Реле времени что это такое


Реле времени — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 декабря 2016; проверки требуют 11 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 декабря 2016; проверки требуют 11 правок. Работа реле с задержкой срабатывания контакта на замыкание. Работа реле с задержкой срабатывания контакта на размыкание. Реле времени с часовым механизмом Цифровое[1] электронное реле времени для фотоувеличителя «Сура-2». СССР, 1980-е гг.

Реле́ вре́мени — реле, предназначенное для создания независимой выдержки времени и обеспечения определённой последовательности работы элементов схемы. Реле времени применяется в случаях, когда необходимо автоматически выполнить какое-то действие не сразу после появления управляющего сигнала, а через установленный промежуток времени.

С электромагнитным замедлением[править | править код]

Реле времени с электромагнитным замедлением применяются только при постоянном токе. Помимо основной обмотки реле этой серии имеют дополнительную короткозамкнутую обмотку, состоящую из медной гильзы. При нарастании основного магнитного потока он создаёт ток в дополнительной обмотке, который препятствует нарастанию основного магнитного потока. В итоге результирующий магнитный поток увеличивается медленнее, время «трогания» якоря уменьшается, чем обеспечивается выдержка времени при включении. При отключении тока в катушке за счёт индуктивности короткозамкнутого витка магнитный поток в реле какое-то время сохраняется, удерживая якорь.

Этот вид реле времени обеспечивает выдержку времени при срабатывании от 0,07 с до 0,11 с, при отключении от 0,5 с до 1,4 с.

С пневматическим замедлением[править | править код]

Реле времени с пневматическим замедлением имеет специальное замедляющее устройство — пневматический демпфер. Регулировка выдержки осуществляется изменением сечения отверстия для забора воздуха, как правило, с помощью регулировочного винта.

Этот тип реле времени обеспечивает выдержку времени от 0,4 до 180 с, с точностью срабатывания 10 % от установки.

С часовым или анкерным механизмом[править | править код]

Реле времени с анкерным или часовым механизмом работает за счёт пружины, которая заводится под действием электромагнита, и контакты реле срабатывают только после того, как анкерный механизм отсчитает время, выставленное на шкале. Разновидность подобных реле используется в мощных (на токи в сотни и тысячи ампер) автоматических выключателях на напряжение 0,4-10 кВ. Составные части такого реле — механизм замедления и токовая обмотка, взводящая его пружину. Скорость хода механизма зависит от затяжки пружины, то есть от тока в обмотке, по окончании хода механизм вызывает отключение автомата, тем самым выполняя функции тепловой защиты от перегрузок, не нуждаясь при этом в коррекции по температуре окружающего воздуха.

Этот тип реле времени обеспечивает выдержку времени от 0,1 до 20 с с точностью срабатывания 10 % от установки.

Моторные реле времени[править | править код]

Моторные реле времени предназначены для отсчета времени от 10 с до нескольких часов. Оно состоит из синхронного двигателя, редуктора, электромагнита для сцепления и расцепления двигателя с редуктором, контактов.

Электронные реле времени[править | править код]

В электронных реле для получения временной задержки используются различные аналоговые и цифровые схемотехнические решения. Как правило это интегральные (аналоговые) цепи или цифровые логические устройства (таймеры). Встречаются также реле времени на основе элементов микропроцессорной техники.

  1. ↑ «Сура» реле времени цифровое для фотопечати: Руководство по эксплуатации.

Реле времени - назначение, схема и принцип работы, классификация

Жизнь современного человека насыщена электрическими приборами. Они дают нам необходимые свет и тепло, доносят информацию, существенно облегают выполнение множества повседневных бытовых задач, помогают в строительстве, ремонте, при работе на садовом участке. Без них не обходится ни выполнение домашних лечебно-оздоровительных процедур, ни организация семейного досуга. Естественно, вся эта техника требует соответствующего бережного отношения и умения обращаться с ней. Но и в этом вопросе научно-технический прогресс приходит на помощь человеку.

Для рациональной, экономичной эксплуатации электрических приборов широко используются автоматизированные системы управления. Они способны выполнять массу полезных функций, и в том числе — позволяют включать или выключать устройства именно тогда, когда это требуется, по заданным хозяевами алгоритмам.

Реле времениРеле времени

Современные системы управления порой поражают широтой своей функциональности. Но иногда бывает достаточно и более простых в устройстве и эксплуатации приборов автоматизации. Так, одним из примеров несложных устройств автоматического управления, кстати, внедренных в быт человека уже довольно давно, является реле времени. Что это такое, для чего оно может использоваться, какие существуют разновидности и по какому принципу они работают – обо всем этом в настоящей публикации.

Что такое реле времени?

Надо полагать, что читатель этой статьи — не специалист в вопросах электротехники, а лишь пытливый пользователь, старающийся расширить свой кругозор и применить полученную информацию в повседневной жизни. Поэтому для начала будет полезно вспомнить, что же скрывается под общим термином «реле»?

Не будем приводить длинную «научную» формулировку этого понятия – она может быть не вполне понятна начинающему. А если говорить простыми словами, то реле – это электромеханическое или электронное устройство, которое производит коммутацию (соединение или разрыв) электрической цепи при получении внешнего управляющего сигнала. Если точнее, то срабатывание происходит, когда внешнее воздействие достигает какой-то заданной величины.

Первые реле были изобретены, изготовлены и применены еще в середине XIX века – они стали незаменимым компонентом аппаратов бурно развивающейся в те времена телеграфной связи. С тех пор, безусловно, эти устройства прошли длинный путь доработок и усовершенствований, повысилась их надежность, появились новые типы, способные работать в самых разных условиях эксплуатации. Но принцип остался неизменным – внешнее управляющее воздействие руководит замыканием, размыканием или переключением электрических цепей.

На схеме очень наглядно показан основной принцип работы электромеханического реле. Ну а количество контактов и схема их переключения при срабатывании устройства далеко не ограничивается этими двумя примерами.На схеме очень наглядно показан основной принцип работы электромеханического реле. Ну а количество контактов и схема их переключения при срабатывании устройства далеко не ограничивается этими двумя примерами.

По большей части реле управляются электрическими сигналами – когда показатели силы тока или напряжения достигают определенной величины. Но, кстати, управляющее воздействие вовсе не обязательно является электрическим. Существуют реле, срабатывание которых вызывается изменением давления в трубопроводе, температуры окружающей среды, освещенности объекта и другие. Все это открывает очень широкие возможности автоматизации и обеспечения безопасности эксплуатации разнообразной электрической техники.

Реле давления – в бытовых условиях обычно ставится в цепи питания насосного оборудования, что позволяет автоматизировать работу систем автономного водоснабжения или отопления.Реле давления – в бытовых условиях обычно ставится в цепи питания насосного оборудования, что позволяет автоматизировать работу систем автономного водоснабжения или отопления.

Можно добавить, что в наше время наряду с электромеханическими реле все шире используются «твердотельные» — электронные ключи, в которых переключение контактов происходит за свет использования каскадов полупроводниковых элементов или интегральных микросхем.

Теперь – к вопросу о том, что же такое реле времени.

А подсказка кроется в самом названии. Это в принципе такое же реле, но срабатывание которого происходит с определенной задержкой после подачи (или снятия) управляющего сигнала. Или же коммутация цепей производится с определенным алгоритмом по времени.

Такие устройства нашли очень широкое применение в автоматизации промышленного оборудования. Но их широко используют и в бытовых условиях. Например, на них можно переложить часть забот по управлению осветительными приборами, климатическим оборудованием или системами вентиляции, с получением весьма впечатляющего эффекта экономии электроэнергии. Появляется возможность производить в заданное время необходимые действия с бытовыми электрическими приборами даже в отсутствие хозяев или без их вмешательства. Одним словом, реле времени способны значительно упростить жизнь владельцам дома.

Электромеханическое аналоговое реле времени в корпусе под установку на стандартную DIN-рейку. Даже внешне некоторые приборы такого предназначения напоминают обычные часы.Электромеханическое аналоговое реле времени в корпусе под установку на стандартную DIN-рейку. Даже внешне некоторые приборы такого предназначения напоминают обычные часы.

Это была, так сказать, общая информация. А теперь перейдем к более пристальному рассмотрению разнообразия этих устройств и алгоритмов их работы.

Алгоритмы работы реле времени, функциональные диаграммы, условные обозначения

По каким алгоритмам могут работать реле времени

Выше уже упоминалось, что любые реле могут работать на замыкание, размыкание и переключение контактов при необходимом управляющем воздействии. А в реле времени предусматривается или пауза после такого воздействия, или даже соблюдение определенной цикличности срабатывания.

Различают немало алгоритмов работы реле времени. Ниже на схемах будут рассмотрены наиболее часто применяемые.

На схемах верхним графиком (голубого цвета) показывается напряжение питания, подаваемое на реле. Нижний график – выходное напряжение, идущее от реле на исполнительное устройство (на нагрузку). Красными стрелками показываются диапазоны установленной задержки срабатывания.

Еще одно замечание. Управляющие сигналы для реле могут подаваться по разному.

— Это может быть общее напряжение питание, подаваемое на прибор. Такие реле так и называется – с управлением по питанию.

— Для управления используется отдельная цепь подачи внешнего сигнала.

На приведенных ниже схемах, просто для более понятного восприятия, будут в основном показаны (за одним исключением) алгоритмы для реле с управлением по питанию. Но и для второго варианта они, в принципе, такие же.

Алгоритм 1

Схема алгоритма №1Схема алгоритма №1

Реле времени с задержкой включения. После включения питания выходной сигнал будет передан на нагрузку по истечении установленной паузы Т.

Алгоритм 2

Схема алгоритма №2Схема алгоритма №2

Выходной сигнал в данном варианте передается на нагрузку сразу после включения питания. Но через установленный интервал Т – прерывается.

Алгоритм 3

Схема алгоритма №3Схема алгоритма №3

Включение нагрузки происходит одновременно с подачей общего питания. Но выключение производится после выдержки паузы Т с момента снятия напряжения питания реле.

Алгоритм 4

Схема алгоритма №4Схема алгоритма №4

Цикличная работа реле времени, с паузой на старте. После подачи напряжения питания выходной сигнал на нагрузку появляется через интервал Т1. Этот сигнал выдерживается в течение определенного установленного интервала Т2. Затем происходит размыкание, с повторной паузой Т1, после чего вновь включение нагрузки на время Т2и так далее до полного снятия напряжения питания.

Алгоритм 5

Схема алгоритма №5Схема алгоритма №5

Один из вариантов с постоянно подключенным питанием и управлением с помощью внешнего сигнала. При подаче управляющего импульса (или, наоборот, при его снятии – показано высветленным цветом и пунктиром) срабатывает реле и коммутирует питание на нагрузку. Питание подается в течение установленного периода Т1, после чего автоматически отключается, до поступления очередного управляющего импульса.

Эти алгоритмы можно назвать базовыми. А уже из них, как из «кирпичиков», могут выстраиваться куда более сложные схемы, реализованные в реле различных конструкций и моделей.

Одна из самых важных характеристик реле времени – функциональная диаграмма

Кстати, показанные выше графические схемы имеют название функциональных диаграмм реле, и обычно указываются на корпусе прибора или в его технической документации. То есть при выборе требуемого изделия для определенных нужд, умея читать такие диаграммы, можно отыскать подходящую модель.

