Неевклидова геометрия что это такое


Неевклидова геометрия — Википедия

Материал из Википедии — свободной энциклопедии

(1) евклидова геометрия; (2) геометрия Римана; (3) геометрия Лобачевского

Неевклидова геометрия — в буквальном понимании — любая геометрическая система, которая отличается от геометрии Евклида; однако традиционно термин «неевклидова геометрия» применяется в более узком смысле и относится только к традиционным неевклидовым геометрическим системам: геометрии Лобачевского и сферической геометрии (или схожей с ней геометрии Римана).

Как и евклидова, эти геометрии относятся к метрическим геометриям пространства постоянной кривизны. Нулевая кривизна соответствует евклидовой геометрии, положительная — совпадающим по локальным свойствам сферической или геометрии Римана, отрицательная — геометрии Лобачевского.

Вид метрики для однородных планиметрий зависит от выбранной системы (криволинейных) координат; далее приводятся формулы для случая полугеодезических координат:

  • Александров А. Д., Нецветаев Н. Ю. Геометрия. — М.: Наука, 1990. — ISBN 978-5-9775-0419-5.
  • Александров П. С. Что такое неэвклидова геометрия. — М.: УРСС, 2007. — ISBN 978-5-484-00871-1.
  • Алексеевский Д. В., Винберг Э. Б., Солодовников А. С. Геометрия пространств постоянной кривизны // Итоги науки и техники. Серия «Современные проблемы математики. Фундаментальные направления». 1988. Т. 29. — С. 5–146.
  • Берже М. Геометрия. В 2 т. / Пер. с франц. — М.: Мир, 1984. — 928 с. Том II, часть V: Внутренняя геометрия сферы, гиперболическая геометрия.
  • История математики с древнейших времён до начала XIX столетия / под ред. А. П. Юшкевича. Т. I—III. — М.: Наука, 1972.
  • Делоне Б. Н. Элементарное доказательство непротиворечивости планиметрии Лобачевского. — М.: Гостехиздат, 1956.
  • Клейн Ф. Неевклидова геометрия. — М.: изд. НКТП СССР, 1936. — 355 с.
  • Лаптев Б. Л. Н. И. Лобачевский и его геометрия. — М.: Просвещение, 1976.
  • Мищенко А. С., Фоменко А. Т. Курс дифференциальной геометрии и топологии. — М.: Факториал, 2000.
  • Прасолов В. В. Геометрия Лобачевского. — Изд. 3-е. — М.: МЦНМО, 2004. — ISBN 5-94057-166-2.
  • Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия. — М.: Физматлит, 2009.

Что такое евклидова геометрия? | Вечные вопросы | Вопрос-Ответ

7 февраля 1832 года Николай Лобачевский представил на суд коллег свой первый труд по неевклидовой геометрии. Евклидова геометрия — это геометрия, основанная на аксиомах, сформулированных в книге Евклида «Начала»*. Выводы древнегреческого математика считались абсолютной истиной в применении к физическому миру на протяжении почти 2000 лет. Только в XIX веке было показано, что аксиомы Евклида не являются универсальными и верны не во всяких обстоятельствах — труд Лобачевского положил начало перевороту в математике.

В евклидову геометрию входят планиметрия — раздел геометрии, исследующий фигуры на плоскости, и стереометрия — раздел геометрии, в котором изучаются фигуры в пространстве.

Какие аксиомы и постулаты предложил Евклид?

В «Началах» Евклида содержались следующие утверждения, принимаемые без доказательства:

Постулаты

Требуется, чтобы от каждой точки ко всякой другой точке можно было провести прямую линию.

И чтобы каждую прямую можно было неопределённо продолжить.

И чтобы из любого центра можно было описать окружность любым радиусом.

И чтобы все прямые углы были равны между собой.

И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых.

Статуя Евклида в Оксфордском университетском музее естественной истории. Фото: Commons.wikimedia.org

Аксиомы

Равные одному и тому же равны между собой.

И если к равным прибавим равные, то получим равные.

И если от равных отнимем равные, то получим равные.

И если к неравным прибавим равные, то получим неравные.

И если удвоим равные, то получим равные.

И половины равных равны между собой.

И совмещающие равны.

И целое больше части.

И две прямые не могут заключить пространства.

Что такое «неевклидова геометрия»?

Неевклидова геометрия — это геометрия, которая использует набор аксиом, отличных от аксиом евклидовой геометрии, в частности, не включает постулата о параллельных прямых. Основные открытия геометрических систем, в которых аксиомы Евклида не верны, были сделаны Николаем Лобачевским и Георгом Риманом.

Геометрия Лобачевского строится на основе тех же аксиом, что и евклидова, за исключением только одной аксиомы о параллельных. Согласно аксиоме о параллельных евклидовой геометрии, через точку, не лежащую на данной прямой а, проходит только одна прямая, которая лежит в одной плоскости с прямой а и не пересекает эту прямую. В геометрии Лобачевского принимается, что таких прямых несколько (затем доказывается, что их бесконечно много).

В геометрии Римана принимается аксиома, что каждая прямая, лежащая в одной плоскости с данной прямой, пересекает эту прямую. Эта аксиома противоречит системе аксиом евклидовой геометрии с исключением аксиомы о параллельных.

Таким образом, отличия евклидовой геометрии от геометрии Лобачевского в том, что порядок точек на прямой является линейным, т. е. подобным порядку в множестве действительных чисел, а отличие евклидовой геометрии от геометрии Римана в том, что порядок точек на прямой является циклическим, т. е. подобным порядку в множестве точек на окружности. Кроме того, в геометриях Евклида и Лобачевского каждая прямая, лежащая в данной плоскости, разделяет эту плоскость на две части; в геометрии Римана прямая не разделяет плоскость на две части, т. е. любые две точки плоскости, не лежащие на данной прямой, можно соединить в этой плоскости непрерывной дугой, не пересекая данную прямую.


*«Начала» (греч. Στοιχεῖα, лат. Elementa) — главный труд Евклида, написанный около 300 г. до н. э. и посвященный систематическому построению геометрии.

НЕЕВКЛИДОВА ГЕОМЕТРИЯ - это... Что такое НЕЕВКЛИДОВА ГЕОМЕТРИЯ?


НЕЕВКЛИДОВА ГЕОМЕТРИЯ

геометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов (1825) явилось значительным событием в истории мысли, ибо послужило первым шагом на пути к теории относительности. Второй постулат Евклида утверждает, что любой отрезок прямой можно неограниченно продолжить. Евклид, по-видимому, считал, что этот постулат содержит в себе и утверждение, что прямая имеет бесконечную длину. Однако в "эллиптической" геометрии любая прямая конечна и, подобно окружности, замкнута. Пятый постулат утверждает, что если прямая пересекает две данные прямые так, что два внутренних угла по одну сторону от нее в сумме меньше двух прямых углов, то эти две прямые, если продолжить их неограниченно, пересекутся с той стороны, где сумма этих углов меньше суммы двух прямых. Но в "гиперболической" геометрии может существовать прямая CB (рис. 1), перпендикулярная в точке С к заданной прямой r и пересекающая другую прямую s под острым углом в точке B, но, тем не менее бесконечные прямые r и s никогда не пересекутся.

Рис. 1. В ГИПЕРБОЛИЧЕСКОЙ ГЕОМЕТРИИ может существовать прямая CB, перпендикулярная данной прямой r и пересекающая другую данную прямую s под острым углом в точке B так, что бесконечный луч s не пересекает прямую r.
Из этих пересмотренных постулатов следовало, что сумма углов треугольника, равная 180° в евклидовой геометрии, больше 180° в эллиптической геометрии и меньше 180° в гиперболической геометрии.
История. Первым неевклидовым геометром, вероятно, можно считать самого Евклида. Его нежелание использовать "несамоочевидный" пятый постулат следует хотя бы из того, что свои первые двадцать восемь предложений Евклид доказывает, не прибегая к этому постулату. С первого века до н.э. до 1820 математики пытались вывести пятый постулат из остальных, но преуспели лишь в замене его различными эквивалентными допущениями, такими, как "две параллельные линии всюду равно удалены друг от друга" или "любые три точки, не расположенные на одной прямой, принадлежат окружности". Ближе всех подошел к цели иезуит, логик и математик Дж.Саккери (1667-1733), который начал свои исследования с так называемого четырехугольника Саккери (рис. 2), т.е. с четырехугольника BCED, у которого BC = DE, а углы при вершинах C и E прямые. Заметив, что углы при вершинах B и D обязательно равны, Саккери рассмотрел поочередно три гипотезы: верхние углы четырехугольника тупые, прямые и острые. Он доказал, что любая из этих гипотез, если ее принять для какого-нибудь одного такого четырехугольника, остается в силе для всех таких четырехугольников. Саккери намеревался обосновать гипотезу о том, что верхние углы прямые, доказав, что любая другая гипотеза приводит к противоречию. Вскоре он отверг гипотезу о тупом угле (и тем самым лишил себя возможности открыть эллиптическую геометрию), поскольку, как и все геометры до 1854, рассматривал второй постулат как утверждение о том, что прямая имеет бесконечную длину, и отказываться от этого постулата он не хотел. Точно также Саккери в конце концов отверг и гипотезу об остром угле, но прежде, чем принять это ошибочное решение, он, сам того не ведая, открыл многие теоремы геометрии, получившей впоследствии название гиперболической.

