Самый мощный атомный реактор в мире


"Росатом" испытал корпус самого мощного в мире научного ядерного реактора

https://ria.ru/20190924/1559064888.html

"Росатом" испытал корпус самого мощного в мире научного ядерного реактора

"Росатом" испытал корпус самого мощного в мире научного ядерного реактора

Специалисты российской атомной отрасли успешно провели комплекс испытаний основного корпуса самого мощного в мире многоцелевого научно-исследовательского... РИА Новости, 24.09.2019

2019-09-24T14:22

2019-09-24T14:22

2020-03-03T16:21

россия

ядерные технологии

атоммаш

атомэнергомаш

государственная корпорация по атомной энергии "росатом"

ростовская область

в мире

/html/head/meta[@name='og:title']/@content

/html/head/meta[@name='og:description']/@content

https://cdn21.img.ria.ru/images/101738/01/1017380196_0:30:1352:790_1400x0_80_0_0_e34a490156cd4257894813dd967dd1bd.jpg

МОСКВА, 24 сен - РИА Новости. Специалисты российской атомной отрасли успешно провели комплекс испытаний основного корпуса самого мощного в мире многоцелевого научно-исследовательского реактора на быстрых нейтронах МБИР, который будет построен в России, сообщает машиностроительный дивизион госкорпорации "Росатом" холдинг "Атомэнергомаш"."Это один из ключевых этапов изготовления корпуса научного реактора", - отмечается в сообщении. Испытания проходили на заводе "Атоммаш" в Волгодонске (Ростовская область), где был изготовлен корпус реактора МБИР. Эти работы состояли из гидравлических и вакуумных испытаний.Многоцелевой исследовательский реактор на быстрых нейтронах будет построен в Димитровграде (Ульяновская область) на площадке Научно-исследовательского института атомных реакторов. МБИР станет самым мощным из действующих, сооружаемых и проектируемых исследовательских реакторов в мире. Тепловая мощность нового реактора с натриевым теплоносителем составит 150 МВт.Уникальные технические характеристики МБИР позволят решать широкий спектр исследовательских задач в обоснование создания новых конкурентоспособных и безопасных ядерных энергетических установок, в том числе реакторов на быстрых нейтронах для замыкания ядерного топливного цикла. При этом время исследований на МБИР по сравнению с ныне действующими реакторами сократится в несколько раз.

https://ria.ru/20190916/1558716342.html

россия

ростовская область

РИА Новости

Россия, Москва, Зубовский бульвар, 4

7 495 645-6601

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

2019

РИА Новости

Россия, Москва, Зубовский бульвар, 4

7 495 645-6601

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

Новости

ru-RU

https://ria.ru/docs/about/copyright.html

https://xn--c1acbl2abdlkab1og.xn--p1ai/

РИА Новости

Россия, Москва, Зубовский бульвар, 4

7 495 645-6601

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

https://cdn22.img.ria.ru/images/101738/01/1017380196_36:0:1097:796_1400x0_80_0_0_58d9cd0869c26cb0b427e0a6ede3e0a1.jpg

РИА Новости

Россия, Москва, Зубовский бульвар, 4

7 495 645-6601

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

РИА Новости

Россия, Москва, Зубовский бульвар, 4

7 495 645-6601

https://xn--c1acbl2abdlkab1og.xn--p1ai/awards/

россия, атоммаш, атомэнергомаш, государственная корпорация по атомной энергии "росатом", ростовская область, в мире

МОСКВА, 24 сен - РИА Новости. Специалисты российской атомной отрасли успешно провели комплекс испытаний основного корпуса самого мощного в мире многоцелевого научно-исследовательского реактора на быстрых нейтронах МБИР, который будет построен в России, сообщает машиностроительный дивизион госкорпорации "Росатом" холдинг "Атомэнергомаш".

"Это один из ключевых этапов изготовления корпуса научного реактора", - отмечается в сообщении. Испытания проходили на заводе "Атоммаш" в Волгодонске (Ростовская область), где был изготовлен корпус реактора МБИР. Эти работы состояли из гидравлических и вакуумных испытаний.

