Кислородный датчик что это такое


Что же такое кислородный датчик и зачем он нужен? — АВТОЛАБОРАТОРИЯ на DRIVE2

Кислородный датчик 🚗 🚘

— Кислородный датчик (другое наименование лямбда-зонд, датчик концентрации кислорода) служит для определения количества кислорода в отработавших газах.

— Для обеспечения эффективной (экономичной и экологичной) работы двигателя внутреннего сгорания соотношение воздуха и топлива в топливно-воздушной смеси должно быть постоянным на всех режимах работы. Это достигается использованием кислородного датчика в выпускной системе. Сам процесс управления содержанием кислорода в выхлопных газах называется лямбда-регулирование.

— Так, при недостатке воздуха в топливно-воздушной смеси, углеводороды и угарный газ полностью не окисляются. С другой стороны, при избытке воздуха оксиды азота полностью не разлагаются на азот и кислород.

— Лямбда-зонд устанавливается в выпускной системе. На отдельных моделях автомобилей применяется два кислородных датчика: один устанавливается до каталитического нейтрализатора, другой – после. Применение двух кислородных датчиков усиливает контроль за составом отработавших газов и обеспечивает эффективную работу нейтрализатора.

☑ В зависимости от конструкции различают два вида кислородных датчиков:

1: двухточечный датчик;
2: широкополосный датчик.

— Двухточечный датчик устанавливается как перед нейтрализатором, так и за ним. Датчик фиксирует коэффициент избытка воздуха в топливно-воздушной смеси (λ) по величине концентрации кислорода в отработавших газах.

— Двухточечный датчик представляет собой керамический элемент, имеющий двухсторннее покрытие из диоксида циркония. Измерение осуществляется электрохимическим способом. Электрод одной стороной контактирует с выхлопными газами, друго — с атмосферой.

— Принцип действия двухточечного кислородного датчика основан на измерении содержания кислорода в отработавших газах и атмосфере. При разной концентрации кислорода в отработавших газах и атмосфере на концах электрода создается напряжение. Чем выше содержание кислорода (обедненная топливно-воздушная смесь), тем ниже напряжение, чем ниже содержание кислорода (обогащенная топливно-воздушная смесь), тем выше напряжение.

— Электрический сигнал от кислородного датчика поступает в электронный блок управления системы управления двигателем. В зависимости от величины сигнала блок управления воздействуют на исполнительные органы подконтрольных ему систем автомобиля.

— Широкополосный датчик представляет собой современную конструкцию лямбда-зонда. Он применяется в качестве входного датчика каталитического нейтрализатора. В широкополосном датчике значение "лямбда" определяется с использованием силы тока закачивания.

— В отличие от двухточечного датчика широкополосный датчик состоит из двух керамических элементов — двухточечного и закачивающего. Под закачиванием понимается физический процесс, при котором кислород из отработавших газов проходит через закачивающий элемент под воздействием определенной силы тока.

— Принцип работы широкополосного датчика основан на поддержании постоянного напряжения (450 мВ) между электродами двухточечного элемента за счет изменения силы тока закачивания.

— Снижение концентрации кислорода в отработавших газах (обогащенная топливно-воздушная смесь) сопровождается ростом напряжения между электродами двухточечного керамического элемента. Сигнал от элемента подается в электронный блок управления, на основании которого создается ток, определенной силы, на закачивающем элементе.

— Ток, в свою очередь, обеспечивает закачку в измерительный зазор и напряжение достигает нормативного значения. Величина силы тока при этом является мерой концентрации кислорода в отработавших газах. Она анализируется электронным блоком управления и преобразуется в управляющие воздействия на исполнительные устройства системы впрыска.

— При обеднении топливно-воздушной смеси работа широкополосного датчика осуществляется аналогичным образом. Отличие состоит в том, что под действием тока происходит выкачивание кислорода из измерительного зазора наружу.

— Эффективная работа кислородного датчика осуществляется при температуре 300°С. Для скорейшего достижения рабочей температуры лямбда-зонд оборудуется нагревателем.

Неисправность датчика кислорода. Признаки и причины

Неисправность датчика кислорода приводит к повышенному расходу топлива, снижению динамических характеристик автомобиля, нестабильной работе мотора на холостых оборотах, увеличение токсичности выхлопных газов. Обычно причинами неисправности датчика концентрации кислорода является его механическое повреждение, разрыв электрической (сигнальной) цепи, загрязнение чувствительной части датчика продуктами сгорания топлива. В некоторых случаях, например, при возникновении ошибки p0130 или p0141 на приборной панели активируется сигнальная лампа Check Engine. Использовать автомобиль при неисправном датчике кислорода можно, однако это приведет к указанным выше проблемам.

Содержание:

Неисправность датчика кислорода

Назначение датчика кислорода

Датчик кислорода устанавливается в выпускном коллекторе (у различных машин конкретное место и ко-во может отличаться), и выполняет мониторинг наличия кислорода в выхлопных газах. В автопромышленности греческая буква «лямбда» обозначает коэффициент избытка кислорода в топливовоздушной смеси. Именно по этой причине зачастую датчик кислорода называют «лямбда-зонд».

Предоставленная датчиком информация о количестве кислорода в составе выхлопных газов электронным блоком управления двигателем (ЭБУ) используется для корректировка впрыска топлива. Если кислорода в выхлопных газах много, значит, топливовоздушная смесь, подаваемая в цилиндры, бедная (напряжение на датчике 0,1…0,3 Вольта), а если кислорода много — значит, богатая (напряжение на датчике 0,6…0,9 Вольта). Соответственно, происходит коррекция количества подаваемого топлива при необходимости. Что сказывается не только на динамических характеристиках двигателя, но и работы каталитического нейтрализатора выхлопных газов.

В большинстве случаев диапазон эффективной работы катализатора составляет 14,6…14,8 долей воздуха на одну долю топлива. Это соответствует значению лямбда, равной единице. Таким образом, датчик кислорода является своеобразным контролером, расположенным в выпускном коллекторе.

На некоторых автомобилях конструктивно предусмотрено использование двух датчиков концентрации кислорода. Один расположен до катализатора, а второй — после. Задача первого состоит в коррекции состава топливовоздушной смеси, а второго — проверка эффективности работы катализатора. Сами же датчики по конструкции, как правило, идентичны.

Влияет ли лямбда зонд на запуск — что будет?

Если отключить лямбда зонд то будет возрастание расхода топлива, повышение токсичности газов, а иногда и нестабильная работа двигателя на холостых оборотах. Однако такой эффект происходит лишь после прогрева так как кислородный датчик начинает работать в условиях повышенной до +300°С температуры. Для этого его конструкция подразумевает использование специального подогрева, которая включается при запуске двигателя. Соответственно, непосредственно в момент запуска мотора лямбда зонд не работает, и никоим образом не влияет на сам запуск.

Лампочка “чек” при неисправности лямбда зонда горит когда в памяти ЭБУ сформированы конкретные ошибки связанные с повреждением проводки датчика либо самого датчика, однако код фиксируется лишь при определенных условиях работы двигателя.

Признаки неисправности датчика кислорода

Выход из строя лямбда зонда, как правило, сопровождается следующими внешними симптомами:

  • Ухудшение тяги и снижение динамических характеристик автомобиля.
  • Нестабильный холостой ход. Значение оборотов при этом могут скакать и понижаться ниже оптимальных. В самом критическом случае машина вообще не будет держать холостые обороты и без подгазовывания водителем она попросту заглохнет.
  • Увеличение расхода топлива. Обычно перерасход незначительный, однако можно определить при программном замере.
  • Увеличение токсичности выхлопа. Выхлопные газы при этом становятся непрозрачными, а имеющими сероватый либо синеватый оттенок и более резкий, топливный, запах.