Рис. 2. ЧЕТЫРЕХУГОЛЬНИК САККЕРИ - четырехугольник BCED с BC = ED и прямыми углами при вершинах C и E. Евклидова геометрия требует, чтобы углы B и D также были прямыми. В эллиптической геометрии эти углы - тупые, а в гиперболической - острые.
К. Гаусса (1777-1855) принято считать одним из величайших математиков всех времен. Он первым подошел к проблеме с современной точки зрения, согласно которой геометрию, отрицающую пятый постулат, надлежит развивать ради нее самой, не ожидая, что при этом возникнет какое-то противоречие. Письма Гаусса к друзьям говорят о том, что к 1816 он преодолел традиционный предрассудок относительно неизбежности противоречия и развил "антиевклидову" геометрию, удовлетворяющую гипотезе Саккери об остром угле. Но, опасаясь насмешек, он воздерживался от публикации этих идей и тем самым позволил разделить честь открытия гиперболической геометрии (примерно в 1825) венгру Я. Бойяи (1802-1860) и русскому Н. И. Лобачевскому (1793-1856). Бойяи опубликовал свою работу до того, как услышал о Лобачевском, а последний, судя по всему, так никогда и не узнал об исследованиях Бойяи. В 1854 Б. Риман (1826-1866) заметил, что из неограниченности пространства еще не следует его бесконечная протяженность. Смысл этого утверждения станет яснее, если представить, что в неограниченной, но конечной вселенной астроном в принципе мог бы увидеть в телескоп, обладающий достаточно высокой разрешающей способностью, свой собственный затылок (если отвлечься от небольшой детали, связанной с тем, что свет, отраженный от затылка, достиг бы глаза астронома через тысячи миллионов лет). В своем доказательстве того, что внешний угол при любой вершине треугольника больше внутреннего угла при любой из двух остальных вершин, Евклид неявно использовал бесконечную длину прямой. Из этой теоремы тотчас же следует теорема о том, что сумма любых двух углов треугольника меньше суммы двух прямых углов. Если отказаться от бесконечной длины прямой, то гипотеза Саккери о тупом угле становиться верной и из нее следует, что сумма углов треугольника больше суммы двух прямых. Такое положение дел было давно известно в сферической тригонометрии, где стороны треугольника являются дугами больших кругов. Риман внес эпохальный вклад, распространив представление о конечном, но неограниченном пространстве с двух на три и большее число измерений.
Эллиптическая плоскость. Ф. Клейн (1849-1925) первым увидел, как избавить сферическую геометрию от одного из ее недостатков - того, что две лежащие в одной плоскости "прямые" (два больших круга на сфере) имеют не одну общую точку, а две (рис. 3,а). Так как для каждой точки существует одна-единственная точка-антипод (диаметрально противоположная точка), а для любой фигуры существует ее дубликат из точек-антиподов, мы можем, ничем не жертвуя, но многое приобретая, абстрактно отождествить обе точки такой пары, объединив их в одну. Таким образом можно изменить смысл термина "точка", условившись впредь называть "одной точкой" пару диаметрально противоположных точек. Иначе говоря, точки так называемой "эллиптической" плоскости представлены на единичной сфере парами точек-антиподов или диаметрами, соединяющими точки-антиподы. Вся эллиптическая прямая замкнута, как окружность, но, поскольку каждая из ее точек представлена двумя точками-антиподами на единичной сфере, полная длина эллиптической прямой равна половине длины окружности большого круга, т.е. ее полная длина равна p.

Рис. 3. а - на эллиптической плоскости "точка" представлена двумя точками-антиподами на сфере, например, точками P и P'. б - диаметр, соединяющий северный и южный полюсы сферы, на эллиптической плоскости является "полюсом" экватора.
Такое представление с помощью диаметров и диаметральных плоскостей сферы (при котором диаметр, соединяющий северный и южный полюсы сферы, является "полюсом" экватора), показывает, что все свойства действительной проективной плоскости сохраняются и для эллиптической плоскости.
Геометрия порядка. Один из подходов к построению гиперболической геометрии исходит из некоторых фундаментальных аксиом порядка, справедливых и в евклидовой, но не в эллиптической геометрии. Если считать "точки" исходными понятиями, то запись [[ABC]] означает, что точка B лежит "между" точками A и C (это первичное отношение мы принимаем, не пытаясь его определить). Первые четыре аксиомы порядка утверждают, что 1) существует по крайней мере две точки; 2) если A и B - две различные точки, то существует по крайней мере одна точка C, для которой [[ABC]]; 3) эта точка C отлична от точки A и 4) порядок [[ABC]] влечет за собой [[CBA]], но не [[BCA]]. "Отрезок" AB, по определению, состоит из точек P, для которых [[APB]], а "луч" A/B ("исходящий из A в другую сторону, чем B") - из точек Q, для которых [[QAB]]. "Прямая" AB состоит из отрезка AB, точек A, B и двух лучей A/B, B/A. Пятая аксиома утверждает, что если C и D - различные точки на прямой AB, то A лежит на прямой CD (из этой же аксиомы следует, что прямые AB и CD совпадают). Шестая аксиома дает нам точку вне данной прямой, а седьмая, сформулированная М. Пашем (1843-1931), позволяет определить плоскость как множество всех точек, коллинеарных с парами точек на одной или двух сторонах данного треугольника.
Абсолютная геометрия. Большая часть вклада Бойяи связана с теми разделами гиперболической геометрии, которые принадлежат и евклидовой геометрии. Его "абсолютная геометрия" может быть выведена из геометрии порядка, если к последней добавить еще одно фундаментальное отношение, а именно "конгруэнтность". Это отношение определяется пятью аксиомами типа "Если ABC и A'B'C' - два треугольника, таких, что BC є B'C', CA є C'A', AB є A'B', а D и D' - еще две точки, такие, что [[BCD]] и [[B'C'D']] и BD є B'D', то AD є A'D'". Эти аксиомы служат основой теории длины и позволяют распространить отношение конгруэнтности с пар точек на углы. Определив обычным образом окружность, мы можем рассматривать первые четыре постулата Евклида как теоремы и доказать его первые двадцать восемь предложений, заменив слово "параллельные" на "не пересекающиеся". Однако необходимо тщательно избегать любого обращения к нашему обычному представлению о сумме углов треугольника; например, мы не можем более утверждать, что углы, опирающиеся на один и тот же сегмент окружности, равны, так как доказательство этого предложения зависело бы от суммы углов треугольника. С другой стороны, мы можем доказать, что три высоты остроугольного треугольника пересекаются в одной точке, построить теорию правильных многоугольников и правильных многогранников (с небольшими оговорками). Уточнив понятие параллельности (определив как параллельные лучи, которые просто не пересекаются), мы можем показать, что параллельность - отношение симметричное и транзитивное (т. е. если прямая r параллельна прямой s, то s параллельна r; если r параллельна s, а s параллельна t, то r параллельна t). Множество прямых, параллельных данному лучу, называется "пучком параллельных"; он содержит единственную прямую, проходящую через любую заданную точку. Следуя аналогии с обычным пучком (состоящим из всех прямых, проходящих через точку), мы можем считать, что пучок параллельных определяет "бесконечно удаленную точку", или, по терминологии Д. Гильберта (1862-1943), "конец". Вместо того, чтобы говорить, что два луча (или две прямые) параллельны или что они принадлежат некоторому пучку параллельных M, мы говорим, что два луча имеют общий конец M. Луч, проходящий через точку C и принадлежащий данному пучку параллельных, принято обозначать CM, как если бы это был отрезок; тот же символ CM можно использовать и для обозначения всей прямой. Если BM и CM - параллельные лучи, то фигура MCB называется "асимптотическим треугольником", поскольку она во многом ведет себя, как обычный треугольник. В частности, два асимптотических треугольника конгруэнтны, если у них имеется по конгруэнтной стороне и конгруэнтному углу.
Гиперболическая плоскость. Из абсолютной геометрии Бойяи можно вывести евклидову геометрию, добавив евклидову (или аффинную) аксиому: через точку B, не лежащую на данной прямой r, можно провести не более одной прямой, параллельной данной. Гиперболическую геометрию можно вывести из абсолютной геометрии, добавив гиперболическую аксиому, повторяющую только что приведенную, но без отрицания "не" во втором случае. Таким образом, лучи BM и BN на рис. 4 могут быть оба параллельны r, а если M и N их концы, то r называется "прямой MN". Любая прямая, например t, являющаяся продолжением стороны угла РNBM, образует с r пару "гиперпараллельных", т.е. пару прямых, которые не пересекаются и не параллельны. Две такие прямые имеют единственный общий перпендикуляр. Множество прямых, перпендикулярных данной прямой a, называются "пучком гиперпараллельных" с "осью" a.