"Испытания подтвердили прочность основного металла и качество сварных швов. В ближайшее время корпусу МБИР предстоит приварка специального кожуха, а затем он направится на финальный этап изготовления - контрольную сборку с внутрикорпусными устройствами", - говорится в сообщении.

Многоцелевой исследовательский реактор на быстрых нейтронах будет построен в Димитровграде (Ульяновская область) на площадке Научно-исследовательского института атомных реакторов. МБИР станет самым мощным из действующих, сооружаемых и проектируемых исследовательских реакторов в мире. Тепловая мощность нового реактора с натриевым теплоносителем составит 150 МВт.

16 сентября 2019, 03:27

"Росатом" предложит комплекс мер по развитию водородной энергетики в России

Уникальные технические характеристики МБИР позволят решать широкий спектр исследовательских задач в обоснование создания новых конкурентоспособных и безопасных ядерных энергетических установок, в том числе реакторов на быстрых нейтронах для замыкания ядерного топливного цикла. При этом время исследований на МБИР по сравнению с ныне действующими реакторами сократится в несколько раз.

за что его создателям дали премию правительства — Российская газета

Первым в списке лауреатов премии правительства России в области науки и техники за 2020 год оказался коллектив ученых, разработчиков и конструкторов, о котором сразу заговорили эксперты в области современных вооружений - в нашей стране и за рубежом. И принялись пофамильно изучать лауреатов в надежде понять, что же они такое особенное сотворили.

В официальном тексте распоряжения "О присуждении премий Правительства Российской Федерации 2020 года в области науки и техники" об этом сказано предельно коротко и обтекаемо: "за разработку ядерной реакторной установки для АПЛ 4 поколения "Ясень" и реализацию комплекса научно-исследовательских и опытно-конструкторских работ и научно-техническое обоснование решений по обеспечению безопасности, надежности, скрытности". Но тот факт, что в списке лауреатов десять специалистов и руководителей, представляющих шесть известных организаций - конструкторское бюро, отраслевые НИИ, многопрофильные научные центры, военно-морская академия - указывает на широкий охват решенных и решаемых задач.

Уже не является секретом, что АПЛ серии "Ясень" оснащены принципиально новой ядерной энергоустановкой, ее разработчик - ОКБМ "Африкантов" (Нижний Новгород). Эта ЯЭУ выполнена по моноблочной схеме с интеграцией водо-водяного реактора и системы циркуляции теплоносителя первого контура в едином корпусе-моноблоке. Такая компоновка уже сама по себе повышает надежность. Кроме того в ней обеспечен высокий уровень естественной циркуляции теплоносителя первого контура. Только за счет этого, не включая специальные циркуляционные насосы (а это главный источник шума на современных АПЛ), можно поднимать тепловую мощность реактора и обеспечивать малошумный ход в подводном положении до 20−25 узлов.

Еще одно достоинство новой энергоустановки в том, что срок службы ее реактора с изначально загруженным ядерным топливом может достигать (без перезарядки!) 25-30 лет, а это уже сравнимо со сроком службы самой субмарины. Мировая тенденция такова, что сейчас ко всем подобным реакторам (в первую очередь - реакторам АПЛ) выдвигается такое требование: одна загрузка топлива на весь жизненный цикл корабля.

Как с этим у нас, станет ясно лет через 10-15, когда подойдут такие сроки на первых "Ясенях". А пока есть только гарантии, выданные разработчиком реакторной установки - Опытно-конструкторским бюро машиностроения "Африкантов" и теми, кто поименован в одном списке лауреатов.

Правда, немного странно, что в этой команде никак не представлен разработчик самого корабля как единого целого - головное конструкторское бюро, оно же по определению - главный интегратор всех систем, которые создаются под утвержденный проект участниками научно-производственной кооперации. Включая, разумеется, реакторную установку АПЛ и связанные с ней системы.