Ниже на двух иллюстрациях будет продемонстрировано многообразие функциональных диаграмм реле времени, предлагаемых в продаже. Это показывается лишь в качестве примера, так как на самом деле выбор может быть намного шире. Обратите внимание и на то, что некоторые реле могут иметь несколько выходов на нагрузку, а также несколько каналов получения внешнего управляющего сигнала.

Примеры функциональных диаграмм реле времени с управлением по питанию.

Функциональные диаграммы реле времени – таблица АФункциональные диаграммы реле времени – таблица А

Примеры функциональных диаграмм реле времени с управлением внешним сигналом.

Функциональные диаграммы реле времени – таблица БФункциональные диаграммы реле времени – таблица Б

Значения временных интервалов Т, Т1, Т2 и т.д.  чаще всего имеет возможность устанавливать пользователь. Правда, существуют модели реле времени, в которых время срабатывания уже предустановлено и изменению не подлежит. Но это приборы специального предназначения, обычно устанавливаемые в схемах защит электрических приборов и установок. Естественно, величина задержки в таком случае указывается в техническом описании изделия.

В одном реле времени может быть реализовано несколько алгоритмов его работы, с возможностью выбора. А функциональные диаграммы и схемы контактов обычно изображены на корпусе изделия.В одном реле времени может быть реализовано несколько алгоритмов его работы, с возможностью выбора. А функциональные диаграммы и схемы контактов обычно изображены на корпусе изделия.

Обозначения контактов реле времени на схемах

При выборе реле времени необходимо уметь разбираться не только в функциональной диаграмме, но и в схеме расположения контактов. Обычно встречаются вот такие принятые обозначения:

А. Контакты, работающие на размыкание цепи.

Условные обозначения контактор реле времени, работающих на размыканиеУсловные обозначения контактор реле времени, работающих на размыкание

1 — дуга обращена вниз: задержка срабатывания после подачи управляющего напряжения;

2 — дуга обращена вниз: задержка срабатывания после снятия управляющего напряжения;

3 — две противоположно направленные дуги: задержки и при подаче управляющего напряжения, и при его снятии.

Б. Контакты, работающие на замыкание цепи.

Условные обозначения контактор реле времени, работающих на замыканиеУсловные обозначения контактор реле времени, работающих на замыкание

Условия срабатывания, понятно, можно не расписывать – они такие же, как в предыдущем примере.

Разновидности реле времени

Типы реле времени по общему конструктивному исполнению

Итак, выяснили, что переключение контактов в реле времени производится с определенной задержкой после подачи или снятия питающего или управляющего напряжения. Но прежде чем перейти к рассмотрению самих устройств, обеспечивающих работу по заданному алгоритму, заметим, что реле времени по своей компоновке или общему исполнению можно разделить на несколько типов.

  • Моноблочные реле времени. Это – совершенно независимые приборы с собственным корпусом, встроенным питанием или устройством для подключения питания, с выходом, к которому можно подключать стороннюю бытовую или иную технику. Такое реле можно устанавливать в практически в любом месте по необходимости, и подключать к нему тот прибор (систему) который требует подобного управления по времени. Классическим примером может служить реле времени, с которым хорошо знакомы те, кто занимался печатью фотографий.
Такое реле времени позволяло очень точно соблюдать выбранную экспозицию фотобумаги при печатании фотографийТакое реле времени позволяло очень точно соблюдать выбранную экспозицию фотобумаги при печатании фотографий

К приборам более широкого использования можно отнести современные реле времени (таймеры) которые останавливаются в розетку и имеют гнездо для подключения сетевой вилки нагрузки. Самый простейший пример использования – можно с вечера запрограммировать, чтобы к утреннему подъему хозяев в электрическом чайнике была вскипячена вода.

Реле времени (или таймеры), подключаемые в розетку и сами становящиеся «управляемой розеткой» для подключенного к ним электрического прибора. Как видно, могут быть электромеханическими и электронными.Реле времени (или таймеры), подключаемые в розетку и сами становящиеся «управляемой розеткой» для подключенного к ним электрического прибора. Как видно, могут быть электромеханическими и электронными.
  • Встраиваемые реле времени. Они не имеют собственного корпуса, являются одним из узлов электрического прибора (или предназначены для такой установки), и автономно, как правило, не применяются. Классический пример такого реле времени – это механический или электронный таймер, руководящий режимами работы стиральной машины, микроволновки, электрической духовки и т.п.
Встраиваемое реле времени, как отдельный узел общего устройства крупного бытового прибораВстраиваемое реле времени, как отдельный узел общего устройства крупного бытового прибора

Такие реле могут быть электромеханическими, имеющими блочное исполнение. Другой вариант – это реле электронного типа, собранное на печатной плате, которая коммутируется с общей схемой того или иного электрического прибора.

Электронное реле времени, выполненное в виде монтажной сборки на печатной плате.Электронное реле времени, выполненное в виде монтажной сборки на печатной плате
  • Модульные реле времени. Как понятно уже из названия, такие приборы имеют стандартизированные размеры и предназначаются для установки на DIN-рейку распределительного щита. Там же, в щите, производится и из стационарное подключение к источнику питания и нагрузке, работой которой они будут управлять. Например, таким образом можно подключить системы освещения, которые будут работать по определенному алгоритму времени, мощные приборы отопления, скажем, с тем расчетом, чтобы их основное функционирование приходилось на часы действия льготного тарифа, вентиляционные установки для обеспечения заданной периодичности проветривания и т.п. Возможно их использование и с другими крупными бытовыми приборами, если те в своей конструкции не имеют собственного встроенного таймера.
Модульные реле времени представлены в продаже широким разнообразием моделей различной степени сложности и функциональной оснащенности.Модульные реле времени представлены в продаже широким разнообразием моделей различной степени сложности и функциональной оснащенности

Несмотря на единообразие размеров, модульные реле времени могут значительно различаться набором возможностей, количеством каналов и программируемых интервалов. В зависимости от степени сложности и, отчасти, от допустимой мощности подключаемого к ним оборудования, такие реле могут занимать одно, два, три и даже больше модуль-мест на DIN-рейке распределительного щита.

Такое электронное реле времени с возможностью настройки суточного цикла работы займет на DIN-рейке три модуль-места.Такое электронное реле времени с возможностью настройки суточного цикла работы займет на DIN-рейке три модуль-места

Удобно – места такие приборы занимают совсем немного, находятся не на виду, детям недоступны. Многие позволяют задавать суточный, недельный месячный или даже годовой алгоритм работы, то есть не требуют частого вмешательства в управление. Но если и возникнет нужда внести корректировки, то удобное расположение реле времени на рейке, с расположением всех органов управления на фасадной панели, позволит это сделать безо всякого труда.

Типы реле времени по принципу работы 

Теперь стоит разобраться, что за механизмы обеспечивают задание необходимого временного интервала. По этому критерию реле времени можно подразделить на несколько типов – это электромагнитные приборы, устройства с пневматическим или гидравлическим замедлителем, моторные, реле с механическим часовым механизмом и электронные.

Цены на реле времени CRM

реле времени CRM

Рассмотрим их вкратце в перечисленном порядке

Электромагнитные реле времени

Они обычно применяются в каскадах пуска и остановки мощного оборудования – позволяют несколько разнести по времени запуск отдельных узлов (механизмов) во избежание резких скачков нагрузки на линию питания.

Принцип работы узла замедления срабатывания заключается в следующем. Конструктивно реле представляет собой электромагнитную катушку. Перемещение притягиваемого к сердечнику катушки якоря передается на механизм замыкания-размыкания контактов. Но на общий сердечник с катушкой надета гильза (чаще всего – медная), которая становится дополнительным короткозамкнутым контуром.

Принцип устройства электромагнитного реле времениПринцип устройства электромагнитного реле времени

При подаче напряжения питания на катушку в этой дополнительной «обмотке» наводится ЭДС, создающая ток с таким направлением, что он получается в «противоходе» току в основной катушке. То есть своеобразно «гасит» скорость нарастания напряженности электромагнитного поля, необходимого для притягивания якоря реле. И в итоге срабатывание контактной группы происходит не мгновенно при включении питания, а с задержкой, длительность которой можно регулировать уровнем пожатия пружины якоря. Диапазон задержки обычно лежит в пределах о 0,07 до 0,15 секунд.

«Классический» пример электромагнитного реле времени – используемая в цепях питания мощного оборудования модель РЭВ 812«Классический» пример электромагнитного реле времени – используемая в цепях питания мощного оборудования модель РЭВ 812

При выключении питания происходит обратная картина – за свет наличия дополнительной обмотки-гильзы наблюдается своеобразный эффект «инерции», и размыкание контактов тоже происходит с задержкой. Она может составлять от 0,5 до 1,5÷2 секунд.

Пневматические или гидравлические реле времени.

Вряд ли с ними придется иметь дело в бытовых условиях – они тоже ставились только на мощное обрабатывающее оборудование. Но с механизмом замедления познакомиться все же будет интересно, потому как он имеет довольно оригинальную конструкцию.

Реле времени РВП 72-3221 с пневматическим замедлителем срабатыванияРеле времени РВП 72-3221 с пневматическим замедлителем срабатывания

Конструктивно такие реле обязательно включают камеру с диафрагмой, в которую упирается подвижный узел (колодка), вызывающая переключение контактов. При снятии напряжения с обмотки катушки колодка освобождается и под действием пружины начинает перемещаться. Но движение колодки тормозится диафрагмой — до выхода воздуха из пневмокамеры. А скорость выпуска воздуха зависит от сечения отверстия, которое, в свою очередь, регулируется специальной иглой.

Регулировки интервала замедления срабатывания могут проводиться в достаточно широком диапазоне и с высокой степенью точности.

Помимо пневматических, существуют и гидравлические замедлители, в которых через регулируемое отверстие между камерами перепускается жидкость (например, трансформаторное масло). Но принцип срабатывания при этом не меняется.

Моторные реле времени

Такие устройства тоже, похоже, уже становятся пережитками прошлого, хотя могут еще встречаться на старых образцах примышленного оборудования.

Принцип работы моторного реле времениПринцип работы моторного реле времени

Характерная особенность таких приборов – это наличие, кроме присущей большинству реле катушки, еще и собственного электропривода. При включении питания оно подается и на катушку, и на электродвигатель, с которого вращение передаётся по системе зубчатых передач рабочим колесам. На этих колесах (имеющих градуировку по времени) есть специальные выступы, которые в определённый момент вызовут замыкание или размыкание контактов цепи питания катушки. Ну а включение или выключение питания на обмотке катушки, в свою очередь, обеспечивает необходимую коммутацию подключенных к реле времени силовых линий.

Цены на реле времени Feron

реле времени Feron

Время срабатывания устанавливается начальным положением рабочего колеса. Кстати, в одном реле таких колес может быть и несколько, что позволяет организовывать довольно сложные алгоритмы управления подключенной нагрузкой.

Моторное реле времени ВС-33.Моторное реле времени ВС-33
Реле времени с анкерным (часовым) механизмом

Самый простой и очень наглядный пример аналога подобных реле времени – это обычные настольные часы с будильником, работающие от батарейки. Время срабатывания устанавливается отдельной специальной стрелкой. И когда часовая стрелка сравняется с ней – произойдет замыкание контакта, и питание будет подано на генератор звукового сигнала.