Рис. 4. ЛЮБАЯ ПОЛУПРЯМАЯ, например t, являющаяся продолжением стороны угла NBM, образует с r пару "гиперпараллельных", т.е. две прямые, которые не пересекаются и не параллельны.
Отражение относительно BC показывает, что РCBM и РNBC - равные острые углы. Лобачевский назвал каждый из них "углом параллельности" П(a), где a - длина BC. Он показал, что функция П(a) монотонно убывает от p ¤ 2 до 0, когда a возрастает от 0 до беск. Треугольник BMN естественно назвать "дважды асимптотическим треугольником". Два дважды асимптотических треугольника конгруэнтны, если имеют конгруэнтные углы. Если отрезок CB возрастает до тех пор, пока не превратится в луч CL, то BMN превращается в "трижды асимптотический треугольник" LMN, все три вершины которого являются концами (все три стороны такого треугольника бесконечны, а все три угла равны нулю). Все трижды асимптотические треугольники конгруэнтны. Одной из самых прекрасных страниц в литературе по неевклидовой геометрии со времен Лобачевского считается предложенное Г.Либманом доказательство того, что площадь треугольника остается конечной, когда две (или три) его стороны становятся бесконечными. Доказательство сводится к разбиению асимптотического треугольника на бесконечную последовательность конечных треугольников и перекладыванию их с соблюдением одного условия: все они должны умещаться внутри некоторого конечного пятиугольника. Метод Либмана восполняет один из двух недостающих шагов в предложенном Гауссом красивом доказательстве того, что площадь любого треугольника пропорциональна его "угловому дефекту" - величине, показывающей, насколько сумма углов треугольника меньше двух прямых. Аналогия с выражением (A + B + C) - p для площади сферического треугольника (на единичной сфере) наводит на мысль о естественной единице измерения, при которой площадь треугольника ABC просто равна p - (A + B + C). Используя эту единицу, Лобачевский выразил угол параллельности, соответствующий расстоянию x, формулой П(x) = 2arctg e-x.
Кривые, ортогональные обычному пучку прямых, имеют вид концентрических окружностей; кривые, ортогональные пучку параллельных, имеют вид концентрических "орициклов". В действительности орицикл - это предельная форма окружности, центр которой уходит в бесконечность (так, что диаметры окружности становятся параллельными).
Евклидовы модели неевклидовых геометрий. Ф. Вахтер (1792-1817) за несколько месяцев до безвременной кончины сообщил в письме к Гауссу о своем наблюдении: если пятый постулат Евклида ложен, то сфера, радиус которой стремиться к бесконечности, приближается к предельной поверхности, чья внутренняя геометрия совпадает с геометрией евклидовой плоскости. Тем самым Вахтер предвосхитил появление "орисферы", сыгравшей важную роль в работах Бойяи и Лобачевского. Эта поверхность получается при вращении орицикла вокруг любого из его диаметров. Кривые на орисфере, которые ведут себя, как евклидовы прямые, - орициклы, по которым орисферу пересекают ее диаметральные плоскости. А. Пуанкаре (1854-1912) открыл представление гиперболического пространства с помощью конформной модели, в которой геометрическое место концов имеет вид плоскости W в евклидовом пространстве, а сферам с центрами в W соответствуют плоскости гиперболического пространства. Заменив сферы полусферами, Пуанкаре получил возможность представить все гиперболическое пространство с помощью половины евклидова пространства, а именно всеми точками, лежащими по одну сторону от W. Один пучок концентрических орисфер представлен плоскостями, параллельными W; можно доказать, что евклидовы расстояния в такой плоскости пропорциональны соответствующим геодезическим на орисфере, что полностью согласуется с наблюдением Вахтера. Рассматривая сечение трехмерной модели Пуанкаре плоскостью, перпендикулярной W, мы получим модель аналогичную модели Пуанкаре для гиперболической плоскости. В этой модели геометрическое место концов имеет вид евклидовой прямой. В другой модели геометрическое место концов имеет вид окружности w, а прямые на гиперболической плоскости - дуг окружностей, ортогональных w. Две параллельные дуге r, проходящие через точку B, - просто дуги, проходящие через точку B и касающиеся дуги r в ее концах, как на рис. 5.

Рис. 5. ПАРАЛЛЕЛЬНЫЕ BC и BD к r, проходящие через точку B, - это просто две дуги, проходящие через точку B так, что они касаются r в ее концах. Эта модель "конформна", так как углы сохраняются, хотя расстояния неизбежно искажаются.
Такая модель называется "конформной" потому, что углы сохраняют свою величину, хотя расстояния неизбежно искажаются. Если пойти на искажение углов, то дуги можно заменить хордами, как на рис. 6. Эту более простую модель предложил в 1868 году Э. Бельтрами (1835-1900) для доказательства того, что гиперболическая геометрия так же логически непротиворечива, как и евклидова (хотя и Бойяи и Лобачевский были интуитивно убеждены, что их исследования никогда не приведут к двум противоречащим друг другу утверждениям, ни один из них не дожил до строгого доказательства непротиворечивости гиперболической геометрии). В модели Бельтрами множество прямых, проходящих через точку A, представлено обычным пучком параллельных или гиперпараллельных в зависимости от того, находится ли A внутри w, на w или вне w. В последнем случае (см. нижнюю часть рис. 6) ось пучка гиперпараллельных есть "поляра" точки A, соединяющая точки касания двух касательных, проведенных из точки A. Иначе говоря, две перпендикулярные прямые гиперболической плоскости представлены двумя прямыми, "сопряженными" относительно w. Такого рода идеи относятся к проективной геометрии; действительно, w можно рассматривать как коническое сечение на действительной проективной плоскости; в этом случае мы приходим к модели А.Кэли (1821-1895) и Ф. Клейна. Это коническое сечение w, геометрическое место концов, есть то, что Кэли назвал "абсолютом". (Преисполненный энтузиазмом, он сначала даже писал это слово с прописной буквы "А", но позднее перешел на строчную "а" во избежание упрека в непочтительности). Чтобы быть совершенно точным, следует отметить, что проективная плоскость, на которой работал Кэли, была не действительной, а комплексной: Кэли разрешал w быть коническим сечением, не содержащим действительных точек, отчего геометрия становится не гиперболической, а эллиптической.

Рис. 6. В ЭТОЙ КОНФОРМНОЙ МОДЕЛИ, если мы согласимся, что углы также искажаются, дуги, изображенные на рис. 5, можно заменить их хордами. В нижней части рисунка ось пучка параллельных - "поляра" точки A, соединяющая точки касания двух касательных, проведенных из A.

Энциклопедия Кольера. — Открытое общество. 2000.

  • МАТЕМАТИКИ ИСТОРИЯ
  • ЧИСЛО

Смотреть что такое "НЕЕВКЛИДОВА ГЕОМЕТРИЯ" в других словарях:

  • Неевклидова геометрия — Неевклидова геометрия  в буквальном понимании  любая геометрическая система, отличная от геометрии Евклида; однако традиционно термин «неевклидова геометрия» применяется в более узком смысле и относится только к двум геометрическим… …   Википедия

  • Неевклидова геометрия — см. Геометрия, Лобачевский и Пангеометрия …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • неевклидова геометрия — неевкл идова геом етрия, неевкл идовой геом етрии …   Русский орфографический словарь

  • неевклидова геометрия — …   Орфографический словарь русского языка

  • неевклидова — (геометрия) …   Орфографический словарь-справочник

  • Геометрия Лобачевского — (1) евклидова геометрия; (2) геометрия Римана; (3) геометрия Лобачевского Геометрия Лобачевского (гип …   Википедия

  • Геометрия — (от др. греч. γῆ  Земля и μετρέω  «мерю»)  раздел математики, изучающий пространственные структуры, отношения и их обобщения[1]. Содержание …   Википедия

  • Геометрия Римана — Не следует путать с Риманова геометрия. Геометрия Римана (эллиптическая геометрия)  одна из трёх «великих геометрий» (Евклида, Лобачевского и Римана). Если геометрия Евклида реализуется на поверхностях с постоянной нулевой гауссовой… …   Википедия

  • ГЕОМЕТРИЯ — раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В… …   Энциклопедия Кольера

  • неевклидова — *неевкли/дова (геометрия) …   Слитно. Раздельно. Через дефис.