Напомним: атомные подводные лодки проекта 885 "Ясень" и ее усовершенствованный вариант "Ясень-М" спроектированы в Санкт-Петербургском морском бюро машиностроения "Малахит" и строятся на Севмаше в рамках Государственной программы вооружений. Они являют собой, с одной стороны, эволюционное развитие предыдущих серий многоцелевых АПЛ этого же проектно-конструкторского бюро (671 "ерш", 971 "Щука-Б"), а с другой - знаменуют качественно новый этап в подводном кораблестроении.

На примере головного "Ясеня", который уже принят в боевой состав и под названием "Северодвинск" несет службу на Северном флоте, мы видим, что одна и та же субмарина может использоваться и для тактических целей - как подводный охотник и сторожевик, и для решения задач стратегического сдерживания - наряду с подводными крейсерами, вооруженными МБР.

Вторая по времени закладки (вслед за "Северодвинском") и головная (то есть первая, что построена по усовершенствованному проекту 885М) атомная подлодка "Казань" этим летом готовилась на Севмаше к дополнительным испытаниям по расширенной программе, включая новые виды вооружения и системы управления им.

По сведениям из открытых источников, на подлодке этого проекта восемь торпедных аппаратов, которые расположены не в носовом отсеке, как принято на большинстве АПЛ, а ближе к середине корабля слева и справа по борту - под углом к продольной оси. Из них возможен пуск торпед, ракето-торпед, постановка мин. А "главный калибр" этих субмарин - за ограждением выдвижных устройств: в десяти вертикальных шахтах могут размещаться крылатые ракеты 3М-55 "Оникс", крылатые ракеты 3М-14 "Калибр", а теперь и перспективные гиперзвуковые ракеты 3М-22 "Циркон". Возможность комбинировать ракетное вооружение, как уже сказано, обеспечивает тактическую гибкость и позволять выполнять широкий набор боевых задач - от борьбы с субмаринами противника и поражения стационарных наземных целей до уничтожения всех типов надводных кораблей крылатыми ракетами "Калибр", "Оникс", "Циркон".

Как мы уже сообщали, "Казань" намеревались передать флоту еще в 2018-м, но испытания затянулись, и ввод корабля в боевой состав перенесли на год. Однако и прошлой осенью что-то не срослось. Возможно, у экипажа и госкомиссии остались вопросы по какой-то системе или оборудованию подводной лодки. Плюс к тому программу испытаний усложнили "сверху". Анонимные источники в Минобороны и ОПК уже не раз заявляли, что именно "Казань" должна выполнить пробный пуск адаптированной для подводных лодок гиперзвуковой ракеты "Циркон", чего изначально не предполагалось.

В "Малахите" и на Севмаше такие ожидания официально не комментируют. Что вполне объяснимо: ко всем неопределенностям этого года добавились проблемы из-за пандемии коронавируса. Но и там, и там делают все возможное, чтобы "Казань" сдала назначенные ей экзамены и как можно скорее вошла в состав ВМФ.

В сентябре и октябре экипаж К-561 "Казань" со сдаточной командой, как минимум, дважды выходил для испытаний в море. По сообщениям пресс-службы Северного флота, в обоих случаях "ход испытаний новой атомной подводной лодки в морских полигонах" обеспечивали тяжелый атомный подводный крейсер "Дмитрий Донской" и специальные суда Беломорской военно-морской базы.

Официально

Присудить премии Правительства Российской Федерации 2020 года в области науки и техники и присвоить почетное звание лауреата премии Правительства Российской Федерации в области науки и техники:

1) Звереву Дмитрию Леонидовичу, генеральному директору - генеральному конструктору акционерного общества "Опытное Конструкторское Бюро Машиностроения имени И.И. Африкантова", руководителю работы, Соколовой Людмиле Борисовне, помощнику заместителя генерального директора, докторам технических наук, Большухину Михаилу Александровичу, кандидату технических наук, начальнику департамента, Морозову Олегу Александровичу, главному специалисту отдела, Неевину Сергею Михайловичу, заместителю генерального директора - генерального конструктора, - работникам того же общества; Витину Сергею Петровичу, начальнику отделения федерального государственного унитарного предприятия "Научно-исследовательский технологический институт имени А.П. Александрова"; Григорьеву Владимиру Юрьевичу, кандидату технических наук, заместителю начальника отдела федерального государственного унитарного предприятия "Крыловский государственный научный центр"; Каплиенко Андрею Владимировичу, доктору технических наук, генеральному директору акционерного общества "Ордена Ленина Научно-исследовательский и конструкторский институт энерготехники имени Н.А. Доллежаля"; Константинову Борису Георгиевичу, доктору технических наук, профессору, старшему научному сотруднику федерального государственного казенного военного образовательного учреждения высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала Флота Советского Союза Н.Г.Кузнецова"; Устинову Василию Сергеевичу, кандидату технических наук, заместителю директора федерального государственного бюджетного учреждения "Национальный исследовательский центр "Курчатовский институт", - за разработку ядерной реакторной установки для АПЛ 4 поколения "Ясень" и реализацию комплекса научно-исследовательских и опытно-конструкторских работ и научно-техническое обоснование решений по обеспечению безопасности, надежности, скрытности…

(Цитируется по тексту распоряжения Правительства Российской Федерации № 2736-р от 22.10.2020 г. "О присуждении премий Правительства Российской Федерации 2020 года в области науки и техники").

рейтинг ТОП 10 АЭС по мощности

Самые крупнейшие АЭС мира. Рейтинг топ-10 АЭС по мощности.

Большинство крупнейших атомных электростанций в мире по чистой мощности на выходе находятся в Восточной Азии.

Регулярные проверки и меры безопасности были усилены на атомных электростанциях большой мощности после ядерной катастрофы Фукусима в 2011 году.

Всего в мире насчитывается 191 АЭС.

  1. АЭС Касивадзаки-Карива
  2. АЭС Брюс
  3. АЭС Хануль
  4. АЭС Ханбит
  5. Запорожская АЭС
  6. АЭС Гравлин
  7. АЭС Палюэль
  8. АЭС Каттеном
  9. АЭС Ои
  10. АЭС Циньшань

АЭС Касивадзаки-Карива (Япония)

АЭС принадлежит компании Tokyo Electric Power Co. (TEPCO), находится в Японии и в настоящее время является крупнейшей в мире атомной электростанцией с чистой мощностью 7 965 МВт.

В Касивадзаки-Карива имеется семь реакторов с кипящей водой (BWR) с общей установленной мощностью 8,212 МВт.

Первые пять единиц имеют валовую мощность 1 100 МВт каждый, тогда как шестой и седьмой единицы имеют мощность 1 356 МВт каждый.

Первый блок начал коммерческую эксплуатацию в сентябре 1985 года, а последний блок стал коммерчески функционировать в июле 1997 года.

В настоящее время TEPCO внедряет меры безопасности на заводе для соответствия новым правилам безопасности, установленным Японским органом ядерного регулирования.

АЭС Брюс (Канада)

Ядерная генерирующая станция Брюса, расположенная в округе Брюс, Онтарио, Канада, является второй по величине атомной электростанцией в мире.

Ядерный объект мощностью в 6 234 МВт (нетто) принадлежит Ontario Power Generation (OPG) и управляется Bruce Power.

Объект состоит из восьми реакторов воды под давлением (PHWR) с общей производительностью от 786 МВт до 891 МВт. Последний реактор Канадской АЭС стал коммерчески эксплуатироваться в мае 1987 года.

Брюс 1 был закрыт в 1997 году и был вновь открыт в сентябре 2012 года. Брюс 2 был перезапущен в октябре 2012 года, а также после закрытия, произошедшего в 1995 году.

Ханульская АЭС (Южная Корея)

Ханульская атомная электростанция (ранее Ульчин) была переименована в АЭС Хануль в 2013 году и является крупнейшей южнокорейской атомной электростанцией.