Стоит оговориться, что перечисленные выше признаки могут указывать и на другие поломки двигателя или прочих систем автомобиля. Поэтому, чтобы определить неисправности датчика кислорода, нужны несколько проверок используя в первую очередь диагностический сканер и мультиметр для проверки сигналов лямбды (управляющего и цепи подогрева).

Как правило, проблемы с проводкой датчика кислорода четко фиксируется электронным блоком управления. При этом в его памяти формируются ошибки, например, p0136, p0130, p0135, p0141 и прочие. В любом случае необходимо выполнить проверку цепи датчика (проверить наличие напряжения и целостность отдельных проводов), а также посмотреть на график работы (используя осциллограф либо программу диагностик).

Причины неисправности датчика кислорода

В большинстве случаев кислородная лямбда работает около 100 тыс. км без сбоев однако есть причины которые значительно сокращают его ресурс и приводят к неисправности.

  • Неисправность цепи датчика кислорода. Выражаться по-разному. Это может быть полный обрыв питающих и/или сигнальных проводов. Возможно повреждение цепи подогрева. В этом случае лямбда зонд не будет работать до тех пор, пока выхлопные газы не разогревают его до рабочей температуры. Возможно повреждение изоляции на проводах. В этом случае имеет место короткое замыкание.
  • Замыкание датчика. В этом случае он полностью выходит из строя и, соответственно, не подает никаких сигналов. Большинство лямбда зондов ремонту не подлежат и их надо менять на новые.
  • Загрязнение датчика продуктами сгорания топлива. В процессе эксплуатации датчик кислорода по естественным причинам постепенно загрязняется и со временем может перестать передавать корректную информацию. По этой причине автопроизводители рекомендуют периодически менять датчик на новый, отдавая при этом предпочтение оригиналу так как универсальная лямбда не всегда корректно показывает информацию.
  • Термические перегрузки. Обычно это происходит по причине проблем с зажиганием, в частности, перебоев с ним. В таких условиях датчик работает при критических для него температурах, что снижает его общий ресурс и постепенно выводит из строя.
  • Механические повреждения датчика. Они могут возникнуть при неаккуратных ремонтных работах, при езде по бездорожью, ударах при ДТП.
  • Использование при установке датчика герметиков, которые вулканизируются при высокой температуре.
  • Многократные неудачные попытки запуска двигателя. При этом в двигателе, и в частности, в выпускном коллекторе накапливается несгоревшее топливо.
  • Попадание на чувствительный (керамический) наконечник датчика различных технологических жидкостей или мелких посторонних предметов.
  • Негерметичность в выпускной системе выхлопных газов. Например, может прогореть прокладка между коллектором и катализатором.

Обратите внимание, что состояние датчика кислорода во многом зависит от состояния других элементов двигателя. Так, значительно снижают ресурс лямбда зонда следующие факторы: неудовлетворительное состояние маслосъемных колец, попадание антифриза в масло (цилиндры), обогащенная топливовоздушная смесь. И если при исправном датчике кислорода количество углекислого газа составляет порядка 0,1…0,3%, то при выходе лямбда зонда из строя соответствующее значение увеличивается до 3…7%.

Как определить неисправность датчика кислорода

Существует ряд методов для проверки состояния лямбда датчика и его питающих/сигнальных цепей.

Специалисты компании BOSCH советуют проверять соответствующий датчик каждые 30 тысяч километров пробега, либо при выявлении описанных выше неисправностей.

Что нужно сделать в первую очередь при диагностике?

  1. Необходимо оценить количество сажи на трубке зонда. Если ее слишком много — датчик будет работать некорректно.
  2. Определить цвет отложений. Если на чувствительном элементе датчика имеются белые или серые отложения — это означает, что используются присадки к топливу или к маслу. Они негативно сказываются на работе лямбда зонда. Если на трубке зонда имеются блестящие отложения — это говорит о том, что в используемом топливе очень много свинца, и от использования такого бензина лучше отказаться, соответственно, сменить марку бензозаправки.
  3. Можно попытаться очистить сажу, однако это не всегда возможно.
  4. Проверить мультиметром целостность проводки. В зависимости от модели конкретного датчика он может иметь от двух до пяти проводов. Один из них будет сигнальным, а остальные — питающими, в том числе, для питания элементов подогрева. Для выполнения процедуры проверки вам понадобится цифровой мультиметр, способный измерять постоянное электрическое напряжение и сопротивление.
  5. Имеет смысл проверить сопротивление нагревателя датчика. В разных моделях лямбда зонда оно будет находиться в пределах от 2 до 14 Ом. Значение питающего напряжения должно быть около 10,5…12 Вольт. В процессе проверки также нужно обязательно проверить целостность всех проводов, подходящих к датчику, а также значение сопротивления их изоляции (как попарно между собой, так и каждого на «массу»).

Как проверить лямбда-зонд видео

Обратите внимание, что нормальная работа датчика кислорода возможна лишь при его нормальной рабочей температуре, равной +300°С…+400°С. Это обусловлено тем, что лишь в таких условиях циркониевый электролит, нанесенный на чувствительный элемент датчика, становится проводником электрического тока. Также при такой температуре разница атмосферного кислорода и кислорода в выхлопной трубе приведет к тому, что на электродах датчика появится электрический ток, который и будет передаваться на электронный блок управления двигателем.

Так как проверка кислородного датчика во многих случаях подразумевает снятие/установку то стоит учесть такие нюансы:

  • Лямбда — устройства очень хрупкие, поэтому при проверке нельзя подвергать их механическим нагрузкам и/или ударам.
  • Резьбу датчика необходимо обработать специальной термопастой. При этом нужно следить, чтобы паста не попала на его чувствительный элемент, поскольку это приведет к его некорректной работе.
  • При закручивании необходимо соблюдать значение крутящего момента, и пользоваться для этих целей динамометрическим ключом.

Точная проверка лямбда зонда

Точнее всего определить неисправность датчика концентрации кислорода позволит осциллограф. Причем использовать профессиональный аппарат необязательно можно снять осциллограмму используя программу-симулятор на ноутбуке либо другом гаджете.

График правильной работы датчика кислорода

На первом рисунке в данном разделе представлен график правильной работы датчика кислорода. В этом случае на сигнальный провод поступает сигнал, похожий на ровную синусоиду. Синусоида в данном случае означает, что контролируемый датчиком параметр (количество кислорода в выхлопных газах) находится в предельно допустимых границах, и просто происходит его постоянная и периодическая проверка.

График работы сильно загрязненного датчика кислорода

График работы датчика кислорода на обедненной топливной смеси

График работы датчика кислорода на обогащенной топливной смеси

График работы датчика кислорода на бедной топливной смеси

Далее представлены графики, соответствующие сильно загрязненному датчику, использованию двигателем автомобиля обедненной топливной смеси, богатой смеси, а также бедной смеси. Ровные линии на графиках означают, что контролируемый параметр вышел за допустимые пределы в ту или другую сторону.

Как устранить неисправность датчика кислорода

Если впоследствии проверки показало что причина в проводке, то проблема решится заменой жгута проводов либо фишки подключения, а вот при отсутствии сигнала от самого датчика зачастую говорит о необходимости замены датчика концентрации кислорода на новый, но прежде чем покупать новую лямбду можно воспользоваться одним из представленных ниже способов.