Евклидова геометрия — Википедия

Материал из Википедии — свободной энциклопедии

Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.).

Элементарная геометрия — геометрия, определяемая в основном группой перемещений (изометрий) и группой подобия. Однако содержание элементарной геометрии не исчерпывается указанными преобразованиями. К элементарной геометрии также относят преобразование инверсии, вопросы сферической геометрии, элементы геометрических построений, теорию измерения геометрических величин и другие вопросы.

Элементарную геометрию часто называют евклидовой геометрией, так как первоначальное и систематическое её изложение, хотя и недостаточно строгое, было в «Началах» Евклида. Первая строгая аксиоматика элементарной геометрии была дана Гильбертом. Элементарная геометрия изучается в средней общеобразовательной школе.

Задача аксиоматизации элементарной геометрии состоит в построении системы аксиом так, чтобы все утверждения евклидовой геометрии следовали из этих аксиом чисто логическим выводом без наглядности чертежей.

В «Началах» Евклида была дана следующая система аксиом:

  1. От всякой точки до всякой точки можно провести прямую линию.
  2. Ограниченную прямую можно непрерывно продолжать по прямой.
  3. Из всякого центра всяким радиусом может быть описан круг.
  4. Все прямые углы равны между собой.
  5. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых углов, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых углов.

Эта система была достаточна для того, чтобы один математик понял другого, но в доказательствах неявно использовались и другие интуитивно очевидные утверждения, в частности так называемая теорема Паша, которая не может быть выведена из постулатов Евклида.

В 1899 году Гильберт предложил первую достаточно строгую аксиоматику евклидовой геометрии. Попытки улучшения евклидовой аксиоматики предпринимались до Гильберта Пашем, Шуром[en], Пеано, Веронезе, однако подход Гильберта, при всей его консервативности в выборе понятий, оказался более успешным.

Существуют и другие современные аксиоматики, наиболее известные:

Существует несколько конкурирующих систем обозначений.

  • Точки обычно обозначаются прописными латинскими буквами A,B,C,…{\displaystyle A,B,C,\dots }.
  • Прямые обычно обозначаются строчными латинскими буквами a,b,c,…{\displaystyle a,b,c,\dots }.
  • Расстояние между точками P{\displaystyle P} и Q{\displaystyle Q} обычно обозначается PQ{\displaystyle PQ} или |PQ|{\displaystyle |PQ|}.
  • Отрезок между точками P{\displaystyle P} и Q{\displaystyle Q} обычно обозначается [PQ]{\displaystyle [PQ]} или PQ¯{\displaystyle {\overline {PQ}}}.
  • Луч из точки P{\displaystyle P} через точку Q{\displaystyle Q} обычно обозначается [PQ){\displaystyle [PQ)} или PQ→{\displaystyle {\overrightarrow {PQ}}}.
  • Прямая через точки P{\displaystyle P} и Q{\displaystyle Q} обычно обозначается (PQ){\displaystyle (PQ)} или PQ↔{\displaystyle {\overleftrightarrow {PQ}}}.
  • Треугольник с вершинами P{\displaystyle P}, Q{\displaystyle Q} и R{\displaystyle R} обычно обозначается △PQR{\displaystyle \triangle PQR} или [PQR]{\displaystyle [PQR]}.
  • Площадь фигуры F{\displaystyle F} обычно обозначается S(F){\displaystyle S(F)} или |F|{\displaystyle |F|}.
  • Угол, образованный лучами [OP){\displaystyle [OP)} и [OQ){\displaystyle [OQ)}, обычно обозначается ∠POQ{\displaystyle \angle POQ}.
  • Величина угла ∠POQ{\displaystyle \angle POQ} обычно обозначается ∡POQ{\displaystyle \measuredangle POQ}.
    • При этом для краткости величина угла часто обозначается строчной греческой буквой α,β,γ,…{\displaystyle \alpha ,\beta ,\gamma ,\dots }.

«Что представляет из себя геометрия Лобачевского простыми словами?» – Яндекс.Кью

Чтобы построить геометрию начиная с аксиом, изучить свойства фигур, классифицировать движения плоскости, вовсе не обязательно иметь перед глазами линии и чертежи. Какую мы там представляем себе картинку – для высокой геометрии несущественно. Изображения в геометрию «не зашиты». С картинками мы работаем потому, что это удобно, наглядно, и составляет значимую часть культуры человечества.

Когда мы учим геометрию (привычную евклидову), то для каждого понятия (евклидова плоскость, точка, прямая, окружность, расстояние) у нас есть модель: каждый может нарисовать две точки и измерить расстояние линейкой. Эта модель общепринята, но не обязательна. Не все заметили, что в школе изучают две абсолютно непохожих евклидовых модели, тесно связанных между собой.

Координаты на плоскости связывают обе модели: каждой паре чисел соответствует точка с такими координатам и наоборот.

Когда Лобачевский строил свою геометрию, он начал с аксиоматики, настолько необычной, что у него даже модели никакой не было для новой геометрии. Он не представлял себе в целом, как выглядят «прямая», «плоскость», хотя оперировал этими словами по всем правилам науки. Он рассуждал очень, очень абстрактно. И в этом одна из причин, почему его геометрию сначала приняли в штыки: трудно было себе представить, о чем он говорит; привычная евклидова модель не годилась. Со временем другие люди разработали модели геометрии Лобачевского, и притом разные. Общепринятой модели нет; а в разных моделях даже прямые выглядят по-разному! Поэтому, в отличие от Евклидовой, для модели Лобачевского нельзя описать "естественую" модель. Есть и алгебраическая модель, вообще без картинок.

Чтобы представить себе геометрию Лобачевского, не стоит пересказывать аксиоматику и теоремы простыми словами. Лучше познакомиться с разными моделями в картинках, а потом уж переходить к формальным описаниям.

Вот на картинке одна из моделей (Пуанкаре) геометрии Лобачевского.

Евклидова (элементарная) геометрия


Постулаты Евклида

Евклидова геометрия — это геометрическая теория, основанная на системе аксиом, которая была впервые изложена в третьем веке до нашей эры великим древнегреческим математиком Евклидом в грандиозном научном труде «Начала».

Система аксиом Евклида базируется на основных геометрические понятиях таких, как точка, прямая, плоскость, движение, а также на следующие отношения: «точка лежит на прямой на плоскости», «точка лежит между двумя другими».

В «Началах» Евклид представил следующую аксиоматику:

  • От всякой точки до всякой точки можно провести прямую.
  • Ограниченную прямую можно непрерывно продолжать по прямой.
  • Из всякого центра всяким раствором может быть описан круг.
  • Все прямые углы равны между собой.
  • Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

Тщательное изучение аксиоматики Евклида во второй половине XIX века показало её неполноту. В 1899 году Д. Гилберт предложил первую строгую аксиоматику евклидовой геометрии. Впоследствии еще не раз ученые предпринимали попытки усовершенствовать аксиоматику евклидовой геометрии. Кроме аксиоматики Гилберта, известными считаются: аксиоматики Тарского и аксиоматики Биргофа, которая состоит всего лишь из 4 аксиом.

