Самое сложное уравнение в мире


Задачи тысячелетия. Просто о сложном / Хабр


Привет, хабралюди!

Сегодня я бы хотел затронуть такую тему как «задачи тысячелетия», которые вот уже десятки, а некоторые и сотни лет волнуют лучшие умы нашей планеты.

После доказательства гипотезы (теперь уже теоремы) Пуанкаре Григорием Перельманом, основным вопросом, который заинтересовал многих, был: «А что же он собственно доказал, объясните на пальцах?» Пользуясь возможностью, попробую объяснить на пальцах и остальные задачи тысячелетия, или по крайней мере подойти в ним с другой более близкой к реальности стороны.

Равенство классов P и NP

Все мы помним из школы квадратные уравнения, которые решаются через дискриминант. Решение этой задачи относится к классу P (Polynomial time) — для нее существует быстрый (здесь и далее под словом «быстрый» подразумевается как выполняющийся за полиномиальное время) алгоритм решения, который и заучивается.

Также существуют NP-задачи (Non-deterministic Polynomial time), найденное решение которых можно быстро проверить по определенному алгоритму. Для примера проверка методом перебора компьютером. Если вернуться к решению квадратного уравнения, то мы увидим, что в данном примере существующий алгоритм решения проверяется так же легко и быстро как и решается. Из этого напрашивается логичный вывод, что данная задача относится как к одному классу так и ко второму.

Таких задач много, но основным вопросом является, все или не все задачи которые можно легко и быстро проверить можно также легко и быстро решить? Сейчас для некоторых задач не найдено быстрого алгоритма решения, и неизвестно существует ли такой вообще.

На просторах интернета также встретил такую интересную и прозрачную формулировку:

Допустим, что вы, находясь в большой компании, хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то достаточно будет доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей.

В данном случае вопрос стоит все тот же, есть ли такой алгоритм действий, благодаря которому даже не имея информации о том, где находится человек, найти его так же быстро, как будто зная где он находится.

Данная проблема имеет большое значение для самых различных областей знаний, но решить ее не могут уже более 40 лет.

Гипотеза Ходжа

В реальности существуют множество как простых так и куда более сложных геометрических объектов. Очевидно, что чем сложнее объект тем более трудоемким становится его изучение. Сейчас учеными придуман и вовсю применяется подход, основная идея которого заключается в том, чтобы вместо самого изучаемого объекта использовать простые «кирпичики» с уже известными свойствами, которые склеиваются между собой и образуют его подобие, да-да, знакомый всем с детства конструктор. Зная свойства «кирпичиков», становится возможным подступиться и к свойствам самого объекта.

Гипотеза Ходжа в данном случае связана с некоторыми свойствами как «кирпичиков» так и объектов.

Гипотеза Римана

Всем нам еще со школы известны простые числа которые делятся только на себя и на единицу (2,3,5,7,11...). С давних времен люди пытаются найти закономерность в их размещении, но удача до сих пор так никому и не улыбнулась. В результате ученые применили свои усилия к функции распределения простых чисел, которая показывает количество простых чисел меньше или равных определенного числа. Например для 4 — 2 простых числа, для 10 — уже 4 числа. Гипотеза Римана как раз устанавливает свойства данной функции распределения.

Многие утверждения о вычислительной сложности некоторых целочисленных алгоритмов, доказаны в предположении верности этой гипотезы.

Теория Янга — Миллса

Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения, объединяющие теории электромагнитного, слабого и сильного взаимодействий. Одно время теория Янга-Миллса рассматривалась лишь как математический изыск, не имеющий отношения к реальности. Однако, позже теория начала получать экспериментальные подтверждения, но в общем виде она все еще остается не решенной.

На основе теории Янга-Миллса построена стандартная модель физики элементарных частиц в рамках которой был предсказан и не так давно обнаружен нашумевший бозон Хиггса.