Метод первый

Предполагает очистку элемента подогре от нагара (применяется когда возникает неисправность нагревателя датчика кислорода). Для реализации этого метода необходимо обеспечить доступ к чувствительной керамической части устройства, которая скрыта за защитным колпачком. Снять указанный колпачок можно с помощью тонкого напильника, с помощью которого нужно сделать надрезы в области основания датчика. Если демонтировать колпачок полностью не получится, то допускается сделать маленькие окошки размером около 5 мм. Для дальнейшей работы необходимо около 100 мл ортофосфорной кислоты либо преобразователя ржавчины.

Когда защитный колпачок был демонтирован полностью, то для его восстановления на его посадочном месте придется воспользоваться аргоновой сваркой.

Процедура по восстановлению выполняется по следующему алгоритму:

  • Налить 100 мл ортофосфорной кислоты в стеклянную емкость.
  • Опустить керамический элемент датчика в кислоту. Полностью опускать датчик в кислоту нельзя! После этого подождать около 20 минут с тем, чтобы кислота растворила сажу.
  • Извлечь датчик и промыть его проточной водой из крана, а затем дать ему высохнуть.

Порой на выполнение чистки датчика таким методом нужно потратить до восьми часов времени, ведь если с первого раза очистить сажу не получилось, то имеет смысл повторить процедуру два и более раза, причем можно воспользоваться кистью для выполнения механической обработки поверхности. Вместо кисти можно воспользоваться зубной щеткой.

Метод второй

Предполагает выпаливание нагара на датчике. Для выполнения чистки датчика кислорода вторым методом кроме той же ортофосфорной кислоты понадобится еще и газовая горелка (как вариант использовать домашнюю газовую плиту). Алгоритм чистки следующий:

  • Окунуть чувствительный керамический элемент датчика кислорода в кислоту, обильно смочив его.
  • Взять датчик пассатижами с противоположной от элемента стороны и поднести к горящей конфорке.
  • Кислота на чувствительном элементе будет закипать, а на его поверхности образуется соль зеленоватого оттенка. Однако вместе с этим сажа с него будет удаляться.

Повторить описанную процедуру нужно несколько раз до тех пор, пока чувствительный элемент не станет чистым и блестящим.

Спрашивайте в комментариях. Ответим обязательно!

Датчик кислорода (Лямбда-зонд): как работает, проблемы, симптомы

На чтение 5 мин. Просмотров 28 Опубликовано

Датчик кислорода (ДК) — он же лямбда-зонд — измеряет количество кислорода в выхлопных газах, отправляя сигнал на блок управления двигателя (ЭБУ).

Где находится датчик кислорода

Передний датчик кислорода ДК1 установлен в выпускном коллекторе или в передней выпускной трубе перед каталитическим нейтрализатором. Как вы знаете, каталитический нейтрализатор является основной частью системы контроля выбросов в автомобиле.

Задний кислородный датчик ДК2 установлен в выхлопе после каталитического нейтрализатора.

На 4-цилиндровых двигателях устанавливают как минимум два лямбда-зонда. Двигатели V6 и V8 имеют как минимум четыре датчика O2.

ЭБУ использует сигнал от переднего кислородного датчика для регулировки топливно-воздушной смеси путем добавления или уменьшения топлива.

Сигнал заднего датчика кислорода используется для контроля работы каталитического нейтрализатора. В современных автомобилях вместо переднего кислородного датчика используется датчик воздушно-топливного отношения. Он работает аналогично, но точнее.

Как работает датчик кислорода

Существует несколько типов лямбда-зондов, но для простоты в этой статье мы рассмотрим только обычные генерирующие напряжение датчики кислорода.

Как следует из названия, генерирующий напряжение датчик кислорода генерирует небольшое напряжение, пропорциональное разнице в количестве кислорода внутри и снаружи выхлопного газа.

Для правильной работы лямбда-зонд необходимо нагреть до определенной температуры. Типичный современный датчик имеет внутренний электрический нагревательный элемент, который питается от ЭБУ двигателя.

Когда топливовоздушная смесь (ТВС), поступающая в двигатель, бедная (мало топлива и много воздуха), в выхлопе остается больше кислорода, и кислородный датчик создает очень небольшое напряжение (0,1 – 0,2 В).

Если ТВС обогащается (много топлива и мало воздуха), в выхлопе остается меньше кислорода, поэтому датчик будет генерировать бОльшее напряжение (около 0,9 В).

Регулировка соотношения топливовоздушной смеси

Передний датчик O2 отвечает за поддержание оптимального соотношения смеси воздух / топливо, поступающей в двигатель, которая составляет приблизительно 14,7:1 или 14,7 частей воздуха на 1 часть топлива.

Блок управления регулирует топливовоздушную смесь на основе обратной связи от переднего датчика кислорода. Когда передний лямбда-зонд обнаруживает высокий уровень кислорода, ЭБУ предполагает, что двигатель работает на бедной смеси (недостаточно топлива) и поэтому добавляет топлива.

Когда уровень кислорода в выхлопе становится низким, ЭБУ предполагает, что двигатель работает на богатой смеси (слишком много топлива) и уменьшает подачу топлива.

Этот процесс непрерывен. Компьютер двигателя постоянно переключается между обедненным и обогащенным состоянием, чтобы поддерживать оптимальное соотношение воздух / топливо. Этот процесс называется операцией замкнутого цикла.

Если вы посмотрите на сигнал напряжения переднего датчика кислорода, он будет циклически колебаться где-то между 0,2 вольт (бедная) и 0,9 вольт (богатая).

Когда автомобиль заводится холодным, передний кислородный датчик не прогрет полностью, и ЭБУ не использует сигнал ДК1 для регулировки топлива. Этот режим называется разомкнутым контуром. Только когда датчик полностью прогрелся, система впрыска топлива переходит в режим замкнутого контура.

В современных автомобилях вместо обычного датчика кислорода установлен широкополосный датчик топливовоздушного соотношения. Датчик соотношения воздух / топливо работает по-другому, но служит той же цели — для определения, является ли топливовоздушная смесь, поступающая в двигатель, обогащённой или обеднённой.

Датчик топливовоздушного соотношения является более точным и может измерять более широкий диапазон.

Задний датчик кислорода

Задний или нижний кислородный датчик установлен в выхлопе после каталитического нейтрализатора. Он измеряет количество кислорода в выхлопных газах, выходящих из катализатора. Сигнал от заднего лямбда-зонда используется для контроля эффективности нейтрализатора.


Контроллер постоянно сравнивает сигналы от передних и задних датчиков O2. Основываясь на двух сигналах, ЭБУ знает, насколько хорошо каталитический нейтрализатор работает. Если катализатор выходит из строя, ЭБУ включает индикатор «Check Engine», чтобы вы знали об этом.

Задний датчик кислорода можно проверить с помощью диагностического сканера, адаптера ELM327 с программой Torque или осциллографа.

Идентификация датчика кислорода

Передний лямбда-зонд перед каталитическим нейтрализатором обычно называют датчиком «выше по потоку» или датчиком 1.

Задний датчик, установленный после катализатора, называется датчик «ниже по потоку» или датчик 2.

Типичный рядный 4-цилиндровый двигатель имеет только один блок (ряд 1 / банк 1). Поэтому в рядном 4-цилиндровом двигателе термин «Банк 1, Датчик 1» просто относится к переднему датчику кислорода. «Банк 1, Датчик 2» — это задний кислородный датчик.

Читайте подробнее: Что такое Банк 1, Банк 2, Датчик 1, Датчик 2?