В современной трактовке система аксиом Евклида может быть разделена на пять групп:

  • Аксиомы сочетания. Во-первых, через каждые две точки можно провести прямую и притом только одну. Во-вторых, на каждой прямой лежат по крайней мере две точки. При этом существуют хотя бы три точки, которые не лежат на одной прямой. В-третьих, через каждые три точки, не лежащие на одной прямой, можно провести плоскость и притом только одну. В-четвертых, на каждой плоскости есть по крайней мере три точки, а также существуют хотя бы четыре точки, не лежащие в одной плоскости. В-пятых, если две точки данной прямой лежат на данной плоскости, значит и сама прямая лежит на этой плоскости. В-шестых, если две плоскости имеют общую точку, то, следовательно они имеют и общую прямую.
  • Аксиомы порядка. Во-первых, если точка В лежит между А и С, то все три лежат на одной прямой. Во-вторых, для каждых точек А, В существует такая точка С, что В лежит между А и С. В-третьих, из трёх точек прямой только одна лежит между двумя другими. В-четвертых, если прямая пересекает одну сторону треугольника, значит она пересекает при этом и другую его сторону или проходит через вершину (отрезок AB определяется как множество точек, лежащих между А и В; аналогично определяются стороны треугольника).
  • Аксиомы движения. Во-первых, движение ставит в соответствие точкам точки, прямым прямые, плоскостям плоскости, сохраняя принадлежность точек прямым и плоскостям. Во-вторых, два последовательных движения вновь дают движение, и для всякого движения есть обратное. В-третьих, если даны точки А, A’ и полуплоскости A, A‘, ограниченные продолженными полупрямыми а, а’, которые исходят из точек А, A’, то существует единственное движение, переводящее А, а, A в A’, a’, A’ (полупрямая и полуплоскость легко определяются на основе понятий сочетания и порядка).
  • Аксиомы непрерывности. Во-первых, как гласит аксиома Архимеда, всякий отрезок можно перекрыть любым отрезком, откладывая на первом его достаточное количество раз (откладывание отрезка осуществляется движением). Во-вторых, согласно аксиоме Кантора: если дана последовательность отрезков, вложенных один в другой, то все они имеют хотя бы одну общую точку.
  • Аксиома параллельности Евклида: через точку А вне прямой а в плоскости, проходящей через А и а, можно провести лишь одну прямую, не пересекающую а.

Евклидова геометрия стала результатом систематизации и обобщения наглядных представлений человека об окружающем мире. Углубленное проникновение в суть геометрии привело к более абстрактному пониманию науки. Более поздние достижения и открытие показали, что наши представления о пространстве являются априорными, то есть чисто умозрительные. Таким образом было поставлено под сомнение существование единственной геометрии. бурное развитие физики и астрономии, доказало, что евклидова геометрия описывает структуру окружающего пространства, но вовсе не способна описать свойства пространства, связанные с перемещениями тел со скоростями, близкими к световой. Русский математик Н. И. Лобачевский разработал новую неевклидову геометрию, которая приблизилась к реальному описанию физического пространства.


Ватиканский манускрипт, т.2, 207v — 208r. Euclid XI prop. 31, 32 и 33.

Поделиться ссылкой

Неевклидова геометрия Лобачевского

Попыток создать геометрию, отличную от евклидовой, было множество. Загвоздка была в том самом постулате о параллельных прямых, который никак не удавалось доказать. И постепенно ученые стали приходить к мысли, что можно построить такую геометрию, где пятый постулат будет отличаться от евклидова. Над этим работали и Карл Гаусс, и Янош Бояи, но первопроходцем стал Николай Иванович Лобачевский, который в 1829 г. опубликовал свои «Начала геометрии». Он оставил первые четыре постулата, но заменил пятый.

В Казани много лет проработал великий математик Н.И. Лобачевский. Он был не только ученым, но и прекрасным организатором

Казанский университет в 1830-е гг. Н.И. Лобачевский был ректором этого университета в 1827—1846 гг.

Пятый постулат Лобачевского утверждает, что через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие ее, в то время как в евклидовой геометрии через эту точку можно провести только одну такую прямую.

Иногда ошибочно думают, что в геометрии Лобачевского две параллельные прямые пересекаются, но это не так. Более того, в неевклидовой геометрии вообще ничего не говорится о параллельных прямых — только о непересекающихся. Дело в том, что пространство, в котором действует геометрия Лобачевского, обладает отрицательной кривизной. Такое пространство можно вообразить, если представить себе геометрические тела, похожие на воронку и седло. Во всяком случае, неевклидова геометрия, в отличие от евклидовой, реализуется в искривленном пространстве. А ведь сейчас считается, что пространство нашей Вселенной обладает кривизной. Связана неевклидова геометрия и с теорией относительности Эйнштейна. А евклидова геометрия тоже верна, но является ее частным случаем.

Геометрия Лобачевского реализуется в очень необычном пространстве с отрицательной кривизной

Еще одна геометрия

В науке известны три великие геометрии — Евклида, Лобачевского и Римана. Геометрия Римана реализуется на сфере, и там все прямые пересекаются. Но их при этом нельзя назвать параллельными. Дело в том, что параллельные прямые, согласно своему определению, не пересекаются ни в одной геометрии.

В сферической геометрии Римана пересекаются все прямые, но никакие из них, по условию, не являются параллельными

Поделиться ссылкой

НЕЕВКЛИДОВА ГЕОМЕТРИЯ | Энциклопедия Кругосвет

Содержание статьи

НЕЕВКЛИДОВА ГЕОМЕТРИЯ, геометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов (1825) явилось значительным событием в истории мысли, ибо послужило первым шагом на пути к теории относительности.

Второй постулат Евклида утверждает, что любой отрезок прямой можно неограниченно продолжить. Евклид, по-видимому, считал, что этот постулат содержит в себе и утверждение, что прямая имеет бесконечную длину. Однако в «эллиптической» геометрии любая прямая конечна и, подобно окружности, замкнута.

Пятый постулат утверждает, что если прямая пересекает две данные прямые так, что два внутренних угла по одну сторону от нее в сумме меньше двух прямых углов, то эти две прямые, если продолжить их неограниченно, пересекутся с той стороны, где сумма этих углов меньше суммы двух прямых. Но в «гиперболической» геометрии может существовать прямая CB (рис. 1), перпендикулярная в точке С к заданной прямой r и пересекающая другую прямую s под острым углом в точке B, но, тем не менее бесконечные прямые r и s никогда не пересекутся.

Из этих пересмотренных постулатов следовало, что сумма углов треугольника, равная 180° в евклидовой геометрии, больше 180° в эллиптической геометрии и меньше 180° в гиперболической геометрии.

История.

Первым неевклидовым геометром, вероятно, можно считать самого Евклида. Его нежелание использовать «несамоочевидный» пятый постулат следует хотя бы из того, что свои первые двадцать восемь предложений Евклид доказывает, не прибегая к этому постулату. С первого века до н.э. до 1820 математики пытались вывести пятый постулат из остальных, но преуспели лишь в замене его различными эквивалентными допущениями, такими, как «две параллельные линии всюду равно удалены друг от друга» или «любые три точки, не расположенные на одной прямой, принадлежат окружности». Ближе всех подошел к цели иезуит, логик и математик Дж.Саккери (1667–1733), который начал свои исследования с так называемого четырехугольника Саккери (рис. 2), т.е. с четырехугольника BCED, у которого BC = DE, а углы при вершинах C и E прямые. Заметив, что углы при вершинах B и D обязательно равны, Саккери рассмотрел поочередно три гипотезы: верхние углы четырехугольника тупые, прямые и острые. Он доказал, что любая из этих гипотез, если ее принять для какого-нибудь одного такого четырехугольника, остается в силе для всех таких четырехугольников. Саккери намеревался обосновать гипотезу о том, что верхние углы прямые, доказав, что любая другая гипотеза приводит к противоречию. Вскоре он отверг гипотезу о тупом угле (и тем самым лишил себя возможности открыть эллиптическую геометрию), поскольку, как и все геометры до 1854, рассматривал второй постулат как утверждение о том, что прямая имеет бесконечную длину, и отказываться от этого постулата он не хотел. Точно также Саккери в конце концов отверг и гипотезу об остром угле, но прежде, чем принять это ошибочное решение, он, сам того не ведая, открыл многие теоремы геометрии, получившей впоследствии название гиперболической.

К.Гаусса (1777–1855) принято считать одним из величайших математиков всех времен. Он первым подошел к проблеме с современной точки зрения, согласно которой геометрию, отрицающую пятый постулат, надлежит развивать ради нее самой, не ожидая, что при этом возникнет какое-то противоречие. Письма Гаусса к друзьям говорят о том, что к 1816 он преодолел традиционный предрассудок относительно неизбежности противоречия и развил «антиевклидову» геометрию, удовлетворяющую гипотезе Саккери об остром угле. Но, опасаясь насмешек, он воздерживался от публикации этих идей и тем самым позволил разделить честь открытия гиперболической геометрии (примерно в 1825) венгру Я.Бойяи (1802–1860) и русскому Н.И.Лобачевскому (1793–1856). Бойяи опубликовал свою работу до того, как услышал о Лобачевском, а последний, судя по всему, так никогда и не узнал об исследованиях Бойяи.