Безусловно, сами реле времени устроены несколько сложнее, да и нагрузка к ним подключается куда более мощная, чем миниатюрный биппер. Но принцип действия – очень схожий. Механизм отсчета времени – практически полная аналогия с обычными часами. В некоторых реле старых образцов – даже пружина заводится вручную, по мере необходимости. В других – завод осуществляется автоматически при включении питания за сет перемещения электромагнитного якоря.

Реле времени с часовым механизмом РВ 235 УХЛ4. С производства давно сняты, но у некоторых хозяев продолжают верно служить.Реле времени с часовым механизмом РВ 235 УХЛ4. С производства давно сняты, но у некоторых хозяев продолжают верно служить

Реле с часовым механизмом в продаже представлены в широком разнообразии. Большой популярностью у пользователей пользуются модели с циферблатом, разделенным на 24 часа, а каждый час делится еще обычно на четыре отрезка по 15 минут. Каждому такому минимальному интервалу соответствует подвижный сектор (штырек, рычажок, в зависимости от модели).

При подключении реле к сети циферблат начинает вращаться с угловой скоростью один оборот в сутки. На циферблате выставляется текущее астрономическое время. Ну а затем несложно запрограммировать алгоритм срабатывания реле – нажатием (откидыванием или иным перемещением) подвижных секторов, соответствующих тем периодам времени, когда питание на нагрузку должно быть включено.

Программирование алгоритма срабатывания такого реле времени – несложное и интуитивно понятноеПрограммирование алгоритма срабатывания такого реле времени – несложное и интуитивно понятное

Подобные реле времени выпускаются в модульном или моноблочном исполнении, то есть или устанавливаются в распределительном шкафу, или напрямую подключатся в розетку. Невысокая стоимость и простота в эксплуатации снискали им широкую популярность. Точность выставления диапазона и срабатывания реле, безусловно, нельзя назвать высокой (минимальная градация в 15 минут), но для большинства бытовых приборов этого бывает вполне достаточно.

Ну а если требуются более точные настройки, вплоть до секундной градации, то лучше всего сразу приобрести электронное реле времени.

Узнайте, как подключить розетку, а также ознакомьтесь с пошаговыми примерами правильного подключения провода к розетке.

Электронные реле времени

Электронные реле времени в настоящее время все активнее вытесняют своих электромеханических «собратьев». Это понятно – привлекает высокая точность срабатывания, возможности программирования на длительный период: на неделю месяц и даже более, с учетом чередования выходных и праздничных дней, смены сезона, других факторов, влияющих на предполагаемый режим работы подключенных к реле электроприборов.

Электронное реле времени с богатым набором возможностей программирования алгоритма управления подключенными электрическими приборами или системами.Электронное реле времени с богатым набором возможностей программирования алгоритма управления подключенными электрическими приборами или системами

В этой категории тоже есть свое подразделение по технологии отсчета времени срабатывания. Углубляться в тему не будем – этот вопрос, скорее, интересен специалистам-электронщикам.

Можно лишь вкратце пояснить, что самые простые электронные реле отсчитывают время с помощью RC-цепочек (резистор + конденсатор). Время зарядки конденсатора зависит от номинала самого конденсатора и включенного с ним в цепь резистора. То есть это легко просчитывается, и плавным изменением номиналов элементов схемы или сменой цепочек (в некоторых реле их несколько) можно установить нужный интервал задержки срабатывания.

Более сложные реле времени оснащены специальными микросхемами или каскадом полупроводниковых приборов, обеспечивающих необходимую задержку по времени. Ну а самые современные на сегодняшний день имеют микропроцессорные блоки и кварцевые генераторы опорной частоты. Так что отсчёт времени в них происходит с максимальной точностью, а энергонезависимая память позволяет проводить программирование алгоритма работы.

 Электронное реле времени модульного исполнения с аналоговой настройкой параметров работы. Сравнительно недорого и очень часто – вполне достаточно.Электронное реле времени модульного исполнения с аналоговой настройкой параметров работы. Сравнительно недорого и очень часто – вполне достаточно.

Ассортимент электронных реле времени – очень широк. Вполне можно приобрести относительно недорогую модель с аналоговой настройкой параметров и обеспечивающее простейшие операции включения-выключения силовой линии с требуемой задержкой или по определённому алгоритму. Часто для реализации задуманной автоматизации того или иного процесса и такого прибора бывает вполне достаточно. Более совершенные реле времени оснащаются цифровыми жидкокристаллическими дисплеями и кнопочной (сенсорной) системой управления с точностью выставления параметров буквально до долей секунды. Удобно, но и стоимость, безусловно, растет пропорционально.

Можно еще добавить, что электронные реле времени могут выпускаться в любом из исполнений – как отдельные приборы-моноблоки (например – опять же, вариант «розетка с таймером»), в виде плат или блоков для установки в оборудование, или в модульной компоновке для размещения на DIN-рейке.

Видео: Пример использования электронного реле времени KEMOT URZ2001-1

*  *  *  *  *  *  *

К слову, немало «ломается копий» по поводу, как же правильнее называть подобные устройства – реле времени или таймерами. Приводятся доводы, что работа реле увязывается с астрономическим временем, а таймер лишь производит обратный отсчет заданного интервала. Или наоборот, что реле должно лишь обеспечивать задержку включения и выключения, а все что касается возможностей программирования (задания алгоритма работы) – это таймеры. Таким образом, утверждения прямо противоречат друг другу.

По мнению автора этой статьи, «граница» между этими типами приборов, если она и есть – весьма условная. И морочить себе голову тонкостями терминологии – вряд ли в данном случае имеет смысл. Главное – разобраться и суметь сформулировать: для чего вам требуется устройство управления и какими функциями оно должно обладать. И можете не сомневаться, что грамотный продавец-консультант прекрасно вас поймет и предложит оптимальную модель. А в паспорте у нее, кстати может быть указано и таймер, и реле времени. А нередко – и оба термина сразу, через тире или в скобках.

назначение, принцип работы, схемы подключения

Для обеспечения выдержки защит или построения логических электронных схем в их состав включаются элементы, обеспечивающие задержку срабатывания. В качестве такого элемента большинство современных электрических цепей использует реле времени.

Назначение

Реле времени предназначено для формирования нормируемых временных задержек при работе каких-либо устройств. Такие логические элементы позволяют выстраивать определенную последовательность в переключениях и срабатывании приборов. Благодаря отложенной подаче напряжения производится автоматическое управление выдаваемыми с реле времени сигналами.

Реле времени устанавливают в цепях защит в качестве промежуточного элемента для обеспечения селективности, построения ступеней, сценарных переходов и т.д.

Устройство и принцип работы

Конструктивно реле времени состоит из нескольких элементов, число и функции которых могут существенно отличаться в зависимости от типа реле. Общими блоками являются измерительный, блок задержки и рабочий.

  • Первый из них представлен электромагнитными катушками, полупроводниковыми элементами, микросхемами, реагирующими на поступающие сигналы электрического тока.
  • Блок задержки выполняется часовым механизмом, мостом, электромагнитным или пневматическим демпфером.
  • Рабочий элемент представляет собой контакты или выход из аналоговой или цифровой схемы, контролирующих подачу напряжения в те или иные цепи.

В зависимости от конструктивных особенностей конкретной модели будет отличаться и принцип ее работы.

Принцип действия реле времени заключается в создании временного интервала от начала подачи сигнала на реле времени до получения этого сигнала потребителем. Дальнейшие операции и подача питания на рабочий элемент будет коренным образом отличаться в соответствии с типом устройства, поэтому рассматривать принцип действия следует для каждого вида реле времени отдельно.

С электромагнитным замедлением

Конструктивно такое реле времени состоит из электромагнитной катушки, магнитопровода (ярма), подвижного якоря, короткозамкнутой гильзы и блока отключения, которые представлены на рисунке ниже:

Рис. 1: конструкция электромагнитного реле

Принцип работы электромагнитного реле заключается в создании магнитного потока в магнитосердечнике, наводимого от катушки. Магнитный поток притягивает якорь с контактами. Но, в таком режиме работы устройство представляло бы собой обычное промежуточное реле, поэтому для задержки замыкания контактов используется гильза. Она и создает в короткозамкнутом контуре встречный по направленности электромагнитный поток, задерживающий нарастание основного и обуславливающий выдержку временного промежутка.

Как правило, в электромагнитных моделях задержка  составляет от 0,07 до 0,15 секунд, работа устройства осуществляется от цепей постоянного тока.

С пневматическим замедлением

Данный тип применяется в станочном оборудовании различных сфер промышленности, в частных случаях встречаются и гидравлические модели.  Такое реле времени состоит из рабочей катушки, посаженной на магнитопровод, контактов и пневматической мембраны или диафрагмы, выполняющей роль демпфера.

Рис. 2: конструкция пневматического реле

Принцип работы пневматического реле времени заключается в том, что при подаче напряжения на обмотку в сердечнике возникает магнитный поток, приводящий его в движение. Но моментальная переброска контактов не происходит за счет наличия воздушного промежутка под мембраной. Время задержки включения будет определяться количеством воздуха в демпфере и скоростью его удаления. Для регулировки этого параметра в пневматических моделях предусматривают винт, увеличивающий или уменьшающий объем камеры или ширину выпускного клапана.

С анкерным или часовым механизмом

Конструктивным отличием реле времени с часовым механизмом является наличие пружинного устройства, которое заводится за счет электрического привода или вручную. Замедление срабатывания для него определяется положением замыкающего флажка на циферблате.

Рис. 3: конструкция реле с часовым механизмом

При появлении управляющего сигнала отпускается механизм, и пружина медленно перемещает рабочий элемент, вращающийся по шкале циферблата. При достижении установленной отметки  происходит включение нагрузки путем замыкания пары контактов. Пределы выдержки времени можно выбрать специальными зажимами или установкой регулируемой ручки в определенное положение. Конкретный способ управления будет отличаться в зависимости от модели и производителя.

Моторных реле времени

Отличительной особенностью моторных реле является наличие собственного двигателя, который включается в работу вместе с катушкой. Принцип работы такого устройства приведен на рисунке ниже:

Рис. 4: конструкция моторного реле

Напряжение подается на электрическую схему, состоящую из катушки 1 и синхронного двигателя 2. После возбуждения обмоток статора в двигателе  его вал приводит в движение систему зубчатой передачи 3 и 4, состоящую, как правило, из нескольких шестеренок. Вращение шестерней моторного реле приводит к механическому нажатию на рычаг, прижимающий контакты. Регулировка диапазона выдержки производится за счет перемещения фиксатора 8.

Электронных реле времени

Современные электронные реле представляют собой автоматический выключатель, принцип подачи сигнала с выхода которого регулируется настройкой R – C цепочки, параметрами микросхем или полупроводниковых элементов. Наиболее простым вариантом является совместная работа конденсатора и резистора, приведенная на рисунке ниже:

Рис. 5: принцип логической цепочки электронного реле

В зависимости от соотношения омического сопротивления резистора и емкости конденсатора, время заряда последнего и будет определять подачу напряжения питания в электронном устройстве. В данном примере приведен простейший вариант времязадающей цепочки, современные модели могут содержать более сложные структуры, включающие несколько R – C ветвей или их комбинации с транзисторами, мостами и другими элементами. Электронные модели обладают рядом весомых преимуществ, в сравнении с другими типами реле:

  • Сравнительно меньшие размеры;
  • Высокая точность срабатывания;
  • Широкий диапазон регулировки – от десятых долей секунд до часов или суток;
  • Автоматическое управление – удобная система программирования и ее визуальное отображение на дисплее.