Двигатель V6 или V8 имеет два блока (или две части этого «V»). Обычно блок цилиндров, содержащий цилиндр № 1, называется «Банк 1».

Различные производители автомобилей определяют Банк 1 и Банк 2 по-разному. Чтобы узнать, где банк 1 и банк 2 в вашем автомобиле, вы можете посмотреть в руководстве по ремонту или в Google, указав год, марку, модель и объём двигателя.

Замена датчика кислорода

Проблемы с датчиком кислорода являются распространёнными. Неисправный лямбда-зонд может привести к увеличению расхода топлива, увеличению выбросов в атмосферу и различным проблемам во время вождения (провалы оборотов, плохое ускорение, плавающие обороты и т. д.). Если датчик кислорода неисправен, его необходимо заменить.

В большинстве автомобилей замена ДК является довольно простой процедурой. Если вы хотите заменить кислородный датчик самостоятельно, с некоторыми навыками и руководством по ремонту, это не так сложно, но вам может понадобиться специальная торцевая головка для датчика (на фото).

Иногда может быть трудно вытащить старый лямбда-зонд, так как они часто сильно ржавеют.

Еще одна вещь, о которой следует знать — некоторые автомобили, как известно, имеют проблемы с заменяемыми датчиками кислорода.

Например, есть сведения о неоригинальном датчике кислорода, вызывающем проблемы в некоторых двигателях Chrysler. Если вы не уверены, лучше всегда использовать оригинальный датчик.

Кислородные датчики: подробное руководство - Denso

Вы наверняка знаете, что в вашем автомобиле установлен кислородный датчик (или даже два!)… Но зачем он нужен и как он работает? На часто задаваемые вопросы отвечает Стефан Верхоеф (Stefan Verhoef), менеджер DENSO по продукту (кислородные датчики).

B: Какую работу выполняет датчик кислорода в автомобиле?
O: Датчики кислорода (также называемые лямбда-зондами) помогают контролировать расход топлива вашего автомобиля, что способствует снижению объема вредных выбросов. Датчик непрерывно измеряет объем несгоревшего кислорода в выхлопных газах и передает эти данные в электронный блок управления (ЭБУ). На основании этих данных ЭБУ регулирует соотношение топлива и воздуха в топливовоздушной смеси, поступающей в двигатель, что помогает каталитическому нейтрализатору (катализатору) работать более эффективно и уменьшать количество вредных частиц в выхлопных газах.

B: Где находится датчик кислорода?
O: Каждый новый автомобиль и большинство автомобилей, выпущенных после 1980 г., оснащены датчиком кислорода. Обычно датчик установлен в выхлопной трубе перед каталитическим нейтрализатором. Точное местоположение датчика кислорода зависит от типа двигателя (V-образное или рядное расположение цилиндров), а также от марки и модели автомобиля. Для того чтобы определить, где расположен датчик кислорода в вашем автомобиле, обратитесь к руководству по эксплуатации.

В: Почему состав топливовоздушной смеси нужно постоянно регулировать?
O: Соотношение «воздух — топливо» крайне важно, поскольку оно влияет на эффективность работы каталитического нейтрализатора, который снижает содержание оксида углерода (CO), несгоревших углеводородов (CH) и оксида азота (NOx) в выхлопных газах. Для его эффективной работы необходимо наличие определенного количества кислорода в выхлопных газах. Датчик кислорода помогает ЭБУ определить точное соотношение «воздух — топливо» в смеси, поступающей в двигатель, передавая в ЭБУ быстроизменяющийся сигнал напряжения, который меняется в соответствии с содержанием кислорода в смеси: слишком высокого (бедная смесь) или слишком низкого (богатая смесь). ЭБУ реагирует на сигнал и изменяет состав топливовоздушной смеси, поступающей в двигатель. Когда смесь слишком богатая, впрыск топлива уменьшается. Когда смесь слишком бедная — увеличивается. Оптимальное соотношение «воздух — топливо» обеспечивает полное сгорание топлива и использует почти весь кислород из воздуха. Оставшийся кислород вступает в химическую реакцию с токсичными газами, в результате которой из нейтрализатора выходят уже безвредные газы.

В: Почему на некоторых автомобилях устанавливаются два кислородных датчика?
O: Многие современные автомобили дополнительно кроме датчика кислорода, расположенного перед катализатором, оснащаются и вторым датчиком, установленным после него. Первый датчик является основным и помогает электронному блоку управления регулировать состав топливовоздушной смеси. Второй датчик, установленный после катализатора, контролирует эффективность работы катализатора, измеряя содержание кислорода в выхлопных газах на выходе. Если весь кислород поглощается химической реакцией, происходящей между кислородом и вредными веществами, то датчик выдает сигнал высокого напряжения. Это означает, что катализатор работает нормально. По мере износа каталитического нейтрализатора некоторое количество вредных газов и кислорода перестает участвовать в реакции и выходит из него без изменений, что отражается на сигнале напряжения. Когда сигналы станут одинаковыми, это будет указывать на выход из строя катализатора.


В: Какие бывают датчики?
О: Существует три основных типа лямбда-сенсоров: циркониевые датчики, датчики соотношения «воздух — топливо» и титановые датчики. Все они выполняют одни и те же функции, но используют при этом различные способы определения соотношения «воздух — топливо» и разные исходящие сигналы для передачи результатов измерений.

Наибольшее распространение получила технология на основе использования циркониево-оксидных датчиков (как цилиндрического, так и плоского типов). Эти датчики могут определять только относительное значение коэффициента: выше или ниже соотношение «топливо — воздух» коэффициента лямбда 1.00 (идеальное стехиометрическое соотношение). В ответ ЭБУ двигателя постепенно изменяет количество впрыскиваемого топлива до тех пор, пока датчик не начнет показывать, что соотношение изменилось на противоположное. С этого момента ЭБУ опять начинает корректировать подачу топлива в другом направлении. Этот способ обеспечивает медленное и непрекращающееся «плавание» вокруг коэффициента лямбда 1.00, не позволяя при этом поддерживать точный коэффициент 1.00. В итоге в изменяющихся условиях, таких как резкое ускорение или торможение, в системах с циркониево-оксидным датчиком подается недостаточное или избыточное количество топлива, что приводит к снижению эффективности каталитического нейтрализатора.

Датчик соотношения «воздух — топливо» показывает точное соотношение топлива и воздуха в смеси. Это означает, что ЭБУ двигателя точно знает, насколько это соотношение отличается от коэффициента лямбда 1.00 и, соответственно, насколько требуется корректировать подачу топлива, что позволяет ЭБУ изменять количество впрыскиваемого топлива и получать коэффициент лямбда 1.00 практически мгновенно.

Датчики соотношения «воздух — топливо» (цилиндрические и плоские) впервые были разработаны DENSO для того, чтобы обеспечить соответствие автомобилей строгим стандартам токсичности выбросов. Эти датчики более чувствительны и эффективны по сравнению с циркониево-оксидными датчиками. Датчики соотношения «воздух — топливо» передают линейный электронный сигнал о точном соотношении воздуха и топлива в смеси. На основании значения полученного сигнала ЭБУ анализирует отклонение соотношения «воздух — топливо» от стехиометрического (то есть Лямбда 1) и корректирует впрыск топлива. Это позволяет ЭБУ предельно точно корректировать количество впрыскиваемого топлива, моментально достигая стехиометрического соотношения воздуха и топлива в смеси и поддерживая его. Системы, использующие датчики соотношения «воздух — топливо», минимизируют возможность подачи недостаточного или избыточного количества топлива, что ведет к уменьшению количества вредных выбросов в атмосферу, снижению расхода топлива, лучшей управляемости автомобиля.