В 1854 Б.Риман (1826–1866) заметил, что из неограниченности пространства еще не следует его бесконечная протяженность. Смысл этого утверждения станет яснее, если представить, что в неограниченной, но конечной вселенной астроном в принципе мог бы увидеть в телескоп, обладающий достаточно высокой разрешающей способностью, свой собственный затылок (если отвлечься от небольшой детали, связанной с тем, что свет, отраженный от затылка, достиг бы глаза астронома через тысячи миллионов лет). В своем доказательстве того, что внешний угол при любой вершине треугольника больше внутреннего угла при любой из двух остальных вершин, Евклид неявно использовал бесконечную длину прямой. Из этой теоремы тотчас же следует теорема о том, что сумма любых двух углов треугольника меньше суммы двух прямых углов. Если отказаться от бесконечной длины прямой, то гипотеза Саккери о тупом угле становиться верной и из нее следует, что сумма углов треугольника больше суммы двух прямых. Такое положение дел было давно известно в сферической тригонометрии, где стороны треугольника являются дугами больших кругов. Риман внес эпохальный вклад, распространив представление о конечном, но неограниченном пространстве с двух на три и большее число измерений.

Эллиптическая плоскость.

Ф.Клейн (1849–1925) первым увидел, как избавить сферическую геометрию от одного из ее недостатков – того, что две лежащие в одной плоскости «прямые» (два больших круга на сфере) имеют не одну общую точку, а две (рис. 3,а). Так как для каждой точки существует одна-единственная точка-антипод (диаметрально противоположная точка), а для любой фигуры существует ее дубликат из точек-антиподов, мы можем, ничем не жертвуя, но многое приобретая, абстрактно отождествить обе точки такой пары, объединив их в одну. Таким образом можно изменить смысл термина «точка», условившись впредь называть «одной точкой» пару диаметрально противоположных точек. Иначе говоря, точки так называемой «эллиптической» плоскости представлены на единичной сфере парами точек-антиподов или диаметрами, соединяющими точки-антиподы. Вся эллиптическая прямая замкнута, как окружность, но, поскольку каждая из ее точек представлена двумя точками-антиподами на единичной сфере, полная длина эллиптической прямой равна половине длины окружности большого круга, т.е. ее полная длина равна p.

Такое представление с помощью диаметров и диаметральных плоскостей сферы (при котором диаметр, соединяющий северный и южный полюсы сферы, является «полюсом» экватора), показывает, что все свойства действительной проективной плоскости сохраняются и для эллиптической плоскости.

Геометрия порядка.

Один из подходов к построению гиперболической геометрии исходит из некоторых фундаментальных аксиом порядка, справедливых и в евклидовой, но не в эллиптической геометрии. Если считать «точки» исходными понятиями, то запись [ABC] означает, что точка B лежит «между» точками A и C (это первичное отношение мы принимаем, не пытаясь его определить). Первые четыре аксиомы порядка утверждают, что 1) существует по крайней мере две точки; 2) если A и B – две различные точки, то существует по крайней мере одна точка C, для которой [ABC]; 3) эта точка C отлична от точки A и 4) порядок [ABC] влечет за собой [CBA], но не [BCA]. «Отрезок» AB, по определению, состоит из точек P, для которых [APB], а «луч» A/B («исходящий из A в другую сторону, чем B») – из точек Q, для которых [QAB]. «Прямая» AB состоит из отрезка AB, точек A, B и двух лучей A/B, B/A. Пятая аксиома утверждает, что если C и D – различные точки на прямой AB, то A лежит на прямой CD (из этой же аксиомы следует, что прямые AB и CD совпадают). Шестая аксиома дает нам точку вне данной прямой, а седьмая, сформулированная М.Пашем (1843–1931), позволяет определить плоскость как множество всех точек, коллинеарных с парами точек на одной или двух сторонах данного треугольника.

Абсолютная геометрия.

Большая часть вклада Бойяи связана с теми разделами гиперболической геометрии, которые принадлежат и евклидовой геометрии. Его «абсолютная геометрия» может быть выведена из геометрии порядка, если к последней добавить еще одно фундаментальное отношение, а именно «конгруэнтность». Это отношение определяется пятью аксиомами типа «Если ABC и A ўB ўC ў – два треугольника, таких, что BC є B ўC ў, CA є C ўA ў, AB є A ўB ў, а D и D ў – еще две точки, такие, что [BCD] и [B ўC ўD ў] и BD є B ўD ў, то AD є A ўD ў». Эти аксиомы служат основой теории длины и позволяют распространить отношение конгруэнтности с пар точек на углы. Определив обычным образом окружность, мы можем рассматривать первые четыре постулата Евклида как теоремы и доказать его первые двадцать восемь предложений, заменив слово «параллельные» на «не пересекающиеся». Однако необходимо тщательно избегать любого обращения к нашему обычному представлению о сумме углов треугольника; например, мы не можем более утверждать, что углы, опирающиеся на один и тот же сегмент окружности, равны, так как доказательство этого предложения зависело бы от суммы углов треугольника. С другой стороны, мы можем доказать, что три высоты остроугольного треугольника пересекаются в одной точке, построить теорию правильных многоугольников и правильных многогранников (с небольшими оговорками). Уточнив понятие параллельности (определив как параллельные лучи, которые просто не пересекаются), мы можем показать, что параллельность – отношение симметричное и транзитивное (т.е. если прямая r параллельна прямой s, то s параллельна r ; если r параллельна s, а s параллельна t, то r параллельна t).

Множество прямых, параллельных данному лучу, называется «пучком параллельных»; он содержит единственную прямую, проходящую через любую заданную точку. Следуя аналогии с обычным пучком (состоящим из всех прямых, проходящих через точку), мы можем считать, что пучок параллельных определяет «бесконечно удаленную точку», или, по терминологии Д.Гильберта (1862–1943), «конец». Вместо того, чтобы говорить, что два луча (или две прямые) параллельны или что они принадлежат некоторому пучку параллельных M, мы говорим, что два луча имеют общий конец M. Луч, проходящий через точку C и принадлежащий данному пучку параллельных, принято обозначать CM, как если бы это был отрезок; тот же символ CM можно использовать и для обозначения всей прямой. Если BM и CM – параллельные лучи, то фигура MCB называется «асимптотическим треугольником», поскольку она во многом ведет себя, как обычный треугольник. В частности, два асимптотических треугольника конгруэнтны, если у них имеется по конгруэнтной стороне и конгруэнтному углу.

Гиперболическая плоскость.

Из абсолютной геометрии Бойяи можно вывести евклидову геометрию, добавив евклидову (или аффинную) аксиому: через точку B, не лежащую на данной прямой r, можно провести не более одной прямой, параллельной данной. Гиперболическую геометрию можно вывести из абсолютной геометрии, добавив гиперболическую аксиому, повторяющую только что приведенную, но без отрицания «не» во втором случае. Таким образом, лучи BM и BN на рис. 4 могут быть оба параллельны r, а если M и N их концы, то r называется «прямой MN». Любая прямая, например t, являющаяся продолжением стороны угла РNBM, образует с r пару «гиперпараллельных», т.е. пару прямых, которые не пересекаются и не параллельны. Две такие прямые имеют единственный общий перпендикуляр. Множество прямых, перпендикулярных данной прямой a, называются «пучком гиперпараллельных» с «осью» a.

Отражение относительно BC показывает, что РCBM и РNBC – равные острые углы. Лобачевский назвал каждый из них «углом параллельности» П(a), где a – длина BC. Он показал, что функция П(a) монотонно убывает от p ¤ 2 до 0, когда a возрастает от 0 до Ґ. Треугольник BMN естественно назвать «дважды асимптотическим треугольником». Два дважды асимптотических треугольника конгруэнтны, если имеют конгруэнтные углы. Если отрезок CB возрастает до тех пор, пока не превратится в луч CL, то BMN превращается в «трижды асимптотический треугольник» LMN, все три вершины которого являются концами (все три стороны такого треугольника бесконечны, а все три угла равны нулю). Все трижды асимптотические треугольники конгруэнтны.

Одной из самых прекрасных страниц в литературе по неевклидовой геометрии со времен Лобачевского считается предложенное Г.Либманом доказательство того, что площадь треугольника остается конечной, когда две (или три) его стороны становятся бесконечными. Доказательство сводится к разбиению асимптотического треугольника на бесконечную последовательность конечных треугольников и перекладыванию их с соблюдением одного условия: все они должны умещаться внутри некоторого конечного пятиугольника. Метод Либмана восполняет один из двух недостающих шагов в предложенном Гауссом красивом доказательстве того, что площадь любого треугольника пропорциональна его «угловому дефекту» – величине, показывающей, насколько сумма углов треугольника меньше двух прямых. Аналогия с выражением (A + B + C) – p для площади сферического треугольника (на единичной сфере) наводит на мысль о естественной единице измерения, при которой площадь треугольника ABC просто равна p –(A + B + C). Используя эту единицу, Лобачевский выразил угол параллельности, соответствующий расстоянию x, формулой

П(x) = 2arctg e–x.