Существование и гладкость решений уравнений Навье — Стокса

Течение жидкостей, воздушные потоки, турбулентность. Эти, а также множество других явлений описываются уравнениями, известными как уравнения Навье — Стокса. Для некоторых частных случаев уже найдены решения, в которых как правило части уравнений отбрасываются как не влияющие на конечный результат, но в общем виде решения этих уравнений неизвестны, и при этом даже неизвестно, как их решать.
Гипотеза Бёрча — Свиннертон-Дайера

Для уравнения x2 + y2 = z2 в свое время еще Эвклид дал полное описание решений, но для более сложных уравнений поиск решений становится чрезвычайно трудным, достаточно вспомнить историю доказательства знаменитой теоремы Ферма, чтобы убедиться в этом.

Данная гипотеза связана с описанием алгебраических уравнений 3 степени — так называемых эллиптических кривых и по сути является единственным относительно простым общим способом вычисления ранга, одного из важнейших свойств эллиптических кривых.

В доказательстве теоремы Ферма эллиптические кривые заняли одно из важнейших мест. А в криптографии они образуют целый раздел имени себя, и на них основаны некоторые российские стандарты цифровой подписи.

Гипотеза Пуанкаре

Думаю если не все, то большинство точно о ней слышали. Чаще всего встречается, в том числе и на центральных СМИ, такая расшифровка как «резиновую ленту натянутую на сферу можно плавно стянуть в точку, а натянутую на бублик — нельзя». На самом деле эта формулировка справедлива для гипотезы Тёрстона, которая обобщает гипотезу Пуанкаре, и которую в действительности и доказал Перельман.

Частный случай гипотезы Пуанкаре говорит нам о том, что любое трехмерное многообразие без края (вселенная, например) подобно трехмерной сфере. А общий случай переводит это утверждение на объекты любой мерности. Стоит заметить, что бублик, точно так же как вселенная подобна сфере, подобен обычной кофейной кружке.

Заключение

В настоящее время математика ассоциируется с учеными, имеющими странный вид и говорящие о не менее странных вещах. Многие говорят о ее оторванности от реального мира. Многие люди как младшего, так и вполне сознательного возраста говорят, что математика ненужная наука, что после школы/института, она нигде не пригодилась в жизни.

Но на самом деле это не так — математика создавалась как механизм с помощью которого можно описать наш мир, и в частности многие наблюдаемые вещи. Она повсюду, в каждом доме. Как сказал В.О. Ключевский: «Не цветы виноваты, что слепой их не видит».

Наш мир далеко не так прост, как кажется, и математика в соответствии с этим тоже усложняется, совершенствуется, предоставляя все более твердую почву для более глубокого понимания существующей реальности.

15 самых сложных вопросов по SAT математике

Хотите проверить себя, отвечая на самые сложные вопросы по математике SAT? Хотите знать, что делает эти вопросы такими сложными и как их лучше всего решать? Если вы готовы по-настоящему погрузиться в математический раздел SAT и нацелиться на этот высший балл, то это руководство для вас.

Мы собрали то, что мы считаем , из 15 самых сложных вопросов для текущего SAT , со стратегиями и ответами на каждый из них.Это все сложные вопросы SAT Math из практических тестов SAT College Board, а это означает, что их понимание - один из лучших способов учиться для тех из вас, кто стремится к совершенству.

Изображение: Соня Севилья / Викимедиа

Краткий обзор SAT Math

Третий и четвертый разделы теста SAT всегда будут математическими разделами . Первый математический подраздел (помеченный "3") соответствует , а не

.

21 самый сложный вопрос по математике для ACT

Вы учились и теперь готовы к математическому разделу ACT (ууу!). Но готовы ли вы отвечать на самые сложные математические вопросы, которые предлагает ACT? Вы хотите точно знать, почему эти вопросы так сложны и как их лучше всего решать? Если вы настроены на этот высший балл (или вам просто очень любопытно посмотреть, какие будут самые сложные вопросы), то это руководство для вас.