Эти преимущества обуславливают повсеместное вытеснение электронными реле других устаревших моделей.

Цикличных

Под цикличными реле времени подразумевают такие устройства, которые выдают управляющий сигнал через какой-либо заданный промежуток времени (для подогрева чайника, открытия окон сутра, включения сигнализации на ночь и т.д.). Такое автоматическое включение имеет определенный сценарий, повторяющийся через какой-либо промежуток времени, из-за чего эту группу устройств также называют сценарными выключателями.  Ранее  циклическое включение осуществлялось посредством механического пружинного устройства, сегодня эта функция перешла к микропроцессорным элементам. Электронные таймеры находят широкое применение в самых различных сферах, некоторые из которых приведены на рисунке:

Рис. 6: сфера применения цикличных реле

Как выбрать?

При выборе конкретной модели реле времени необходимо руководствоваться такими принципами относительно их параметров:

  • Род и величина рабочего напряжения – различные модели могут, как подключаться к бытовой сети в 220 В переменного тока, так и работать от пониженных управленческих цепей на 12, 42, 127 В и т.д.
  • Допустимый ток нагрузки – определяет пропускную способность контактов реле времени без их перегрева.
  • Диапазон времени срабатывания контактов и чувствительность регулировки этого параметра – определяет скорость включения реле времени, возможность его изменения в каких-либо пределах и возможный шаг регулировки.
  • Конструктивные особенности и принцип работы – если по местным условиям не допускается классическое переключение контактов по соображениям взрывоопасности, необходимо устанавливать бесконтактные модели.
  • Влагозащищенность и температурный диапазон – определяет допустимые параметры окружающей среды, в которых может эксплуатироваться данное реле времени.
  • Тип устройства (цикличные или промежуточные) – первый из них задает некую периодичность выдаваемого сигнала, а второй выступает в качестве промежуточного звена, обеспечивающего задержку времени в уже существующей цепи.

Примеры схем подключения

В зависимости от конкретной модели реле времени или поставленных задач, которое оно должно решать, схема подключения может коренным образом отличаться.

Рис. 7: пример схемы подключения

Посмотрите на рисунок 7, в данном примере приведен один из простейших вариантов управления осветительными приборами при помощи реле времени. Подача управляющего сигнала осуществляется на выводы 1 и 2, а к нагрузке от вывода 3 и нулевого провода. Клемма 4 получает питание от сети 220В. Данная схема широко используется для бытовых нужд и практически не применяется для промышленных целей, так как обеспечивает работу только с одним потребителем (прибором освещения, линией, сигнализацией и т.д.).

Рис. 8: Еще одна схема подключения реле времени

На рисунке 8 приведена схема включения реле времени, здесь способ питания аналогичен предыдущей схеме.  Но на выходе устройства реализовано подключение двух независимых групп потребителей от контактов 3 и 5, которые могут иметь индивидуальную логику работы. Такой способ подключения предоставляет куда больший функционал, за счет чего он применяется в местах, где требуется управление сразу несколькими приборами.

Рис. 9: схема включения реле через контактор

Как видите на рисунке 9, при подключении мощного оборудования, для которого реле времени не может осуществлять его электроснабжение из-за недостаточной проводимости собственных цепей, применяется подключение логического элемента через силовой контактор.  В данной схеме рабочим органом выступает контактор, управляющий сигнал на который подается с контактов реле времени. Основным преимуществом такой схемы подключения является возможность запитать потребитель любой мощности и принципа действия.

Видео в развитие темы


Реле времени - это... Что такое Реле времени?

Реле времени Реле времени с часовым механизмом

Реле́ вре́мени — реле, предназначенное для создания независимой выдержки времени и обеспечения определённой последовательности работы элементов схемы. Реле времени применяется в случаях, когда необходимо автоматически выполнить какое-то действие не сразу после появления управляющего сигнала, а через установленный промежуток времени.

Принципы работы

С электромагнитным замедлением

Реле времени с электромагнитным замедлением применяются только при постоянном токе. Помимо основной обмотки реле этой серии имеют дополнительную короткозамкнутую обмотку, состоящую из медной гильзы. При нарастании основного магнитного потока он создает ток в дополнительной обмотке, который препятствует нарастанию основного магнитного потока. В итоге результирующий магнитный поток увеличивается медленнее, время «трогания» якоря уменьшается, чем обеспечивается выдержка времени при включении. При отключении тока в катушке за счёт индуктивности короткозамкнутого витка магнитный поток в реле какое-то время сохраняется, удерживая якорь.

Этот вид реле времени обеспечивает выдержку времени при срабатывании от 0,07 с до 0,11 с, при отключении от 0,5 с до 1,4 с.

С пневматическим замедлением

Реле времени с пневматическим замедлением имеет специальное замедляющее устройство — пневматический демпфер, катаракт. Регулировка выдержки осуществляется изменением сечения отверстия для забора воздуха, как правило, с помощью регулировочного винта.

Этот тип реле времени обеспечивает выдержку времени от 0,4 до 180 с, с точностью срабатывания 10 % от уставки.

С часовым или анкерным механизмом

Реле времени с анкерным или часовым механизмом работает за счёт пружины, которая заводится под действием электромагнита, и контакты реле срабатывают только после того, как анкерный механизм отсчитает время, выставленное на шкале. Разновидность подобных реле используется в мощных (на токи в сотни и тысячи ампер) автоматических выключателях на напряжение 0,4-10 кВ. Составные части такого реле — механизм замедления и токовая обмотка, взводящая его пружину. Скорость хода механизма зависит от затяжки пружины, то есть от тока в обмотке, по окончании хода механизм вызывает отключение автомата, тем самым выполняя функции тепловой защиты от перегрузок, не нуждаясь при этом в коррекции по температуре окружающего воздуха.

Этот тип реле времени обеспечивает выдержку времени от 0,1 до 20 с с точностью срабатывания 10 % от уставки.

Моторные реле времени

Моторные реле времени предназначены для отсчета времени от 10 с до нескольких часов. Оно состоит из синхронного двигателя, редуктора, электромагнита для сцепления и расцепления двигателя с редуктором, контактов.

Электронные реле времени

До появления недорогих микроконтроллеров, работа электронных реле времени была основана на переходных процессах в разрядном контуре RC или RL. Современные реле времени отрабатывают необходимую задержку времени в соответствии с программой, «зашитой» в микроконтроллер. При этом сам микроконтроллер может тактироваться с помощью встроенного кварцевого резонатора или RC-генератора.

См. также

Источники

Ссылки

Реле времени: устройство, виды, принцип работы

Устройство и виды реле времени

Реле времени состоит из воспринимающей, замедляющей и исполнительной частей, каждая из которых имеет определенную функцию. Воспринимающая часть запускает устройство после поступления на него управляющего сигнала, замедляющая отвечает за установленный интервал задержки, а исполнительная по прошествии заданного временного промежутка оказывает воздействие на управляемый прибор.

Конструкция РВ представляет собой проволочную катушку, обернутую вокруг металлического сердечника. Кроме того, в состав устройства входит набор контактов, подвижная стрелка и якорь из железа. В разных видах реле используется различное количество подвижных контактов.

Классификация реле времени производится по различным признакам. Так, по исполнению, РВ может быть:

  • моноблочным. В этом случае устройство является полностью самостоятельным, имеет встроенное питание и входы для присоединения приборов;
  • встраиваемым. Этот вид не имеет корпуса и собственного питания. Такое реле применяется для изготовления сложных устройств;
  • модульным. Такое устройство похоже на моноблок, чаще всего применяется для установки на ДИН-рейку в электрощитки.

Также РВ различаются и по методу, который используется для создания временного интервала:

  • часовые или анкерные – самые первые РВ, которые считаются одними из самых надежных и широко применяются до настоящего времени;
  • моторные – в состав этих устройств входят электрические контакты, редуктор и двигатель. Они помогают вовремя проводить плановые работы на оборудовании;
  • реле с пневматическим и гидравлическим замедлением – регулирование интервалов в этих устройствах выполняется путем уменьшения/увеличения подачи жидкости или воздуха в рабочий объем;
  • электромагнитные – используются только в цепях с постоянным током;
  • электронные – самый распространенный вид реле, который способен обеспечить интервал от доли секунды до нескольких месяцев, а иногда и лет. Благодаря кварцевой стабилизации частоты и синхронизации времени по эталонным часам по радиоканалу или интернету, эти устройства чрезвычайно точные.

Отдельно стоит заметить, что электронные РВ, за счет наличия входов и выходов для обратной связи, а также развитого программирования, задающего нужный алгоритм функционирования, относятся к микроконтроллерам. Реле времени с электронным замедлением обладают небольшими размерами, низким энергопотреблением и высокой автономностью.


Сфера применения реле времени находится в прямой зависимости от его характеристик и принципа работы. Так, электромагнитное реле применяется для того, чтобы запускать мощные двигатели. Другие виды РВ могут использоваться для управления вентиляцией, поливом, освещением и обогревом помещений.

Принципы работы

Принцип работы механического РВ заключается в том, что поворот регулятора таймера воздействует на положение контактов, которые смыкаются или размыкаются, в результате чего происходит замыкание или размыкание электрической цепи. В течение определенного времени контакты возвращаются в первоначальное положение. Временной интервал находится в прямой зависимости от того, на сколько градусов повернут регулятор.


В электромагнитных устройствах имеется дополнительная короткозамкнутая обмотка с медной гильзой, создающая магнитный поток, который является препятствием для нарастания основного потока. Это приводит к тому, что реле включается спустя определенный промежуток времени.


В электронных реле времени таймер представляет собой микросхему, программируемую разными импульсами, возникающими после нажатия клавиш на пульте управления устройства. Если схемой предусмотрен выход для подключения к компьютеру, то реле является интеллектуальным и может иметь около 40 групп, предназначенных для подключения различных устройств. Это расширяет возможности программирования режимов.



Реле времени: назначение, разновидности, применение, схема

Реле времени прежде всего предназначено для обеспечения необходимого временного интервала при определенном алгоритме подключения различных элементов цепи. Наиболее часто применяется в ситуациях, когда предусматривается автоматическое подключение различных устройств через заданный промежуток времени после поступления основного сигнала.

Также такое реле нашло широкое распространение для автоматического включения или выключения различных видов электротехнического оборудования в точно установленное время и для отсчета заданных временных интервалов.

Различные конструкции позволяют применять реле времени как на промышленном, так и бытовом уровне.

Схема реле времени

По принципу работы можно выделить следующие типы реле:

Реле времени c электромагнитным замедлением

Используется только в цепях постоянного тока. Кроме основной обмотки имеется еще и специальная короткозамкнутая в виде медной гильзы. Она создает определенные препятствия нарастанию магнитного потока, в результате чего происходит задержка во времени срабатывания якоря основного реле.

Таблица типов реле времени с характеристиками

Реле времени c пневматическим замедлением

Такое реле содержит специальный пневматический демпфер (или катаракт). Регулировка задержки по времени производится за счет изменения диаметра отверстия, предназначенного для забора воздуха, с помощью специального регулировочного винта в виде иглы.