Кривые, ортогональные обычному пучку прямых, имеют вид концентрических окружностей; кривые, ортогональные пучку параллельных, имеют вид концентрических «орициклов». В действительности орицикл – это предельная форма окружности, центр которой уходит в бесконечность (так, что диаметры окружности становятся параллельными).

Евклидовы модели неевклидовых геометрий.

Ф.Вахтер (1792–1817) за несколько месяцев до безвременной кончины сообщил в письме к Гауссу о своем наблюдении: если пятый постулат Евклида ложен, то сфера, радиус которой стремиться к бесконечности, приближается к предельной поверхности, чья внутренняя геометрия совпадает с геометрией евклидовой плоскости. Тем самым Вахтер предвосхитил появление «орисферы», сыгравшей важную роль в работах Бойяи и Лобачевского. Эта поверхность получается при вращении орицикла вокруг любого из его диаметров. Кривые на орисфере, которые ведут себя, как евклидовы прямые, – орициклы, по которым орисферу пересекают ее диаметральные плоскости.

А.Пуанкаре (1854–1912) открыл представление гиперболического пространства с помощью конформной модели, в которой геометрическое место концов имеет вид плоскости W в евклидовом пространстве, а сферам с центрами в W соответствуют плоскости гиперболического пространства. Заменив сферы полусферами, Пуанкаре получил возможность представить все гиперболическое пространство с помощью половины евклидова пространства, а именно всеми точками, лежащими по одну сторону от W. Один пучок концентрических орисфер представлен плоскостями, параллельными W; можно доказать, что евклидовы расстояния в такой плоскости пропорциональны соответствующим геодезическим на орисфере, что полностью согласуется с наблюдением Вахтера.

Рассматривая сечение трехмерной модели Пуанкаре плоскостью, перпендикулярной W, мы получим модель аналогичную модели Пуанкаре для гиперболической плоскости. В этой модели геометрическое место концов имеет вид евклидовой прямой. В другой модели геометрическое место концов имеет вид окружности w, а прямые на гиперболической плоскости – дуг окружностей, ортогональных w. Две параллельные дуге r, проходящие через точку B, – просто дуги, проходящие через точку B и касающиеся дуги r в ее концах, как на рис. 5.

Такая модель называется «конформной» потому, что углы сохраняют свою величину, хотя расстояния неизбежно искажаются. Если пойти на искажение углов, то дуги можно заменить хордами, как на рис. 6. Эту более простую модель предложил в 1868 году Э.Бельтрами (1835–1900) для доказательства того, что гиперболическая геометрия так же логически непротиворечива, как и евклидова (хотя и Бойяи и Лобачевский были интуитивно убеждены, что их исследования никогда не приведут к двум противоречащим друг другу утверждениям, ни один из них не дожил до строгого доказательства непротиворечивости гиперболической геометрии). В модели Бельтрами множество прямых, проходящих через точку A, представлено обычным пучком параллельных или гиперпараллельных в зависимости от того, находится ли A внутри w, на w или вне w. В последнем случае (см. нижнюю часть рис. 6) ось пучка гиперпараллельных есть «поляра» точки A, соединяющая точки касания двух касательных, проведенных из точки A. Иначе говоря, две перпендикулярные прямые гиперболической плоскости представлены двумя прямыми, «сопряженными» относительно w. Такого рода идеи относятся к проективной геометрии; действительно, w можно рассматривать как коническое сечение на действительной проективной плоскости; в этом случае мы приходим к модели А.Кэли (1821–1895) и Ф.Клейна. Это коническое сечение w, геометрическое место концов, есть то, что Кэли назвал «абсолютом». (Преисполненный энтузиазмом, он сначала даже писал это слово с прописной буквы «А», но позднее перешел на строчную «а» во избежание упрека в непочтительности). Чтобы быть совершенно точным, следует отметить, что проективная плоскость, на которой работал Кэли, была не действительной, а комплексной: Кэли разрешал w быть коническим сечением, не содержащим действительных точек, отчего геометрия становится не гиперболической, а эллиптической.

Что представляет из себя «геометрия Лобачевского» простыми словами?

Чтобы представить себе геометрию Лобачевского, лучше всего сравнить ее с привычной евклидовой.

Евклид построил первый образец геометрии. Он перечислил основные понятия, вроде «точка», «прямая»… Потом — основные аксиомы, которые принимались без доказательств, настолько они были очевидны. Например: «из любого центра можно описать окружность любым радиусом»; «все прямые углы равны»…

А уж потом из этих аксиом чередой выводил вереницу теорем.

В этой стройной системе была закавыка — один постулат (пять аксиом Евклид назвал постулатами) выглядел неуклюже. Больше двух тысяч лет после Евклида математики пытались показать, что этот постулат лишний; что его можно вывести из остальных аксиом. Кто только этим не занимался: Омар Хайам, Лежандр, Бельтрами, Ламберт…

Николай Иванович Лобачевский сначала тоже попытался доказать пятый постулат, методом «от противного».

Лобачевский предположил другой постулат вместо пятого и надеялся из этого предположения вывести вереницу теорем так, чтобы какие-нибудь были противоречивы. Тогда можно было бы сделать вывод, что предположение ложное, а значит, пятый постулат Евклида истинный.

Так он выводил одну теорему за другой и в конце концов понял, что просто строит другую — неевклидову — геометрию. Ее утверждения казались парадоксальными:

  • Сумма углов любого треугольника меньше 180°.
  • Если углы двух треугольников попарно равны, то и треугольники равны.
  • Подобных, но не равных треугольников не бывает.

И геометрия Евклида, и геометрия Лобачевского позволяют выводить цепочки непротиворечивых теорем. Но для геометрии Евклида у нас есть привычная модель: мы умеем рисовать точки и прямые, задавать углы и расстояния так, что все теоремы можно увидеть своими глазами. А для геометрии Лобачевского такой модели не было.

Как все нарисовать, придумали другие люди, и уже после смерти Лобачевского. Они создали модели геометрии Лобачевского. Модель — не то же самое, что геометрия. Модель позволяет нам представить и увидеть, что происходит в плоскости Лобачевского — а увиденное уже проще понять. Чтобы представить себе геометрию Лобачевского, надо отказаться от представления, что плоскость выглядит как бесконечный во все стороны лист бумаги, что прямая выглядит так:

В модели Пуанкаре на диске, например, плоскость выглядит как круг без края:

Представьте себе, что на этой плоскости живут коротышки, и что размеры всех объектов на плоскости уменьшаются при удалении от центра. Идет такой коротышка от центра к абсолюту (так называется край), и становится все меньше и меньше, а ножки у него все короче и короче. Идет он, идет, а до края дошагать никак не может — чем ближе к краю, тем ближе длина шага к нулю. А раз до края дойти не может, плоскость кажется ему бескрайней.

Точки в его мире выглядят так же, как в нашем. А прямыми в его мире считаются евклидовы диаметры диска и куски евклидовых окружностей, перпендикулярных абсолюту, несколько прямых нарисованы синим. В такой геометрии можно определить углы между прямыми, расстояния и преобразования, которые сохраняют расстояния.

С теоретической точки зрения геометрии Евклида и Лобачевского равноправны. А вот какая из них верно описывает наш мир — большой вопрос. Многое зависит от масштаба. Мы с вами знаем, что поверхность Земли больше похожа на шар, чем на плоскость; но размечая грядки на даче, мы об этом не думаем, для дачного масштаба хватает плоского приближения. Наш бытовой жизненный опыт говорит нам, что мы живем на плоскости; чтобы увидеть шар, надо перейти к планетарным масштабам.

Сам Лобачевский проводил астрономические наблюдения и вычисления, но его результаты не были достаточно аккуратны, чтобы определить, какая именно геометрия реализуется в нашем мире. Собственно говоря, науке до сих пор это неизвестно наверняка.

Про разницу между геометрией и моделью

Модели геометрии Лобачевского своими руками

Неевклидова геометрия - это... Что такое Неевклидова геометрия?

Неевклидова геометрия — в буквальном понимании — любая геометрическая система, отличная от геометрии Евклида; однако традиционно термин «неевклидова геометрия» применяется в более узком смысле и относится только к двум геометрическим системам: геометрии Лобачевского и сферической геометрии.