Мы собрали, по нашему мнению, 21 самый сложный вопрос, который ACT задавал студентам за последние 10 лет, со стратегиями и ответами на каждый из вопросов.Все это настоящие вопросы по математике ACT, поэтому их понимание и изучение - один из лучших способов улучшить свой текущий результат ACT и выбить его из парка в день экзамена.

Краткий обзор раздела ACT Math

Как и все тематические разделы ACT, математический раздел ACT представляет собой один законченный раздел, который вы будете изучать сразу. Это всегда будет второй раздел теста, и у вас будет 60 минут, чтобы ответить на 60 вопросов .

ACT размещает свои вопросы в порядке возрастания сложности .

.

Квадратные уравнения

Пример квадратного уравнения :

Квадратные уравнения образуют красивые кривые, такие как эта:

Имя

Название Quadratic происходит от «quad», что означает квадрат, потому что переменная возводится в квадрат (например, x 2 ).

Его также называют «уравнением степени 2» (из-за «2» на x )

Стандартная форма

Стандартная форма квадратного уравнения выглядит так:


  • a , b и c - известные значения. a не может быть 0.
  • « x » - это переменная или неизвестно (мы ее еще не знаем).

Вот несколько примеров:

2x 2 + 5x + 3 = 0 В этом a = 2 , b = 5 и c = 3
x 2 - 3x = 0 Это немного сложнее:
  • Где а ? Ну a = 1 , так как мы обычно не пишем «1x 2 »
  • б = −3
  • А где c ? Well c = 0 , поэтому не показан.
5x - 3 = 0 Ой! Это , а не квадратное уравнение: оно отсутствует x 2
(другими словами a = 0 , что означает, что оно не может быть квадратичным)

Поиграйте с ним

Поиграйте с "Проводником квадратного уравнения", чтобы увидеть:

  • график, а
  • решений (называемых «корнями»).

Скрытые квадратные уравнения!

Как мы видели ранее, Стандартная форма квадратного уравнения - это

Но иногда квадратное уравнение так не выглядит!

Например:

Скрытый в стандартной форме a, b и c
x 2 = 3x - 1 Переместить все термины в левую часть x 2 - 3x + 1 = 0 a = 1, b = −3, c = 1
2 (w 2 - 2w) = 5 Развернуть (снять скобки),
и переместите 5 влево
2 Вт 2 - 4 Вт - 5 = 0 a = 2, b = −4, c = −5
z (z − 1) = 3 Разверните и переместите 3 влево z 2 - z - 3 = 0 а = 1, b = -1, с = -3

Как их решить?

В « решениях » квадратного уравнения равно нулю .

Их также называют « корней », или иногда « нулей »

Обычно существует 2 решения (как показано на этом графике).

И есть несколько разных способов найти решения:

Или мы можем использовать специальную квадратичную формулу :

Просто введите значения a, b и c и выполните вычисления.

Сейчас мы рассмотрим этот метод более подробно.

О квадратичной формуле

Плюс / Минус

Прежде всего, что это за плюс / минус, который выглядит как ±?

± означает, что есть ДВА ответа:

x = −b + √ (b 2 - 4ac) 2a

x = −b - √ (b 2 - 4ac) 2a

Вот пример с двумя ответами:

Но не всегда так получается!

  • Представьте, что кривая «просто касается» оси x.
  • Или представьте, что кривая настолько высока , что даже не пересекает ось x!

Вот тут-то нам и помогает «Дискриминант» ...

Дискриминант

Вы видите b 2 - 4ac в приведенной выше формуле? Он называется Дискриминант , потому что он может «различать» возможные типы ответов:

  • когда b 2 - 4ac положительный, мы получаем два Реальных решения
  • , когда он равен нулю, мы получаем только ОДНО реальное решение (оба ответа одинаковы)
  • при отрицательном значении получаем пару Комплексных решений

Комплексные решения? Давайте поговорим о них после того, как мы увидим, как использовать формулу.