Интересное видео с примером использования реле времени смотрите ниже:

Реле времени c анкерным или часовым механизмом

Главным элементом этой конструкции является пружина, которая «взводиться» с помощью электромагнита. Контакты реле замыкаются после того, как часовой механизм отсчитает положенное время, которое можно выставить на специальной шкале.

Реле времени c применением двигателей

Позволяет производить задержку времени от 10 секунд до нескольких часов. Имеет в составе синхронный электродвигатель, редуктор и электромагнит, с помощью которого осуществляется сцепление первых двух элементов.

Электронные реле времени

Первоначально в таких реле использовались переходные процессы в разрядных RC или RL контурах. С появлением недорогих микроконтроллеров стало возможным необходимую задержку включения программировать.

Ещё одно интересное видео о реле времени:

Реле времени — Студопедия

Реле времени создает регулируемую выдержку времени от момента подачи сигнала на срабатывание до момента замыкания (или размыкания) контактов.

Реле времени с электромагнитным замедлением (электромагнитное реле времени) основано на использовании вихревых токов для замедления срабатывания электромагнитной системы. На магнитопровод надета металлическая (обычно медная) гильза (или шайба) 3, равнозначная короткозамкнутой обмотке с одним витком. Когда изменяется основной поток Фо, созданный током катушки 2, в гильзе 3 наводятся вихревые токи, поток Фвх от которых имеет направление, препятствующее изменению основного потока в соответствии с принципом инерции Ленца. Когда поток Фо нарастает, поток Фвх имеет противоположное направление, а когда Фо снижается — направление Фвх совпадает с Фо.

Это реле времени – устройство, предназначенное для получения заданной выдержки времени при передаче воздействия от одной цепи к другой. . Например, такое устройство применяется в случаях, когда необходимо автоматически выполнить какое-то действие не сразу после появления управляющего сигнала, а через установленный промежуток.


При осуществлении автоматизации производственных процессов постоянно приходится сталкиваться с необходимостью точного выдерживания времени различных операций или своевременного включения и выключения нужных агрегатов. При этом точная и надежная работа приборов выдержки времени очень часто является решающим фактором для получения продукции высокого качества.


Классификация по роду питающего тока:
- постоянного тока;
- переменного тока;
- постоянного и переменного тока.
Классификация по принципу действия:
- электромагнитные;
- электротермические;
- индуктивные;
- ионные;
- электронные;
- механические.

Мы не будем останавливаться на разных классификациях реле времени, так как наиболее распространенная классификация реле времени – это классификация по методу получения замедления, эту классификацию и рассмотрим подробней.
Можно выделить четыре основных группы методов замедления:
- электрическое замедление;
- механическое замедление;
- электротермическое замедление;

На сегодняшний день существует несколько видов таких устройств:

§ Электронные реле времени являются наиболее распространенным типом. Устройства этого типа обеспечивают выдержки времени от долей секунд до тысяч часов, позволяют организовывать разнообразные программы функционирования, имеют малые габариты и энергопотребление.


§ Реле времени с электромагнитным замедлением используются только при постоянном токе. Помимо основной обмотки они имеют дополнительную короткозамкнутую обмотку, состоящую из медной гильзы. Принцип работы реле времени с электромагнитным замедлением прост. При нарастании основного магнитного потока, в дополнительной обмотке создается дополнительный поток, который препятствует нарастанию основного, что и обеспечивает задержку срабатывания устройства. Устройство, основанное на таком принципе, обеспечивает выдержку при включении от 0.07 с до 0.11 с, а при отключении от 0.5 с до 1.4 с.

§ Реле времени с пневматическим замедлением обеспечивает выдержку от 0.4 до 180с, имеет специальный механизм – пневматический демпфер. Для того, чтобы отрегулировать его выдержку, изменяют сечение отверстия для забора воздуха.

§ Реле времени с часовым или анкерным механизмом работает за счет пружины, заводящейся под электромагнит. Контакты устройства срабатывают только после того, как анкерный механизм отсчитает период, выставленный на шкале.

§ Моторные реле времени предназначены для отсчета периода от 10 секунд до нескольких часов. Такие устройства состоят из синхронного двигателя, редуктора, электромагнита для сцепления и расцепления двигателя с редуктором и контактов.

Электронные полупроводниковые реле времени (ЭРВ) представляют собой сочетание полупроводникового усилителя, на входе которого включается R – C цепочка, а на выходе – электромагнитные реле. R – C цепочка используется для задержки входного сигнала, который после усиления подается на выходное реле. Существует много схем ЭРВ на постоянном и переменном токе, использующих как заряд, так и разряд конденсатора.

Рисунок 1 - Транзисторное реле

Простейшее ЭРВ, задерживающее выходной сигнал после снятия входного, работает следующим образом. Если входной сигнал отсутствует (контакт В разомкнут), транзистор VT заперт и катушка Р обесточена и выходной контакт реле Р разомкнут. После подачи входного сигнала (контакт В включен) отрицательный потенциал подается на базу транзистора VТ, который отпирается, что при­водит к срабатыванию выходного реле Р и появлению сигнала на выходе. Од­новременно с этим конденсатор С заряжается через диод VD до напряжения питания Ек. При снятии входного сигнала (выключении В) транзистор неко­торое время, определенное временем разряда конденсатора С, будет открыт и на выходе будет сохраняться сигнал. Конденсатор разряжается через переход эмиттер-база и сопротивления R1 и R2. После разряда конденсатора транзистор Т запирается и реле возвращается в исходное состояние, размыкая выходной контакт Р. Выдержка времени регулируется изменением R2 и С и в зависимости от параметров реле может быть от долей секунд до десятков и сотен минут

виды, принцип действия и области применения — Рамблер/новости

Что такое реле

Реле — коммутационное устройство (КУ), соединяющее или разъединяющее цепь электрической или электронной схемы при изменении входных величин тока. Прежде чем мы перейдем к детальному рассмотрению того, что такое реле, как устроено, по какому принципу работает и где применяется, пожалуй, нужно узнать, когда это устройство впервые появилось и кто его изобретатель.

Вот таких типоразмеров может быть это устройство

Содержание статьи

1 История создания

2 Устройство и принцип работы реле

3 Основные характеристики КУ 4 Классификация и для чего нужно реле

5 Основные виды реле и их назначение

5.1 Электромагнитные реле

5.2 Реле переменного тока

5.3 Реле постоянного тока

5.4 Электронное реле

6 Обозначение реле на схеме

7 Ведущие производители реле

8 Где приобрести реле и их стоимость

9 Заключение

История создания

Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830-1832 гг. русским ученым Шиллингом П. Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.

Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.

Первое реле Дж. Генри

Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.

Первое реле Морзе

Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном оборудовании.

Устройство и принцип работы реле

Реле представляет собой катушку, состоящую из немагнитного основания, на которое намотан провод из меди с тканевой или синтетической изоляцией, но чаще всего с диэлектрическим лаковым покрытием. Внутри катушки установленной на нетокопроводящее основание, размещается металлический сердечник. Также в устройстве имеются пружины, якорь, соединительные элементы и пары контактов.

При подаче тока на обмотку электромагнита (соленоида) сердечник притягивает якорь, который соединяется с контактом и электрическая или электронная цепь замыкается. При снижении силы тока до определенного значения, якорь, под действием пружины, возвращается на исходную позицию, вследствие чего происходит размыкание цепи.

Более плавная и точная работа достигается благодаря использованию резисторов, а защиту от скачков напряжения и искрения обеспечивает установка конденсаторов.

У большинства электромагнитных реле имеется не одна, а несколько пар контактов, что позволяет управлять несколькими цепями одновременно.

Простейшая схема устройства электромагнитного соленоида

Если в двух словах, то этот вид коммутационного устройства работает по принципу электромагнитной индукции. Благодаря довольно простому принципу действия реле имеют высокую надежность в эксплуатации.

В видеоролике ниже разъясняется принцип действия электромагнитного КУ:

Основные характеристики КУ К основным характеристикам, на которые следует обратить внимание при выборе данного вида коммутационного устройства, относят:

чувствительность — срабатывание от подаваемого на обмотку тока определенной силы, достаточной для включения устройства;

сопротивление обмотки электромагнита;

напряжение (ток) срабатывания — минимально допустимое значение, достаточное для переключения контактов;

напряжение (ток) отпускания — значение параметра, при котором происходит отключение КУ;

время притягивания и отпускания якоря;

частота срабатывания с рабочей нагрузкой на контактах.

Классификация и для чего нужно реле

Поскольку реле являются высоконадежными коммутационными устройствами, то не удивительно, что они нашли широкое применение в самых различных областях человеческой деятельности. Они используются в промышленности для автоматизации рабочих процессов, а также в быту в самой различной технике, например в привычных всех холодильниках и стиральных машинах.

Разнообразие видов реле очень велико и каждый предназначен для выполнения определенной задачи

Реле имеют сложную классификацию и делятся на несколько групп:

По сфере применения:

управление электрическими и электронными системами;

защита систем;

автоматизация систем.

По принципу действия:

тепловые;

электромагнитные;

магнитолектические;

полупроводниковые;

индукционные.

По поступающему параметру, вызывающему срабатывание КУ:

от тока;

от напряжения;

от мощности;

от частоты.

По принципу воздействия на управляющую часть устройства:

контактные;

бесконтактные.

На фото (обведено красным) показано, где находится одно из реле в стиральной машине

В зависимости от вида и классификации реле применяются в бытовой технике, автомобилях, поездах, станках, вычислительной технике и т.д. Однако, чаще всего этот вид коммутирующего устройства используется для управления токами большой величины.

Основные виды реле и их назначение

Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.

Электромагнитные реле

Электромагнитное реле — это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.

Принцип работы электромагнитного соленоида

Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.

Реле переменного тока

Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.

Промежуточное реле 220 В Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.

Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике

Работает это таким образом:

подача тока на первое коммутационное устройство;

от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.

С каждым годом реле становятся эффективней и компактней

Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.

Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.

Реле постоянного тока

Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.

Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.

Четырехконтактное автомобильное реле

К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.

Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:

Электронное реле

Электронное реле управления в схеме прибора

Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.

Обозначение реле на схеме

Чтобы отремонтировать или создать новое электрооборудование, мало знать как работает реле, нужно знать как оно выглядит на схемах. В приведенной ниже таблице показаны самые основные буквенно-графические обозначения КУ принятые в международном классификаторе.

Основные обозначения

Изображение

Описание

Схематически обмотка соленоида выглядит как прямоугольник, от наибольших сторон которого отходят выводы питания электромагнита — А и А1. Также на схеме это коммутационное устройство может обозначаться буквой К.

Контакты КУ на схеме изображаются точно так же как и контакты переключателей.

Поляризованное реле на схеме изображается в виде прямоугольника с жирной точкой на одном из выводов контакта. Буквенное обозначение P внутри прямоугольника также говорит о полярности устройства.

Иногда внутри прямоугольника указывают параметры или конструктивные особенности. Так, например, две наклонные линии могут обозначать, что в устройстве имеется 2 обмотки.

Подробнее, с символическим обозначением реле и других элементов электрических и электронных схем, можно ознакомиться, заглянув в специальные справочники, которых в интернете довольно много.

Ведущие производители реле

Производитель

Изображение

Описание

Finder (Германия)

Компания Финдер производит реле и таймеры и занимает среди европейских производителей третье место. Производитель выпускает реле:

общего назначения;

твердотельные;

силовые;

РСВ;

времени;

интерфейсные и многие другие.