Титановые датчики во многом похожи на циркониево-оксидные датчики, но титановым датчикам для работы не требуется атмосферный воздух. Таким образом, титановые датчики являются оптимальным решением для автомобилей, которым необходимо пересекать глубокий брод, например полноприводных внедорожников, так как титановые датчики способны работать при погружении в воду. Еще одним отличием титановых датчиков от других является передаваемый ими сигнал, который зависит от электрического сопротивления титанового элемента, а не от напряжения или силы тока. С учетом данных особенностей титановые датчики могут быть заменены только аналогичными и другие типы лямбда-зондов не могут быть использованы.

В: Чем отличаются специальные и универсальные датчики?
O: Эти датчики имеют разные способы установки. Специальные датчики уже имеют контактный разъем в комплекте и готовы к установке. Универсальные датчики могут не комплектоваться разъемом, поэтому нужно использовать разъем старого датчика.


B: Что произойдет, если выйдет из строя датчик кислорода?
O: В случае выхода из строя датчика кислорода ЭБУ не получит сигнала о соотношении топлива и воздуха в смеси, поэтому он будет задавать количество подачи топлива произвольно. Это может привести к менее эффективному использованию топлива и, как следствие, увеличению его расхода. Это также может стать причиной снижения эффективности катализатора и повышения уровня токсичности выбросов.

B: Как часто необходимо менять датчик кислорода?
O: DENSO рекомендует заменять датчик согласно указаниям автопроизводителя. Тем не менее следует проверять эффективность работы датчика кислорода при каждом техобслуживании автомобиля. Для двигателей с длительным сроком эксплуатации или при наличии признаков повышенного расхода масла интервалы между заменами датчика следует сократить.

Ассортимент кислородных датчиков

• 412 каталожных номеров покрывают 5394 применения, что соответствует 68 % европейского автопарка.
• Кислородные датчики с подогревом и без (переключаемого типа), датчики соотношения «воздух — топливо» (линейного типа), датчики обедненной смеси и титановые датчики; двух типов: универсальные и специальные.
• Регулирующие датчики (устанавливаемые перед катализатором) и диагностические (устанавливаемые после катализатора).
• Лазерная сварка и многоэтапный контроль гарантируют точное соответствие всех характеристик спецификациям оригинального оборудования, что позволяет обеспечить эффективность работы и надежность при длительной эксплуатации.

В DENSO решили проблему качества топлива!

Вы знаете о том, что некачественное или загрязненное топливо может сократить срок службы и ухудшить эффективность работы кислородного датчика? Топливо может быть загрязнено присадками для моторных масел, присадками для бензина, герметиком на деталях двигателя и нефтяными отложениями после десульфуризации. При нагреве свыше 700 °C загрязненное топливо выделяет вредные для датчика пары. Они влияют на работу датчика, образуя отложения или разрушая его электроды, что является распространенной причиной выхода датчика из строя. DENSO предлагает решение этой проблемы: керамический элемент датчиков DENSO покрыт уникальным защитным слоем оксида алюминия, который защищает датчик от некачественного топлива, продлевая срок его службы и сохраняя его рабочие характеристики на необходимом уровне.

Дополнительная информация

Более подробную информацию об ассортименте кислородных датчиков DENSO можно найти в разделе Кислородные датчики, в системе TecDoc или у представителя DENSO.

признаки неисправности. Что такое лямбда-зонд (кислородный датчик)?

Из статьи вы узнаете о том, что такое кислородный датчик. Признаки неисправности этого устройства заставят вас задуматься о замене его. Потому что первый признак – это значительное увеличение расхода бензина. О причинах такого поведения будет рассказано несколько ниже. А сначала стоит поговорить немного о истории создания этого устройства, а также о его принципах функционирования.

Необходимость в датчике кислорода

А теперь о том, для чего нужен в автомобиле кислородный датчик. Признаки неисправности его будут рассмотрены позже. При сгорании любого топлива необходим доступ кислорода. Без этого газа не может проходить процесс горения. Следовательно, в камеры сгорания обязательно должен попадать кислород. Как вы знаете, топливная смесь – это соединение бензина и воздуха. Если заливать чистый бензин в камеры сгорания, то двигатель попросту не будет работать. По тому, сколько кислорода остается в выхлопной системе, можно говорить, насколько качественно сгорает топливовоздушная смесь в цилиндрах мотора. Именно для измерения количества кислорода необходим лямбда-зонд.

Немного истории

Под конец 60-х впервые автоконструкторы начали пробовать устанавливать эти датчики на машины. Самые первые кислородные датчики были установлены на автомобилях Volvo. Датчик кислорода называется также лямбда-зондом. Дело в том, что есть в греческом алфавите буква «лямбда». А если обратиться к справочной литературе по двигателям внутреннего сгорания, то можно увидеть, что именно этой буквой обозначается коэффициент избытка воздуха в топливной смеси. И этот параметр позволяет измерить кислородный датчик (лямбда-зонд).

Принцип работы

Устанавливается кислородный датчик исключительно на инжекторные автомобили, в которых используются электронные блоки управления двигателем. Сигнал, вырабатываемый им, подается на блок управления. Этот сигнал используется микроконтроллером для того, чтобы произвести правильную регулировку смесеобразования. Он производит регулировку подачи воздуха в камеры сгорания. Конечно, на качество смеси влияет не только сигнал, поступающий от датчика кислорода, но также и от большинства других устройств, которые позволяют измерить нагрузку на двигатель, его обороты, а также скорость автомобиля, и прочее. Зачастую в автомобилях устанавливается два лямбда-зонда. Один - рабочий, а второй - для корректировки. Они устанавливаются до катколлектора и после. Обратите внимание на то, что тот лямбда-зонд, который монтируется после катколлектора, имеет дополнительный принудительный нагрев. Перед тем как очистить кислородный датчик, обязательно прочитайте требования, которые предъявляются его производителем.

Условия работы лямбда-зонда

Также стоит учесть, что наиболее эффективное функционирование этого датчика происходит при температурах от 300 градусов и выше. Именно для этой цели необходим электрический подогреватель. Он позволяет в режиме непрогретого двигателя поддерживать нормальное функционирование датчика кислорода. Чувствительный элемент датчика необходимо располагать непосредственно в потоке выхлопного газа. Таким образом, чтобы его электрод, находящийся с внешней стороны, обязательно омывался потоком. Внутренний же электрод необходимо располагать непосредственно в атмосферном воздухе. Само собой, содержание кислорода различное. И между этими двумя электродами начинает образовываться некоторая разность потенциалов. На выходе может появиться напряжение максимум 1 Вольт. Именно это напряжение подается на электронный блок управления. Тот, свою очередь, анализирует его сигнал, затем, согласно топливной карте, заложенной в нём, увеличивает или уменьшает время открытия форсунок, изменяет подачу воздуха в рампу.

Широкополосные

Имеется такое устройство, как широкополосный кислородный датчик. Признаки неисправности (УАЗ "Патриот" имеет такие же, как и любой другой автомобиль) датчика заключаются в том, что изменяется режим работы двигателя. Разница между обычным и таким устройством довольно большая. Дело в том, что у них совсем различные принципы функционирования и чувствительные части. А широкополосные лямбда-зонды более информативны, а это актуально для случаев, если двигатель работает в нестандартных режимах. Следовательно, чем богаче информация, тем более точные настройки будет производить электронный блок управления.

