporary Endocrinology). — ISBN 1-58829-754-3, 978-1-58829-754-9. — doi:10.1007/978-1-59745-453-7.
  9. Soltani N. et al. GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes (англ.) // Proceedings of the National Academy of Sciences. — 2011. — Vol. 108. — P. 11692—11697. — doi:10.1073/pnas.1102715108. [исправить]
  10. P. Rorsman, P. O. Berggren, K. Bokvist, H. Ericson, H. Möhler. Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels (англ.) // Nature. — 1989-09-21. — Vol. 341, iss. 6239. — P. 233—236. — ISSN 0028-0836. — doi:10.1038/341233a0.
  11. ↑ Машковский М.Д. "Лекарственные средства" (16-е изд.),Новая волна, 2012, ISBN: 978-5-7864-0218-7, стр. 117
  12. ↑ Gaba (Gamma-Aminobutyric Acid) Effectiveness, Safety, and Drug Interactions on RxList (англ.) (недоступная ссылка). RxList. Дата обращения 14 января 2019. Архивировано 15 января 2019 года.


Смотрите также