Продукция компании имеет сертификаты ISO 9001 и ISO 14001.

АО НПК «Северная заря» (Россия)

Основная продукция российского производителя — якорные электромагнитные коммутационные устройства для специального и индустриального использования, а также слаботочные реле времени с контактными и бесконтактными выходами.

Японская компания производит высоконадежные радиоэлектронные компоненты, среди которых:

твердотельные и электромеханические реле;

низковольтные КУ;

кнопочные переключатели;

устройства контроля и управления цепи.

COSMO Electronics (Тайвань)

Корпорация производит радиотехнические компоненты, среди которых можно выделить релейные компоненты, которые с 1994 года получили сертификат по стандарту ISO 9002.

Продукция компании широко применяется в телекоммуникации, промышленном и медицинском оборудовании, бытовой технике и автомобильном оборудовании.

American Zettler

Более 100 лет компания Zettler держит лидерство и устанавливает стандарты работы и качества электротехнических элементов. Этот производитель выпускает более 40 видов КУ, которые удовлетворяют потребности самых различных проектов.

Продукция компании широко применяется в телекоммуникации, периферийной вычислительной технике, средствах управления и прочих типах электрического и электронного оборудования.

Где приобрести реле и их стоимость

Реле в зависимости от типа КУ, производителя, сферы применения и продавца могут стоить от 15$ до нескольких сотен. Приобрести необходимое коммутационное устройство можно непосредственно у производителя в традиционных специализированных магазинах или интернете. В настоящее время купить нужное реле любого типа и назначения не составит труда. Существуют специальные каталоги, в которых указывается маркировка, компания-производитель, параметры и стоимость изделия.

Заключение

Как следует из этого обзора, реле является неотъемлемой частью практически любой электрической и электронной схемы промышленного оборудования и бытовой техники. Полную информацию об этом виде коммутационного устройства сложно втиснуть в рамки одной статьи. Если у вас возникнут какие-либо вопросы по этой теме, то задавайте и будем вместе разбираться.

Реле — Википедия

Электромагнитное реле

Реле́ (фр. relais) — элемент автоматических устройств, который при воздействии на него внешних физических явлений скачкообразно принимает конечное число значений выходной величины.[1]

Реле-прерыватель указателей поворота и аварийной сигнализации автомобиля (ВАЗ-2109)

По виду физических величин, на которые реагируют реле, они делятся на: электрические, механические, тепловые, оптические, магнитные, акустические. Часто реле, которые должны реагировать на неэлектрические величины, выполняют с помощью датчиков, соединенных с электрическими релейными элементами.[2]

Реле называют различные таймеры, например таймер указателя поворота автомобиля, таймеры включения/выключения различных приборов и устройств, например бытовых приборов (реле времени).

Некоторые историки науки утверждают, что реле впервые было разработано и построено русским учёным П. Л. Шиллингом в 1830—1832 гг. Это реле составляло основную часть вызывного устройства в разработанном им телеграфе[3].

Другие историки[4][5][6][7] отдают первенство известному американскому физику Дж. Генри (его именем названа единица индуктивности — генри), который сконструировал контактное реле в 1835 году при попытках усовершенствовать изобретённый им в 1831 г. телеграфный аппарат. В 1837 году устройство получило применение в телеграфии. Фактически первое реле было изобретено американцем Джозефом Генри в 1831 г. и основывалось на электромагнитном принципе действия. Следует отметить, что первое реле Дж. Генри было не коммутационным.

Слово «реле» возникло от французского relay, — процедура смены уставших почтовых лошадей на станциях или передача эстафеты в спортивных эстафетных состязаниях.

Как самостоятельное устройство реле впервые упомянуто в патенте на телеграф Самюэля Морзе.

Первые попытки создания научной методики для построения структуры релейных устройств относятся к 1925—1930 годам (работы ученых СССР Кутти А, Цимбалистый М, а также работы иностранных авторов).[8][9] Однако началом развития теории релейный устройств является 1936—1938 года, когда В.Шестаков,[10]К.Шеннон,[11] и А. Накашима[en],[12]применили для решения задач релейными устройствами аппарат математической логики; указание на возможность применения этого аппарата было сделано ещё в 1910 году ученым П.Эренфестом.[13]

Существенную роль в развитии релейных устройств сыграли международные симпозиумы по теории релейных устройств и конечных автоматов. Первый из них (1957 г.) имел место в США[14], а второй (1962 г.) — в СССР.[15]

Релейный элемент — минимальная совокупность деталей и связей между ними, имеющая релейную характеристику, то есть скачкообразно изменяющаяся при поступлении фиксированных воздействий на вход, воздействие на выходах, переходя от одного фиксированного воздействия к другому.[2] У релейных многопозиционных элементов воспринимающие или исполнительные органы могут находиться более чем в двух состояниях. Примером такого устройства может служить шаговый искатель.[16]

Релейные элементы характеризуются параметрами, относящиеся к входным и выходным воздействиям:

Петля гистерезиса

срабатывание — минимальное значение воздействия (на входе) при таком его возрастании, что релейный элемент изменяет свое состояние и одновременно воздействует на выходе в соответствии с релейной характеристикой;

отпускание — минимальное значение воздействия на входе при таком его уменьшении, что релейный элемент возвращается в свое первоначальное состояние.

В связи с не идеальностью релейной характеристики эти величины обычно не совпадают друг с другом (гистерезис). В ряде случаев релейный элемент может обладать свойствами фиксации, то есть оставаться в занятом им состоянии и после снятия воздействия на входе. В этом случае релейный элемент возвращается в первоначальное состояние обычно после подачи воздействия на другой его вход (или воздействие противоположного знака воздействия на тот же вход). Максимальное значение такого воздействия при его возрастании, вызывающее возвращение релейного элемента в первоначальное состояние, называется параметром возврата. Отношение параметра отпускания к параметру срабатывания называется коэффициентом отпускания. Характеристикой релейного элемента служит так же его быстродействие, определяемое временем срабатывания и временем отпускания или возврата. В ряде случаев важными характеристиками релейного элемента являются: потребление энергии, вес, занимаемый объём и т. п.

По виду физических явлений, используемых для действия релейных элементов, они делятся на механические и электрические.[2] Которые в свою очередь могут быть контактные и бесконтактные.

Электрический[править | править код]

Чаще всего под термином «реле» подразумевается электрический релейный элемент — релейный элемент, действие которого основано на явлениях, вызванных протеканием электрического тока, изменением электрического поля или явлениями, связанными с электрической проводимостью.[17] В рамках системы стандартизации термин «электрическое реле» используется исключительно для реле, выполняющего только одну операцию преобразования между его входными и выходными цепями.[18]

По виду физических явлений, используемых для действия[2]:[править | править код]
По виду физических величин, на которые реагируют[2]:[править | править код]
  • электрические
    • ток;
    • напряжение;
    • мощность
      • активная;
      • реактивная;
      • активно-реактивная;
    • частота;
    • сопротивление
      • активное;
      • реактивное;
      • активно-реактивное;
      • направленное;
    • фаза
      • сдвиг фаз;
      • последовательность фаз.
  • Механические
    • Давления
    • Вакуума
    • Перемещения
      • Линейного
      • Углового
      • Направления
      • Уровня
    • Скорости
      • Поступательной
      • Вращательной
    • Течения
      • Скорости
      • Расхода
    • Ускорения
      • Линейного
      • Углового
    • Усилия
    • Частоты колебаний
    • Амплитуды колебаний
  • Тепловые
    • Температуры
      • Абсолютной величины
      • Скорости изменения
    • Мощности теплового потока
  • Оптические
    • Освещенности
    • Спектрального состава
  • Акустические
    • Звукового давления
    • Частоты звуковых колебаний
  • Магнитные
    • Напряженности магнитного поля
    • Магнитной индукции
    • Магнитного потока
По назначению делятся на:[17][править | править код]
  • аварийные
  • контроля и управления
    • воспринимающие;
    • исполнительные;
    • промежуточные.
Обозначение на схемах[править | править код]

На принципиальных электрических схемах реле обозначается следующим образом:

1 — обмотка реле (A1, A2 — управляющая цепь),

2 — контакт замыкающий,

3 — контакт размыкающий,

4 — контакт замыкающий с замедлителем при срабатывании,

5 — контакт замыкающий с замедлителем при возврате,

6 — контакт импульсный замыкающий,

7 — контакт замыкающий без самовозврата,

8 — контакт размыкающий без самовозврата,

9 — контакт размыкающий с замедлителем при срабатывании,

10 — контакт размыкающий с замедлителем при возврате.

11 — общий контакт,

11-12 — нормально замкнутые контакты,

11-14 — нормально разомкнутые контакты.

На некоторых схемах ещё можно встретить обозначения по ГОСТ 7624-55.

  • Андреев В. А. Релейная защита и автоматика систем электроснабжения: Учебник для вузов. — 5-е изд., стер. — М.: Высшая школа, 2007. — 639 с.: ил. — ISBN 978-5-06-004826-1
  • Гуревич В. И. Электрические реле. Устройство, принцип действия и применения. Настольная книга инженера. — М.: Солон-пресс, 2011. — 700 с.: ил. — ISBN 978-5-91359-086-2
  • Gurevich V. Electric Relays: Principles and applications, CRC Press, 2005, 704 pp.
  1. ↑ Реле//Энциклопедия современной техники. Автоматизация производства и промышленная электроника. Том 3 (Погрешность решения — Телеизмерительная система частотная) —М.: Советская энциклопедия, 1964
  2. 1 2 3 4 5 Релейный элемент (реле)//Энциклопедия современной техники. Автоматизация производства и промышленная электроника. Том 3 (Погрешность решения — Телеизмерительная система частотная) —М.: Советская энциклопедия, 1964
  3. Храмой А. В. О двух важных этапах в истории электроавтоматики (рус.) // Электричество : журнал. — 1950. — Декабрь. — С. 72—77.
  4. ↑ Icons of Invention: The Makers of the Modern World from Gutenberg to Gates (англ.). — ABC-CLIO. — P. 153.
  5. ↑ The electromechanical relay of Joseph Henry (неопр.). Georgi Dalakov.
  6. ↑ Scientific American Inventions and Discoveries: All the Milestones in Ingenuity--From the Discovery of Fire to the Invention of the Microwave Oven (англ.). — John Wiley & Sons. — P. 311.
  7. Thomas Coulson. Joseph Henry: His Life and Work (неопр.). — Princeton: Princeton University Press, 1950.
  8. Кутти А.К. без названия // Труды Ленинградской экспериментальной электротехнической лаборатории. — 1928. — № 8. — С. 10.
  9. Цымбалистый М.Г. без названия // Труды Ленинградской экспериментальной электротехнической лаборатории. — 1928. — № 8. — С. 19.
  10. Шестаков В.И. диссертация // Некоторые математические методы конструирования и упрощения двухполюсных электрических схем класса А. — 1938.
  11. Shannon C.E. A Symbolic Analysis of Relay and Switching Circuits (Англ.) // American Institute of Electrical Engineers. — 1938. — № 57. — С. 713.
  12. Nakashima A. A realization theory for relay circuits (Англ.) // Journal of the Instittute of Electrical Communication Engineers of Japan. — 1937. — Сентябрь (№ 150). — С. 197—226.
  13. Эренфест П. без названия // Журнал Русского физико-химического общества. — 1910. — Т. 42, № вып.10. — С. 382.
  14. ↑ Proceedings of an International Symposium on the Theory of Switching. — Harvard University. — MA, 1959. — Т. 2.
  15. ↑ Труды международного симпозиума по теории релейных устройств и конечных автоматов. — Автоматика и телемеханика, 1963. — Т. 24.
  16. ↑ Релейный многопозиционный элемент//Энциклопедия современной техники. Автоматизация производства и промышленная электроника. Том 3 (Погрешность решения — Телеизмерительная система частотная) —М.: Советская энциклопедия, 1964
  17. 1 2 Релейный элемент электрический (реле электрическое)//Энциклопедия современной техники. Автоматизация производства и промышленная электроника. Том 3 (Погрешность решения — Телеизмерительная система частотная) —М.: Советская энциклопедия, 1964
  18. ↑ ГОСТ 16022-83 Реле электрические. Термины и определения
  19. ↑ MEMS Switch | Analog Devices

Реле времени – энциклопедия VashTehnik.ru

Реле времени – это прибор, позволяющий управлять оборудованием согласно расписанию. Принцип действия различается. К примеру, в микроволновой печи это чаще обычный таймер. В бытовой технике реле времени преимущественно называют программатором. Точнее, комбинация объекта рассмотрения обзора и схемы управления исполнительных устройств (для стиральной машины: двигатель, заборные клапаны, помпа и пр.).