Как определить поломку

Стоит отметить, что датчики кислорода влияют на функционирование мотора очень сильно. Если вдруг лямбда-зонд приказывает долго жить, то двигатель, скорее всего, работать не будет. Когда происходит поломка лямбда зонда, на выходе не вырабатывается сигнал, либо же он изменяется непредсказуемым образом. Конечно, такое поведение сильно осложнит вашу повседневную жизнь. Выйти из строя датчик может буквально в любую минуту. По этой причине на автомобилях предусмотрены определенные функции, которые позволяют завести двигатель, а также добраться до станции техобслуживания, даже если датчик содержания кислорода неисправен.

Аварийная прошивка

Дело в том, что когда электронный блок управления видит поломку лямбда-зонда, он начинает работать не по той прошивке, которая заложена в нём по умолчанию, а по аварийной. В этом случае смесеобразование происходит по данным, полученным с других датчиков. Не участвует в этом процессе только кислородный датчик. Признаки неисправности этого устройства водитель заметит сразу же. К сожалению, смесь чересчур бедная, так как процентное содержание бензина больше, чем необходимо. Это позволяет добиться того, чтобы двигатель не остановился. Но если увеличить подачу воздуха, то велика вероятность того, что двигатель заглохнет. Однако в качестве предупреждения на большинстве автомобилей загорается в приборной панели лампа Check Engine, которая сигнализирует о неисправностях двигателя. Дословный перевод этой надписи – «Проверьте двигатель». Но и без нее можно определить поломку лямбда зонда. Дело в том, что расход топлива сильно растет по сравнению с нормальным режимом.

Заключение

Теперь вы знаете, что такое кислородный датчик (лямбда-зонд), какие у него свойства и особенности. В завершении хотелось бы упомянуть о том, что этот элемент очень требователен к тому, как его устанавливают. Обращайте внимание на то, чтобы между корпусом датчика и катколлектором не было щелей, иначе это приведет к преждевременному выходу из строя устройства. Кроме того, при эксплуатации датчик будет посылать неверные сведения на блок управления.

Про лямбду — Subaru Forester, 2.5 л., 1999 года на DRIVE2

Мне было полезно почитать, может кому пригодится:

Что такое кислородный датчик ?

Кислородный датчик лямбда зонд — это прибор, который снимает показания состава выхлопных газов, посылает сигнал в блок управления (компьютер) двигателем, который затем регулирует подачу топлива в двигатель.

Где находится кислородный датчик ?

Как правило, передний ( верхний ) кислородный датчик находится в районе выпускного коллектора, или перед катализатором, а задний ( нижний ) кислородный датчик стоит после катализатора.

где находится кислородный датчик

Как устроен кислородный датчик ?

Изначально действие кислородного датчика было основано на свойствах оксида циркония — ZrO2.
Для достижения рабочей температуры ( свыше 500 градусов по Цельсию ) кислородный датчик лямбда зонд оборудован нагревающим элементом, поэтому обычно датчик имеет 2 провода на сам датчик и 2 для подогревающего элемента.

как устроен кислородный датчик


Рабочий элемент датчика кислорода — пористый керамический материал на основе двуокиси циркония ( или других материалов), покрытый платиной. Выхлопные газы обтекают рабочую поверхность датчика кислорода. Кислородный датчик показывает разницу между уровнем кислорода в выхлопных газах и в атмосфере. Сигнал кислородного датчика используется системой управления для поддержания оптимального (стехиометрического, около 14,7:1) соотношения воздух/топливо в камерах сгорания.

В стехиометрии — λ = (реальное к-во воздуха) / (необходимое к-во воздуха).

λ=1 — стехиометрическая (теоретически идеальная) смесь;

λ>1 — бедная смесь;

λ<1 — богатая смесь (избыток бензина, воздуха не хватает для полного сгорания).

Поскольку некоторое количество кислорода должно оставаться в катализаторе, для более точного регулирования используют второй датчик, расположенный за катализатором.

Как работает кислородный датчик ?

Принцип работы кислородного датчика предельно прост — в случае возникновения разницы плотности молекул кислорода между камерой А и камерой Б, ионы кислорода переходят из области с высоким содержанием в область с низким содержанием. Соответственно, в компьютер автомобиля-мотоцикла-катера посылается сигнал — топлива подается слишком много, оно не успевает полностью сгорать. Или, наоборот — топлива мало, смесь бедная, "машина не едет".

Какие неисправности в работе кислородного датчика могут быть и как их определить ?

лямбда зонд


Кислородный датчик постоянно находится в агрессивной среде и работает при высоких температурах, поэтому сравнительно быстро подвергается износу. Самому определить неисправность кислородного датчика без специальной аппаратуры невозможно. Не всегда при поломке кислородного датчика на приборной панели загорается CHECK ENGINE. Поэтому даже если лампа CHECK ENGINE не горит, но расход топлива повышенный, работа двигателя неустойчива, машина не развивает должной мощности — самое время пройти компьютерную диагностику двигателя. Когда же горит лампа чек энжин, необходимо знать, что в этом режиме автомобиль работает при усредненных настройках компьютера двигателя, "лишь бы доехать до дому". В итоге — отсутствие динамики работы ДВС и повышенный расход топлива.

Можно ли отремонтировать кислородный датчик ?

Поскольку кислородный датчик лямбда зонд является неразборным элементом, его конструкция не позволяет произвести ремонт.

Можно ли чем-нибудь почистить кислородный датчик ?

Как показывает многолетний опыт — любые эксперименты по промывке, чистке кислородного датчика не дают долговременного эффекта.

Как подобрать кислородный датчик на замену ?

Можно приобрести кислородный датчик, бывший в употреблении,
но неизвестно, как долго он прослужит.
Можно приобрести "оригинальный" кислородный датчик,
но это многим недоступно из-за их высокой стоимости
и большого количества подделок.

Лямбда-зонд, или датчик кислорода - что это такое, устройство, работа, неисправности

Контакты Menu Menu
  • Главная
  • Обзоры авто
      • Audi
      • BMW
      • Cadillac
      • Chevrolet
      • Citroen
      • Ford
      • Geely
      • Honda
      • Hyundai
      • Infiniti
      • Jaguar
      • Kia
      • Lada
      • Land Rover
      • Lexus
      • Mazda
      • Mercedes
      • Mitsubishi
      • Nissan
      • Peugeot
      • Porsche
      • Renault
      • Skoda
      • Subaru
      • Suzuki
      • Toyota
      • Volkswagen
      • Volvo
  • Статьи
      • Устройство автомобиля
      • Обслуживание и ремонт
      • Топливо и масла
      • Полезная информация
      • Тюнинг
  • Характеристики
  • Двигатели
  • Ретро

Лямбда-зонд (датчик кислорода). — DRIVE2

Продолжаем познавательную страничку.

Какая связь между катализатором и лямбда-зонд?

каталик в разрезе

Лямбда-зонд — это датчик кислорода (Oxygen Sensor), устанавливаемый в системе выпуска. В выхлопной системе автомобиля, как правило, их один или две штуки. Первый датчик лямбда-зонд всегда устанавливается сразу после выпускного коллектора, чтобы выхлопные газы обтекали рабочую поверхность датчика, а второй, если есть, сразу после катализатора. Применение лямбда-зонд обусловнено жесткими экологическими нормами по снижению содержания вредных веществ в выхлопных газах. Катализатор предназначен для снижения выброса токсичных отработавших газов. В свою очередь, катализатор вещь хорошая, но эффективно работает лишь при определенных условиях. Без постоянного контроля состава топливно-воздушной смеси катализатор выходит из строя очень быстро – вот тут и необходим датчик кислорода, он же лямбда-зонд (ЛЗ), он же O2-датчик.