Как и евклидова, эти геометрии относятся к метрическим геометриям пространства постоянной кривизны. Нулевая кривизна соответствует евклидовой геометрии, положительная — сферической, отрицательная — геометрии Лобачевского.

Метрика для плоскости

Вид метрики для однородных планиметрий зависит от выбранной системы (криволинейных) координат; далее приводятся формулы для случая полугеодезических координат:

История понятия

См. также

Литература

  • Александров А. Д., Нецветаев Н. Ю. Геометрия. — Наука, Москва, 1990. ISBN 978-5-9775-0419-5.
  • Александров П. С. Что такое неэвклидова геометрия. — УРСС, Москва, 2007. ISBN 978-5-484-00871-1.
  • Алексеевский Д. В., Винберг Э. Б., Солодовников А. С. Геометрия пространств постоянной кривизны. — Итоги науки и техники. Серия: Современные проблемы математики. Фундаментальные направления. 1988, том 29, стр. 5–146.
  • Берже М. Геометрия. Пер. с франц., в двух томах. М., «Мир», 1984. 928 с. Том II, часть V: Внутренняя геометрия сферы, гиперболическая геометрия.
  • История математики с древнейших времён до начала XIX столетия (под ред. А. П. Юшкевича), тома I—III, М., Наука, 1972.
  • Делоне Б. Н. Элементарное доказательство непротиворечивости планиметрии Лобачевского, — Гостехиздат, Москва, 1956.
  • Клейн Ф. Неевклидова геометрия. М.: изд. НКТП СССР, 1936, 355 с.
  • Лаптев Б. Л. Н. И. Лобачевский и его геометрия. М.: Просвещение, 1976.
  • Мищенко А. С., Фоменко А. Т. Курс дифференциальной геометрии и топологии, — Факториал, Москва, 2000.
  • Прасолов В. В. Геометрия Лобачевского. Изд. 3-е, МЦНМО, 2004. ISBN 5-94057-166-2.
  • Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия, — Физматлит, Москва, 2009.

Неевклидова геометрия Лобачевского — лекции на ПостНауке

Ключевые слова в этом постулате — «при достаточном продолжении». Именно из-за этих слов постулат невозможно проверить опытным путем. Может быть, прямые пересекутся в зоне видимости. Может быть, через 10 километров или за орбитой Плутона, а может быть, вообще в другой галактике.

Свои постулаты и результаты, которые из них логически следуют, Евклид изложил в знаменитой книге «Начала». От древнегреческого названия этой книги происходит русское слово «стихии», а от латинского названия — слово «элементы». «Начала» Евклида — это самый популярный учебник всех времен и народов. По числу изданий он уступает только Библии.

Особенно хочется отметить замечательное британское издание 1847 года с очень наглядной и красивой инфографикой. Вместо унылых обозначений на чертежах там используются цветные рисунки — не то, что в современных школьных учебниках геометрии.

Вплоть до прошлого века «Начала» Евклида были обязательны для изучения на всех образовательных программах, где подразумевалось интеллектуальное творчество, то есть не просто обучение ремеслу, а что-то более интеллектуальное. Неочевидность пятого постулата Евклида вызвала естественный вопрос: нельзя ли его доказать, то есть вывести логически из остальных допущений Евклида? Это пытались сделать очень многие математики от современников Евклида до современников Лобачевского. Как правило, они сводили пятый постулат к какому-то более наглядному утверждению, в которое проще поверить.

Например, в XVII веке английский математик Джон Валлис свел пятый постулат к такому утверждению: существует два подобных, но неравных треугольника, то есть два треугольника, у которых углы равны, а размеры разные. Казалось бы, что может быть проще? Просто изменим масштаб. Но, оказывается, возможность менять масштаб с сохранением всех углов и пропорций — это эксклюзивное свойство евклидовой геометрии, то есть геометрии, в которой выполнены все постулаты Евклида, включая пятый.

В XVIII веке шотландский ученый Джон Плейфэр переформулировал пятый постулат в том виде, в котором он обычно фигурирует в современных школьных учебниках: две прямые, пересекающие друг друга, не могут быть одновременно параллельны третьей прямой. Именно в таком виде пятый постулат фигурирует в современных школьных учебниках.

К началу XIX века у многих сложилось впечатление, что доказывать пятый постулат — это все равно что изобретать вечный двигатель — совершенно бесполезное занятие. Но и предположить, что геометрия Евклида не единственно возможная, ни у кого не хватило духу: слишком велик был авторитет Евклида. В такой ситуации открытия Лобачевского были, с одной стороны, закономерны, а с другой — абсолютно революционны.

Лобачевский заменил пятый постулат на прямо противоположное утверждение. Аксиома Лобачевского звучала так: если из точки, не лежащей на прямой, выпустить все лучи, пересекающие эту прямую, то слева и справа эти лучи будут ограничены двумя предельными лучами, которые прямую уже не пересекут, но будут становиться к ней все ближе и ближе. Причем угол между этими предельными лучами будет строго меньше 180 градусов.

Из аксиомы Лобачевского сразу следует, что через точку, не лежащую на данной прямой, можно провести не одну прямую, параллельную данной, как у Евклида, а сколько угодно. Но вести себя эти прямые будут иначе, чем у Евклида. Например, если у нас есть две параллельные прямые, то они могут сначала сближаться, а потом удаляться. То есть расстояние от точки на первой прямой до второй прямой будет зависеть от точки. Будет разным для разных точек.

Геометрия Лобачевского противоречит нашей интуиции отчасти потому, что на небольших расстояниях, с которыми мы обычно имеем дело, она очень мало отличается от евклидовой. Похожим образом мы воспринимаем кривизну поверхности Земли. Когда мы идем от дома к магазину, нам кажется, что мы идем по прямой, а Земля плоская. Но если мы летим, скажем, из Москвы в Монреаль, то мы уже замечаем, что самолет летит по дуге окружности, потому что именно это кратчайший путь между двумя точками на поверхности Земли. То есть мы замечаем, что Земля больше похожа на футбольный мяч, чем на блин.

Геометрию Лобачевского тоже можно проиллюстрировать с помощью футбольного мяча, только не обычного, а гиперболического. Гиперболический футбольный мяч склеен примерно как обычный. Только в обычном мяче к черным пятиугольникам приклеиваются белые шестиугольники, а в гиперболическом мяче вместо пятиугольников нужно делать семиугольники и тоже обклеивать их шестиугольниками. При этом получится уже, конечно, не мяч, а скорее седло. И на этом седле реализуется геометрия Лобачевского.

О своих открытиях Лобачевский пытался рассказать в 1826 году в Казанском университете. Но текста доклада не сохранилось. В 1829 году он опубликовал статью о своей геометрии в университетском журнале. Результаты Лобачевского многим казались бессмысленными — не только потому, что они разрушали привычную картину мира, но потому, что изложены были не самым понятным образом.

Однако были у Лобачевского публикации и в высокорейтинговых журналах, как мы их сегодня называем. Например, в 1836 году он опубликовал статью под названием «Воображаемая геометрия» на французском в знаменитом журнале Крелля, в одном номере со статьями известнейших математиков того времени — Дирихле, Штейнера и Якоби. А в 1840 году Лобачевский издал небольшую и очень понятно написанную книгу под названием «Геометрические исследования по теории параллельных линий». Книга была на немецком и издана была в Германии. Тут же появилась разгромная рецензия. Рецензент особенно издевался над фразой Лобачевского: «Чем далее продолжаем прямые в сторону их параллелизма, тем больше они приближаются друг к другу». «Одно это высказывание, — писал рецензент, — уже достаточно характеризует сочинение господина Лобачевского и освобождает рецензента от необходимости дальнейшей его оценки».

Но нашелся у книги и один непредвзятый читатель. Это был Карл Фридрих Гаусс, также известный под прозвищем Король Математиков, один из величайших математиков в истории. Он высоко оценил книгу Лобачевского в одном из своих писем. Но его отзыв опубликовали только после его смерти вместе с остальной перепиской. И вот тогда начался настоящий бум геометрии Лобачевского.

В 1866 году его книгу перевели на французский язык, затем на английский. Причем английское издание было переиздано еще три раза из-за необычайной популярности. К сожалению, Лобачевский до этого времени не дожил. Он умер в 1856 году. А в 1868-м появилось русское издание книги Лобачевского. Оно вышло не книгой, а статьей в старейшем российском журнале «Математический сборник». Но тогда этот журнал был совсем молодым, ему не исполнилось еще и двух лет. Но более известен русский перевод 1945 года, выполненный замечательным российским и советским геометром Вениамином Федоровичем Каганом.


Смотрите также