Электромеханическое реле

История реле времени

Удивительно, уже в 1958 году вышла первая книга по электронным реле времени. Там говорилось, что крайне важно в ходе производственного процесса включать или выключать оборудование согласно графику. Предлагалось первое деление на классы:

  1. Пневматические. Часто снабжены приставкой (рабочая камера, катаракт, пневматический демпфер) с заборным отверстием. Регулировкой сечения изменяется время срабатывания. Контакт обычно удерживается электромагнитом с постоянной силой. Скорость изменения давления в камере становится определяющим фактором.
  2. Тепловые. Пример таких реле общеизвестен, это автоматы защиты электрических цепей. Присутствуют в распределительном щитке. В основе лежит использование биметаллических пластин. По мере протекания тока они нагреваются и изменяют изгиб, что вызывает срабатывание реле. Подобный шаг защищает технику от перегрева. Аналогичным образом указанные реле используются в составе бытовой техники, к примеру, холодильников.
  3. Электромеханические. Используется способность дросселей накапливать энергию. Затем в процессе затухания магнитное поле катушки ослабевает, вызывая срабатывание реле в нужный момент времени.
  4. Электронные. В основе обычно лежит время разряда RC-цепочки. Конденсатор заряжается до нужного номинала, потом потихоньку отдаёт энергию. В конкретный момент времени уровень напряжения сравнивается с пороговым, происходит срабатывание. Такой принцип сегодня используется повсеместно: от блоков питания электронной аппаратуры до микроволновых печей. Произведение R и С называется постоянной времени, и за три интервала происходит полный разряд системы по экспоненте.

В 1958 году не была развита полупроводниковая электроника, в книге по элементной базе выделяют реле времени на:

  • электронных лампах;
  • газоразрядных приборах.

Тематическая литература

Напоминаем, что электронными называются вакуумные лампы, где создаётся луч с катода к аноду за счёт подогрева и эмиссии носителей в свободное пространство: диоды, триоды, пентоды, гептоды и пр. В отличие от них в газоразрядных приборах среда ионизируется, создаются условия для протекания электрического тока. Как догадались читатели, к упомянутому тандему логично добавить полупроводниковые реле времени. Здесь уже RC-цепочка управляет режимом работы ключевого элемента, к примеру, транзистора или тиристора.

Неправы люди, считающие написанное в 1958 году каменным веком. Уже в то время на основе базисных знаний удавалось собрать зарядные устройства для аккумуляторов, сегодня газоразрядные приборы широко используются в составе реле запуска ламп дневного света. Это отличается от описанного авторами книг прошлого века, где за счёт возрастания напряжения в системе RC в некоторый момент происходит пробой разрядного промежутка, вызывающий переключение контактов. В цифровой технике в качестве анализаторов вполне используются и компараторы. Приведённые знания способствуют лучшему пониманию темы.

Добавим, что сегодня реле времени пополнились программируемыми вариантами. Каждый знает, что Windows через Планировщик заданий напоминает о событиях. Рассмотрите как программное реле времени. Хотя в широком смысле без этого не обходится любая электронная система. Даже потоки в процессоре персонального компьютера обрабатываются в собственном временном интервале. Системные часы обычно называют hardware (железо), а программные в противовес этому – software. Понятно, что последние работают на базе первых.

Единицей счета в последнем случае становятся тактовые импульсы. На указанном принципе активно строятся таймеры в схемотехники любой серии микросхем. Механические таймеры используются в стиральных машинах и микроволновых печах, представляя обычные часы. Благодаря специальным ухищрениям, тикают исключительно при включённом питании. Вариантом указанной разновидности считаются моторные реле, где частота оборотов счётного механизма регулируется при помощи редукторов.

Реле от Panasonic

Характеристики реле времени

Логическая классификация свойств приборов идёт по четырём направлениям:

  1. Диапазон времён выдержки. Сегодня параметр варьируется в безграничных пределах: в сторону увеличения и уменьшения времени.
  2. Стабильность работы. Параметр больше касается электронных реле. Подразумевает способность прибора выполнять функции при изменении напряжения питания. Понятно, что в автоматических выключателях при 240 В срабатывание произойдёт раньше, нежели при 220 В при одинаковом токе. Это прямо следует из закона Джоуля-Ленца (тепловая мощность вычисляется как произведение тока на вольтаж).
  3. Долговечность. Обычно измеряется в циклах включения и выключения.
  4. Для электронных приборов: потребляемая мощность.

Даже биметаллическая пластина, не являющаяся электрическим прибором, рассеивает мощность за счёт теплоты. Долго проработает автоматический выключатель на заданном режиме, и энергия продолжит утекать в пространство. Причём срабатывания не произойдёт. С подобными потерями мирятся ввиду экономичности конструкции. Если брать электрочайники, там через биметаллическую пластину даже ток не протекает: чувствительный элемент стоит под кнопкой и обтекается паром. В результате в нужный момент подогрев выключается, а вода успевает закипеть. Выходит, одинаковые физические принципы используются по-разному:

  1. В случае с пускозащитными реле холодильников и автоматическими выключателями через биметаллическую пластину течёт ток, вступает в действие закон Джоуля-Ленца.
  2. Электрочайник обогревает сенсор опосредованно, от поднимающегося над водой пара.
  3. В составе балласта ламп дневного света биметаллическая пластина подогревается тепловой энергией, образующейся в небольшой газоразрядной колбе.
  4. В утюге и масляном обогревателе биметаллическая пластина крепится непосредственно возле спирали и служит для управления подачей питания.

Схема задержки времени реле

Скажете, примеры к реле времени имеют мало отношения, а мы ответим, что упомянутые вещи позволяют глубже понять принцип организации рассматриваемых сегодня приборов. Человек с гораздо большим интересом относится к явлениям, которые он понимает. Характеристики реле времени дополняются списком параметров:

  1. Число значений срабатывания. Параметр не актуален для большей части бытовой техники.
  2. Количество переключающих контактов. Оговаривается для одновременного управления несколькими приборами, плюс в случае трёхфазных цепей, когда требуется убрать питающее напряжение одновременно со всех линий.
  3. При выборе таймеров в распределительный щиток обращайте внимание на возможность установки на DIN-рейку.
  4. Нормальное положение контактов: замкнуты или разомкнуты. Реле способны включать или выключать питание.
  5. Электрические реле характеризуются пропускаемой мощностью. Для автоматических включателей это номинальный ток и предельный отключающий ток. Второй параметр касается разрушающего режима в условиях неконтролируемого роста мощности, когда реле еще способно функционировать. Для автоматических выключателей порядок цифр порой составляет тысячи ампер, и возникновение такой ситуации характеризуется как нештатное и маловероятное.
  6. Электрические реле выпускаются для постоянного и переменного тока. Для высоких напряжений применяются различные методы для гашения искры. Описано в обзоре про автоматические выключатели.

Электрическое реле

Где применяются реле времени

Список конструкций поистине обширен. Уместно реле времени разделить на встроенные в технику и продающиеся отдельно. Понятно, что микроволновая печь, стиральная машина работают по программе, люди мало способны повлиять на ход процесса. В качестве собственных задумок логично применять таймеры отдельные, управляющие работой освещения, отопления, дверей, замков.

В продвинутые модели встраиваются возможности изменения программы по дням недели, периодически присутствует коррекция по широте для адекватной работы фонарей и ламп. Для отопления таймеры не считаются лучшим вариантом, хотя способны использоваться для поддержания микроклимата.

Но самым распространённым типом реле считают таймеры цифровой техники, без которых сегодня не обходится ни одно электронное устройство. В основе устройств лежит кварцевый резонатор с частотой высокой стабильности. Температурные и временные уходы параметров от номинала настолько малы, что ими в обычном случае пренебрегают. Кристаллы кварца сделали возможным существование компьютерной техники. Хотя первоначально колебания получали на основе резонансных контуров из ёмкостей и индуктивностей, оказалось, что процесс нуждается во внешней стабилизации.

Кварцевый резонатор уже считается колебательной системой. При совпадении приложенной частоты с собственной (выбирается конфигурацией кристалла SiO2) электрическое сопротивление конструкции резко снижается. Этот факт отслеживается генератором импульсов и используется для стабилизации частоты. Людям известные кварцевые часы, использующие эффект и не требующие настройки. Немалую важность это имеет в компьютерной технике.

Каждый производитель борется за повышение частот, что гарантирует конкурентоспособность продукции. Любой сбой чреват нестабильностью системы, что закономерно вызовет падение спроса. По тактам генератора отсчитывается любое действие в системном блоке. Даже оперативная память работает на основе триггеров-защёлок по указанному принципу. Колебания используются для хранения в памяти CMOS системного времени. Это важно, при сбое этого параметра операционная система Windows даёт значительные сбои, вплоть до потери активации (хакеры пытались обмануть условно-бесплатное программное обеспечение, изменяя системное время CMOS).

Реле времени применяются массово, во встроенном и внешнем исполнении. Особенно велика их роль в составе цифровой техники. В общепринятом смысле это таймеры, определяющие логику работы прочих систем. Будильник – известное реле времени, в определённый момент пробуждающее сигнал зуммера. Аналогичного рода устройства, встроенные в кухонную мебель, не одной хозяйке позволяли вспомнить о готовящихся на плите блюдах. А пригоревшие кастрюли сложно отмыть, значение таких реле времени сложно переоценить.