Название датчика кислорода происходит от греческой буквы L (лямбда), которая в автомобилестроении обозначает коэффициент избытка воздуха в топливно-воздушной смеси. Избыток воздуха в смеси измеряется весьма оригинально – путем определения в выхлопных газах содержания остаточного кислорода (O2). При оптимальном составе этой смеси, когда на 14,7 части воздуха приходится 1 часть топлива, L равна 1.
Окно эффективной работы катализатора очень небольшое: L = 1±0,01. Обеспечить такую точность возможно только с помощью систем питания с электронным (дискретным) впрыском топлива и при использовании в цепи обратной связи лямбда-зонда. Поэтому лямбда-зонд устанавливается перед катализатором. Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива (ЭБУ), а тот в свою очередь анализирует и оптимизирует состав смеси путем изменения количества подаваемого в цилиндры двигателя топлива. Как мы уже упомянали выше, на некоторых современных автомобилях имеется дополнительный датчик лямбда-зонд, который устанавливается на выходе катализатора. Это позволяет увеличить точность приготовления смеси и контролировать работу катализатора, чтобы трехкомпонентный катализатор смог полностью выполнить свое предназначение и сократить объем вредных выбросов до минимума.

Лямбда-зонд, как правило, изготавливают из циркониевого сплава (используется керамический элемент на основе двуокиси циркония, покрытый платиной) — гальванический источник тока, меняющий напряжение в зависимости от температуры и наличия кислорода в окружающей среде. Конструкция его предполагает, что одна часть соединяется с наружним воздухом, а другая — с выхлопными газами внутри трубы. В зависимости от концентрации кислорода в выхлопных газах, на выходе датчика появляется сигнал. Контроллер принимает сигнал с ЛЗ, сравнивает его с значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов.

Возможные причины поломки лямбда-зонд:

1) некачественный бензин, железо, свинец забивают платиновые электроды за несколько неудачных заправок;
2) перегрев корпуса датчика из-за неправильно установленного угла опережения зажигания, сильно переобогащенной топливной смеси;
3) масло в выхлопной трубе из-за плохого состояния маслосъемных колец;
4) сбои в системе зажигания, хлопки в глушителе и в выпуске разрушающие хрупкую керамику;
5) удары;
6) многократные (неудачные) попытки запуска двигателя через небольшие промежутки времени, что приводит к накапливанию несгоревшего топлива в выпускном трубопроводе, которое может воспламениться с образованием ударной волны;
7) попадание на керамический наконечник датчика любых эксплуатационных жидкостей, растворителей, моющих средств;
8) использование при установке датчика герметиков, вулканизирующихся при комнатной температуре или содержащих в своем составе силикон;
9) обрыв, плохой контакт или замыкание на «массу» выходной цепи датчика.

Возможные признаки неисправности лямбда-зонд:

1) неустойчивая работа двигателя на малых оборотах;
2) ухудшение динамических характеристик автомобиля;
3) повышенный расход топлива;
4) повышение температуры в районе каталитического нейтрализатора или его нагрев до раскаленного состояния;
5) характерное потрескивание в районе расположения каталитического нейтрализатора после остановки двигателя;

Можно ли отключать лямбда-зонд после замены катализатора на пламегаситель?

После замены катализатора на пламегаситель, наличие кислородного датчика, как детали выхлопной системы, обеспечивающей в числе прочего эффективную работу катализатора, становится не важным. Отсюда вопрос: допускается ли эксплуатировать автомобиль совсем без лямбда-зонда? Однозначного ответа для всех автомобилей нет. Наиболее просто и правильно эта задача решается в том случае, если у данного автомобиля предусмотрена возможность перепрограмировать контроллер на режим работы без катализатора. Это возможно у большинства автомобилей с "мозгами" BOSH (Siemens не перепрограмируется). В этом случае после замены катализатора на пламегаситель меняется программа управления и лямбда-зонд просто снимается и всё. У некоторых марок автомобилей перепрограмирование невозможно и, если неисправность датчика сильно влияет на работу мотора, тогда выхода нет — необходимо устанавливать исправный датчик лямбда-зонд .

Взаимозаменяемость лямбда-зонд .

Рекомендованные заводом-изготовителем лямбда-зонды и сходные по конструкции циркониевые датчики могут быть взаимозаменяемы. Возможна замена неподогреваемых датчиков на подогреваемые (но не наоборот!). Однако при этом может возникнуть проблема несовместимости разъемов и отсутствия в автомобиле цепи питания для нагревателя лямбда-зонда. Недостающие провода можно проложить самостоятельно, а вместо разъема использовать стандартные автомобильные контакты. Рекомендуется использовать графитовую смазку, чтобы датчик не прикипел к выпускному коллектору.

Благодарю за внимание!

источник: vk.com/pubauto

Про кислородные датчики. — DRIVE2

Прочитал тут пару постов про кислородные датчики.Народ рассуждает о том, о чём не имеет ни малейшего представления.Ещё и умудряются давать советы и спорить.
Ещё с этим и в топ попадают.Писать у них в комментариях я ни чего не стал, напишу не много у себя.Это будет только самое основное что может пригодиться тем кто хочет понимать как это работает.Своими словами красиво написать не смогу и потом мне ещё будут что то доказывать, поэтому информация взята с сайта NGK.
И так:
Технологии кислородных датчиков
Различают три типа кислородных датчиков. Датчики из диоксида циркония и диоксида титана называют также кислородными датчиками перехода или "бинарными" датчиками, поскольку сигнал датчика здесь колеблется между двумя величинами.

Третья группа — это так называемые широкополосные кислородные датчики. Их также называют "линейными" кислородными датчиками, поскольку они измеряют и воспроизводят текущий переход между различными состояними смеси.

Кислородный датчик из диоксида циркония

1

Этот кислородный датчик состоит из твердотельного электролита на основе диоксида циркония. Данный материал становится проводящим для ионов кислорода, начиная с температуры от 300 °C.

Посредством электродов, которые расположены на элементе на внутренней стороне (эталонный воздух / окружающий воздух) и на стороне отработавших газов (измерительный газ), измеряется содержание кислорода в отработавшем газе.

Выходной сигнал генерируется ионами кислорода, проходящими через элемент и стремящимися компенсировать разницу в количестве кислорода (перепад парциального давления кислорода).

Кислородный датчик из диоксида циркония отличается следующими свойствами:

быстрая готовность к эксплуатации
термостойкость
нечувствительность к гидроудару
невосприимчивость к токсичности
высокая надёжность

В зависимости от автомобиля, эти датчики применяются как регулирующие и как диагностирующие датчики.

2

3

4

Кислородный датчик из диоксида титана

5

Кислородный датчик из диоксида титана также является датчиком перехода. Диоксид титана имеет специальную особенность: электрическое сопротивление изменяется пропорционально доле кислорода в отработавшем газе. Измеренное сопротивление сообщает информацию о том, в каком рабочем состоянии находится двигатель.
Кислородный датчик из диоксида титана отличается следующими свойствами:

прочный и компактный
высокая скорость реакции
не требуется эталонный воздух
быстрое достижение рабочей температуры

В зависимости от автомобиля, эти датчики применялись как регулирующие и как диагностирующие датчики. Сейчас эти устройства больше не используются в заводской комплектации.

6

7

Широкополосный кислородный датчик

8

С появлением требований по снижению расхода и выбросов, возникла необходимость эксплуатировать двигатели с регулированием за пределами стехиометрической рабочей точки. Для этой цели и были разработаны так называемые широкополосные датчики.