Использование квадратичной формулы

Просто введите значения a, b и c в квадратную формулу и произведите вычисления.

Пример: Решить 5x 2 + 6x + 1 = 0

Коэффициенты: a = 5, b = 6, c = 1

Квадратичная формула: x = −b ± √ (b 2 - 4ac) 2a

Вставьте a, b и c: x = −6 ± √ (6 2 - 4 × 5 × 1) 2 × 5

Решить: x = −6 ± √ (36 -20) 10

х = −6 ± √ (16) 10

х = −6 ± 4 10

х = -0.2 или −1

Ответ: x = −0,2 или x = −1

И мы их видим на этом графике.

Чек -0,2 : 5 × ( −0,2 ) 2 + 6 × ( −0,2 ) + 1
= 5 × (0,04) + 6 × (-0,2) + 1
= 0,2 - 1,2 + 1
= 0
Чек -1 : 5 × ( −1 ) 2 + 6 × ( −1 ) + 1
= 5 × (1) + 6 × (-1) + 1
= 5–6 + 1
= 0

Вспоминая формулу

Добрый читатель предложил спеть это к "Pop Goes the Weasel":

"x равно минус b "Вокруг тутового куста
плюс или минус квадратный корень Обезьяна погналась за лаской
в квадрате b минус четыре a c Обезьяна думала, что все было весело
ВСЕ более двух а " Поп! идет ласка »

Попробуйте спеть его несколько раз, и он застрянет у вас в голове!

Или вы можете вспомнить эту историю:

х = −b ± √ (b 2 - 4ac) 2a

"Негативный мальчик думал, да или нет, о том, чтобы пойти на вечеринку,
на вечеринке он разговаривал с квадратным мальчиком, но не с 4 классными цыпочками.
Все закончилось в 2 часа ночи.
"

Комплексные решения?

Когда Дискриминант (значение b 2 - 4ac ) отрицателен, мы получаем пару Комплексных решений ... что это означает?

Это означает, что наш ответ будет включать в себя мнимые числа. Вот это да!

Пример: Решить 5x 2 + 2x + 1 = 0

Коэффициенты равны : a = 5, b = 2, c = 1

Обратите внимание, что дискриминант отрицательный: b 2 - 4ac = 2 2 - 4 × 5 × 1
= −16

Используйте квадратичную формулу : x = −2 ± √ (−16) 10

√ (-16) = 4 i
(где i - мнимое число √ − 1)

Итак: x = −2 ± 4 и 10

Ответ: x = −0.2 ± 0,4 и

График не пересекает ось абсцисс. Вот почему мы получили комплексные числа.

В некотором смысле это проще: нам не нужно больше вычислений, просто оставим -0,2 ± 0,4 i .

Пример: Решить x 2 - 4x + 6,25 = 0

Коэффициенты равны : a = 1, b = −4, c = 6,25

Обратите внимание, что дискриминант отрицательный: b 2 - 4ac = (−4) 2 - 4 × 1 × 6.25
= −9

Используйте квадратичную формулу : x = - (- 4) ± √ (−9) 2

√ (−9) = 3 i
(где i - мнимое число √ − 1)

Итак: x = 4 ± 3 i 2

Ответ: x = 2 ± 1,5 i

График не пересекает ось абсцисс.Вот почему мы получили комплексные числа.

НО перевернутое зеркальное отображение нашего уравнения действительно пересекает ось x в 2 ± 1,5 (примечание: отсутствует i ).

Просто интересный факт для вас!

Сводка

  • Квадратное уравнение в стандартной форме: ax 2 + bx + c = 0
  • Квадратичные уравнения могут быть разложены на множители
  • Квадратичная формула: x = −b ± √ (b 2 - 4ac) 2a
  • Когда дискриминант ( b 2 −4ac ) равен:
    • положительный, есть 2 реальных решения
    • ноль, есть одно реальное решение
    • негатив, есть 2 комплексных решения

.

Смотрите также