Диаграммы работы (функции) реле времени

  B - Relpol S.A. Цикличная работа, управляемая контактом S Напряжение питания U должно подаваться на реле времени непрерывно. При включении контакта управления S, сразу срабатывает
исполнительное реле R. Каждое последующее включения контакта управления S,приводит к изменению состояние исполнительного реле на противоположное (свойство бистабильного реле).
  Bi - Relpol S.A. Симметричная цикличная работа, начинающаяся от срабатывания Включение напряжения питания U, начинает отсчёт установленного времени Т, с одновременным включением исполнительного реле R. После отсчёта времени Т, исполнительное реле R возвращается в начальное состояние и начинается повторный отсчёт времени Т. Цикличная работа реле длится до момента выключения напряжения питания U.
  Bp - Relpol S.A. Симметричная цикличная работа, начинающаяся от перерыва Включение напряжения питания U, начинает отсчёт установленного времени T. После отсчёта времени, наступает срабатывание исполнительного реле R и снова начинается отсчёт времени Т. Цикличная работа реле длится до момента выключения напряжения питания U.
  E - Relpol S.A. Задержка включения Включение напряжения питания U, начинает отсчёт установленного времени T - задержка включения исполнительного реле R. После отсчёта времени Т, исполнительное реле R срабатывает и находится в позиции работы до момента отключения напряжения питания U.
  E(r) - Relpol S.A. Задержка включения с функцией Сброс Включение напряжения питания U инициирует отсчет установленного времени T1. После отсчета времени T1 включается исполнительное реле R. Если контакт управления S будет замкнут в процессе отсчета времени T1, то отсчет времени будет остановлен. После размыкания контакта S отсчет времени T1 начинается с начала. После отсчета времени T1 включается исполнительное реле R и это состояние длится до момента отключения напряжения питания U или до момента, когда контакт управления будет снова замкнут.
  E(S) - Relpol S.A. Задержка включения, с остановкой отсчета времени контактом S Включение напряжения питания U инициирует отсчет установленного времени T1. Если в процессе отсчета времени T1 контакт управления S будет замкнут, то отсчет времени T1 будет остановлен на время замыкания контакта S. Размыкание контакта управления S запускает дальнейший отсчет времени T1. После выполнения отсчета времени T1 исполнительное реле R включается и остается в этом состоянии до момента отключения питания U. 
  ER - Relpol S.A. Задержка включения и задержка выключения управляемая контактом S. Независимые установки времени T1 и T2 Вход реле времени непрерывно запитывается напряжением U. Замыкание контакта управления S начинает отсчет времени T1, а после его отсчета включается исполнительное реле R. Размыкание контакта управления S начинает отсчет времени T2 - задержка выключения исполнительного реле R, а по истечении времени исполнительное реле R выключается. Если во время отсчета времени T2 контакт управления S будет замкнут, то отсчитанное время обнуляется, a исполнительное реле R остается включенным. Если контакт управления S замкнуть на время короче чем T1, то система не включит
исполнительного реле R.
  Es - Relpol S.A. Задержка включения управляемая контактом S Напряжение питания U должно подаваться на реле времени непрерывно. Если контакт управления S будет замкнут, начнётся отсчёт установленного времени Т. По истечении времени Т, включается реле R. Такое состояние удерживается до момента размыкания контакта управления S. Если контакт управления будет разомкнут, то реле R выключается. Когда контакт управления S будет разомкнут перед истечением времени Т, реле R не сработает и произойдет сброс отсчитанного времени Т.
  Esa - Relpol S.A. Задержка включения и выключения, управляемая контактом S Напряжение питания U должно подаваться на реле времени непрерывно.
Включение контакта управления S, начинает отсчёт установленного времени T - задержка включения исполнительного реле R. После отсчёта времени Т, исполнительное реле R включается. Выключение контакта управления S, вновь начинает отсчёт установленного времени Т - задержка выключения исполнительного реле R, по отсчёту этого времени исполнительное реле R возвращается в исходное состояние. Если во время отсчёта задержки включения исполнительного реле R , время включения управляющего контакта S будет меньше чем установленное время задержки T, то исполнительное реле R сработает по истечению установленной задержки T и будет находится во включенном состоянии на протяжении времени Т. Во время срабатывания исполнительного реле R, замыкание контакта управления S, не влияет на реализуемую функцию.
  Esf - Relpol S.A. Задержка включения управляемая контактом S, без продления периода времени T Напряжение питания U должно подаваться на реле времени непрерывно. Включение контакта управления S, начинает отсчёт установленного времени T - задержка включения исполнительного реле R. После отсчёта времени Т, исполнительное реле R включается и остается в этом состоянии до момента следующего включения котакта S, котрое приводит к немедленному выключению исполнительного реле R на период Т, а по отсчёту времени Т, исполнительное реле R опять включается. В период отсчёта времени Т, срабатывание управляющего контакта S не влияет на состояние исполнительного реле R. Следующее включение исполнительного реле R возможно только по завершению текущего цикла.
  Esp - Relpol S.A. Задержка включения - один цикл, запуск по замыканию контакта S. Напряжение питания U должно подаваться на реле времени непрерывно. Включение контакта управления S, начинает отсчёт времени T, а по его истечению, включается исполнительное реле R и остается в этом состоянии до момента отключения питания U. Когда исполнительное реле R включено, включение и выключение управляющего контакта S не изменяет его состояния.
  Est - Relpol S.A. Задержка включения, запуск по замыканию управляющего контакта S, с продлением времени T Напряжение питания U должно подаваться на реле времени непрерывно. Включение контакта управления S, начинает отсчёт времени T, a по его истечению, включается исполнительное реле R и остается в этим состоянии до очередного включения управляющего контакта S или до момента отключения напряжения питания U. Включение контакта управления S, в тракте отсчёта времени Т, приведёт к сбросу отсчитанного ранее периода времени и начнется отсчёт времени Т сначала.
  EWa - Relpol S.A. Задержка выключения и отсчёт времени выключения, запуск по размыканию управляющего контакта S. Независимые установки времени T1 и T2 Напряжение питания U должно подаваться на реле времени непрерывно. Включение контакта управления S, включает исполнительное реле R. Выключение контакта управления S, начинает отсчёт времени T1, а по его истечению исполнительное реле R возвращается в начальное состояние на время Т2. Следующее срабатывание исполнительного реле R наступит по истечению времени T2, когда в момент окончания отсчёта времени, контакт управления S будет замкнут. Во время отсчёта времени Т1 и Т2 состояние контакта управления S не имеет значения.
  EWf - Relpol S.A. Задержка включения и задержка выключения, управляемые контактом S. Независимые установки времени T1 и T2 Вход реле времени непрерывно запитывается напряжением U. Замыкание контакта управления S начинает отсчет времени T1. По истечении времени T1 реле R включается. Размыкание контакта управления S начинает отсчет времени T2 - задержка выключения исполнительного реле R. После отсчета времени T2 исполнительное реле R выключается.
  EWs - Relpol S.A. Задержка включения и включение на установленное время, запуск по замыканию управляющего контакта S. Независимые
установки времени T1 и T2
Напряжение питания U должно подаваться на реле времени непрерывно. Замыкание контакта управления S запускает отсчёт установленного времени Т1. По истечении времени Т1, исполнительное реле R включается и начинается отсчёт установленного времени Т2. По истечении времени Т2, исполнительное реле R выключается. В течение отсчёта времени, контакт управления S может замыкаться и размыкаться любое количество раз без влияния на исполнительное реле R. Только после окончания полного цикла, новое замыкание контакта S запустит отсчёт времени Т1, после которого наступит срабатывание реле R и отсчёт времени Т2.
  EWu - Relpol S.A. Задержка включения на установленное время. Независимые установки времени T1 и T2 Включение напряжения питания U начинает работу от отсчета времени T1, а по истечении времени исполнительное реле R включается на время T2 . После отсчета времени T2 исполнительное реле R выключается.
  Ii - Relpol S.A. Циклическая работа начинающаяся от включения. Независимые установки времени T1 и T2 Включение напряжения питания U, включает исполнительное реле R и начинается отсчёт установленного времени работы T1. По истечению времени T1, исполнительное реле R выключается и начинается отсчёт времени паузы T2. По истечении времени паузы T2, реле выхода R включается снова. Далее цикл повторяется до отключения напряжения питания U.
  Ip - Relpol S.A. Циклическая работа начинающаяся с отключения. Независимые установки времени T1 и T2. Включение напряжения питания U, начинает отсчёт установленного времени задержки T1. По истечению времени задержки T1 , срабатывает исполнительное реле R и начинается отсчёт времени T2. По истечении времени работы T2, исполнительное реле R снова включается. Далее цикл повторяется и длится до момента отключения напряжения питания U.
  NWu - Relpol S.A. Включение на установленное время - выключение на установленное время - постоянное включение, управляемые контактом S. Независимые установки времени T1 и T2 При включении напряжения питания U, когда управляющий контакт S закрыт, начинается исполнение функции - с включения исполнительного реле R на время T1, а по его окончанию, исполнительное реле R выключается на время Т2, а по его истечению исполнительное реле R включается окончательно. Во время работы реле, включение контакта управления S, приведет к Сброс и к началу работы согласно функции NWu. 
  Pi - Relpol S.A. Цикличная работа начинающаяся от срабатывания. Независимые установки времени T1 и T2 Включение напряжения питания U начинает циклическую работу от включения исполнительного реле R на время T1, после которого наступает
выключение исполнительного реле R на время T2. Циклическая работа длится до момента отключения напряжения питания U.
  Pi(S) - Relpol S.A. Цикличная работа начинающаяся от срабатывания. Независимые установки времени T1 и T2. С управлением по контакту S. Включение напряжения питания U начинает циклическую работу от включения исполнительного реле R на время T1, после которого наступает
выключение исполнительного реле R на время T2. Циклическая работа длится до момента отключения напряжения питания U. Замыкание контакта управления S мгновенно останавливает отсчет времени. Размыкание контакта управления S снова запускает отсчет времени.
  Pp - Relpol S.A. Цикличная работа начинающаяся от перерыва. Независимые установки времени T1 и T2 Включение напряжения питания U начинает циклическую работу от отсчета времени перерыва T1 - времени выключения исполнительного
реле R, после которого наступает включение исполнительного реле R на время T2. Циклическая работа длится до момента отключения напряжения питания U
  Pp(S) - Relpol S.A. Цикличная работа начинающаяся от перерыва. Независимые установки времени T1 и T2.  С управлением по контакту S. Включение напряжения питания U начинает циклическую работу от отсчета времени перерыва T1 - времени выключения исполнительного реле R, после которого наступает включение исполнительного реле R на время T2. Циклическая работа длится до момента отключения напряжения питания U. Замыкание контакта управления S мгновенно останавливает отсчет времени. Размыкание контакта управления S снова запускает отсчет времени.
  PWM - Relpol S.A. Широтно-импульсная модуляция Устанавливаем в реле время одиночного цикла Tz, которое доступно для установки. Установку выполняем потенциометром выбора диапазона времени. Затем устанавливаем время T - время включения исполнительного реле R, эту установку реализуем потенциометром точной установки времени. Возможное для установки время T, находится в пределах от 0,1 до 1,0 диапазона времени (цикла Tz). При включении питания U, сразу срабатывает исполнительное реле R и начинается отсчёт установленного времени T, а по его истечению исполнительное реле возвращается в исходное состояние на время оставшееся до заполнения установленного времени Tz. По истечении времени Tz, начинается очередной цикл, который длится до момента отключения питания U. В течении реализации функции PWM, есть возможность изменения времени включения исполнительного реле R и это изменение не влияет на время длительности цикла Tz. Измененное время включения исполнительного реле R, будет реализовываться со следующего раза после изменения цикла Tz.
  R - Relpol S.A. Задержка выключения управляемая контактом S


Смотрите также