Эти линейные кислородные датчики могут генерировать сигнал пропорционально содержанию остаточного кислорода в отработавшем газе. Этот сигнал имеется в наличии при широком соотношении воздуха и топлива.

Выходной сигнал соответствует току накачки, который необходим для регулировки постоянного содержания кислорода в измерительной камере (лямбда = 1 соответствует
450 мВ). Чем больше отклонение проникающего отработавшего газа от этой величины, тем больше ток накачки и, таким образом, выходной сигнал датчика.

Широкополосный кислородный датчик имеет следующие преимущества:

быстрая готовность к эксплуатации
монолитный элемент с встроенным нагревателем
герметичная структура означает самогенерированный эталон кислорода
термостойкость
высокая надёжность

Эти датчики применяются в бензиновых двигателях в качестве регулирующего датчика, а сейчас всё чаще применяются и в дизельных автомобилях.

9

10

11

Для тех кто дочитал:
Поздравляю!теперь вы знаете чуть больше остальных и я искренне надеюсь что данные знания вам помогут в дальнейшем.И вы не будете писать что BOSCH гаумно, потому что на вашем лексусе датчик от 10ки не работает. )
Если данная информация по вашему мнению полезна, не полениться лайкнуть и поделиться;)

gazvavan › Блог › Датчик концентрации кислорода (Просой способ диагностирования в продолжении)

The sensor of concentration of oxygen
Датчик кислорода — он же лямбда-зонд — устанавливается в выхлопном коллекторе таким образом, чтобы выхлопные газы обтекали рабочую поверхность датчика. Материал его как правило циркониевый (используется керамический элемент на основе двуокиси циркония, покрытый платиной) — гальванический источник тока, меняющий напряжение ( 50-100 до 850-900 мВ ( может до1.2 В.) . Для исправного датчика разница между максимальным и минимальным значениями должна быть не менее 500 мВ. )
При стехиометрическом составе топливно-воздушной смеси
(14.7: 1) его выходное напряжение составляет 0.4-0.5 В.

см. фото

в зависимости от температуры и наличия кислорода в окружающей среде. Рабочий диапазон температуры датчика начинается от 300 градусов. Конструкция его предполагает, что одна часть соединяется с наружним воздухом, а другая — с выхлопными газами внутри трубы. В зависимости от концентрации кислорода в выхлопных газах, на выходе датчика появляется сигнал. Уровень этого сигнала, для датчиков систем впрыска конца 80-х — начала 90-х годов, может быть низким (0,1…0,2В) или высоким (0,8…0,9В). Таким образом датчик кислорода — это своеобразный переключатель (триггер), сообщающий контроллеру впрыска о качественной концентрации кислорода в отработавших газах. Фронт сигнала между положениями "Больше" и "меньше" очень мал. Напряжение на выходе датчика должно переключаться с низкого на высокое и обратно (примерно в диапазоне от 200 до 800 мВ) с частотой 0.8…1.0 Гц Настолько мал, что его можно не рассматривать всерьез. Контроллер принимает сигнал с лямбда-зонда, сравнивает его с значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь с контроллером впрыска и точная подстройка режимов работы двигателя под текущую ситуацию с достижением максимальной экономии топлива и минимизацией вредных выбросов Коэффициент избыточности воздуха — L (лямбда) характеризует — насколько реальная топливно-воздушная смесь далека от оптимальной (14,7:1). Если состав смеси — 14,7:1, то L=1 и смесь оптимальна. Если L < 1, значит недостаток воздуха, смесь обогащенная. Мощность двигателя увеличивается при L=0,85 — 0,95. Если L > 1, значит налицо избыток воздуха, смесь бедная. Мощность при L=1,05 — 1,3 падает, но зато экономичность растет. При L > 1,3 смесь перестает воспламеняться и начинаются пропуски в зажигании. Бензиновые двигатели развивают максимальную мощность при недостатке воздуха в 5-15% (L=0,85 — 0,95), тогда как минимальный расход топлива достигается при избытке воздуха в 10-20%% (L=1,1 — 1,2). Таким образом соотношение L при работе двигателя постоянно меняется и диапазон 0,9 — 1,1 является рабочим диапазоном лямбда-регулирования. В то же время, когда двигатель прогрет до рабочей температуры и не развивает большой мощности (например работает на ХХ), необходимо по возможности более строгое соблюдение равенства L=1 для того, чтобы трехкомпонентный катализатор смог полностью выполнить свое предназначение и сократить объем вредных выбросов до минимума

см. фото

Речь идет о системах ЕВРО-2, а не ЕВРО-3 или ЕВРО-4.
2. ДКК работает в этой системе только при выполнении двух условий: нет режима полной мощности (в серийных прошивках — примерно 75% дросселя, в тюнинговых, как правило, меньше) и не активен алгоритм обогащения по приращению дросселя. В этих режимах ДКК не работает и состав смеси определяется калибровками. Проще говоря, в режиме "тапка в пол" и при ускорении показания ДК не учитываются (то есть он не мешает динамике:). Положительный момент: даже в этих зонах работы действует расчетная адаптивная коррекция времени впрыска (память обучения), которая лишь помогает системе обеспечить именно тот состав смеси, который заложен в мощностных калибровках.
3. Несколько слов о взаимозаменяемости датчиков. Лямбда-зонд с подогревом может устанавливаться вместо такого же, но без подогрева. При этом необходимо смонтировать на автомобиль цепь подогрева и подключить ее к цепи, запитываемой при включении зажигания. Самое выгодное — в параллель к цепи питания электробензонасоса. Не допускается обратная замена — установка однопроводного датчика вместо трех- и более- проводных. Работать не будет. Ну и конечно необходимо, чтобы резьба датчика совпадала с резьбой, нарезанной в штуцере.Ресурс кислородного датчика как правило не превышает 70 тыс. км при удовлетворительном качестве топлива. Об остаточном ресурсе в первом приближении можно судить по амплитуде изменения напряжения на сигнальном проводе датчика, приняв за 100% амплитуду 0.9в. Лямбда-регулирование как функция ECU может быть проверена при помощи батарейки напряжением 1…1.5в и осциллографа. Последний следует установить в ждущий режим, засинхронизировав его импульсом управления впрыском. Измерению подлежит длительность этого импульса. Вначале размыкают соединение лямбда-зонда и ECU (при этом на свободно висящем лямбда-входе ECU должно отмечаться напряжение 0.45в – его появление свидетельствует о переходе ECU на работупо резервной части программы управления) и отмечают длительность импульса впрыска. Затем подключают «+» батарейки к лямбда-входу, а «-» — к массе, и наблюдают через несколько секунд уменьшение длительности импульса впрыска. Такая реакция будет означать стремление ECU обеднить смесь в ответ на моделирование по лямбда-входу ее обогащения. Затем следует соединить вход ECU с массой и наблюдать (также с некоторой задержкой) увеличения длительности измеряемого импульса. Такая реакция будет означать стремление ECU обогатить смесь в ответ на моделирование по лямбда-входу ее обеднения. Тем самым проверка лямбда-регулирования как функции ECU будет проведена. Отсутствие этой функции приводит к тем же внешним проявлениям, что и в случае отсутствия подогрева лямбда-зонда
Если к выхлопной трубе подсоединен четырехкомпонентный газоанализатор, он должен дать следующие показания:
СО — в соответствии с техническими данными автомобиля.
НС-не более 50.
СО2- более 15.0
О2 -не более 2.0
Лямбда: 1.0 ± 0.03.

см. фото

И так продолжение.


Смотрите также