В настоящее время завод имеет общую установленную мощность 6,189 МВт и чистую проектную мощность 5,908 МВт, являющуюся третьей по величине АЭС в мире.

Первая фаза Ханульской АЭС была завершена в 2005 году шестью установками с водяным реактором под давлением (PWR). Еще два реактора добавляются в рамках второй фазы развития объекта.

Два новых реактора будут иметь чистую пропускную способность 1350 МВт каждый и увеличат общую чистую мощность завода до 8 608 МВт, если они будут завершены в 2018 году.

Общая мощность АЭС увеличится до 8 989 МВт после завершения второго этапа.

АЭС Ханбит (Южная Корея)

Южнокорейская атомная электростанция Ханбит, ранее известная как Енгванская атомная электростанция, в настоящее время занимает четвертую по величине атомную электростанцию ​​в мире с установленной чистой мощностью 5 899 МВт и общей мощностью 6,164 МВт.

Электростанция, эксплуатируемая Korea Hydro & Nuclear Power (KHNP), состоит из шести реакторов под давлением (PWR), введенных в эксплуатацию в 1986, 1986, 1994, 1995, 2001 и 2002 годах соответственно.

Узел мощностью в 1 000 МВт был оставлен в автономном режиме из-за трещин, обнаруженных в направляющей трубе управляющего стержня в ноябре 2012 года.

Устройство возобновило работу в июне 2013 года после восьми месяцев ремонтных работ.

Запорожская АЭС (Украина)

Запорожская атомная электростанция на Украине имеет установленную чистую мощность в 5700 МВт и валовую мощность 6 000 МВт, которая является крупнейшей атомной электростанцией в Европе и пятой по величине в мире.

Электростанция расположена в городе Энергодар Украины и оснащена шестью действующими блоками PWR ВВЭР-1000, выведенными эксплуатацию с 1984 по 1995 год.

Запорожская атомная электростанция принадлежит и управляется государственной энергетической генерирующей компанией Украины «Энергоатом».

На завод приходится более одной пятой от общего объема производства электроэнергии в стране.

АЭС Гравлин (Франция)

Атомный объект, имеющий установленную чистую пропускную способность 5 460 МВт и валовую мощность 5 706 МВт, в настоящее время занимает шестое место по величине в мире по производству ядерной энергии.

Электростанция находится на севере страны и состоит из шести аналогичных мощностей PWR, введенных в эксплуатацию в период с 1980 по 1985 год.

Ядерная энергетическая установка, принадлежащая и управляемая французской электротехнической компанией Electricite De France (EDF), создала контрольный ориентир в августе 2010 года, предоставив 1 000 миллиардов кВтч электроэнергии.

АЭС Палюэль (Франция)

Атомная электростанция Палюэль, расположенная примерно в 40 км от города Дьеп, Франция, в настоящее время является седьмой по величине АЭС в мире по чистой мощности.

Объект площадью в 160 га находится на Ла-Манше, откуда и использует воду для охлаждения.

Завод принадлежит и управляется компанией EDF и состоит из четырех реакторов с водой под давлением с общей установленной мощностью 5 528 МВт (1 382 МВт каждый) и чистой проектной мощностью 5 200 МВт (1300 МВт каждый).

Строительство атомной электростанции началось в 1977 году. Первые две части завода были подключены к сетке в 1984 году.

Третья и четвертая части были введены в эксплуатацию в 1985 году. Палуэль является второй по величине французской АЭС после Гравлина.

АЭС Каттеном (Франция)

Атомная электростанция Каттеном имеет мощность в 5 448 МВт (брутто).

Электростанция принадлежит и управляется EDF и является седьмой по величине атомной электростанцией в мире. Чистая мощность АЭС составляет 5 200 МВт, что аналогично мощности АЭС «Палюэль».

Атомная электростанция состоит из четырех PWR, рассчитанных на 1 362 МВт каждый.

Строительство завода началось в 1979 году, а коммерческие операции начались в апреле 1987 года. Четвертый реактор завода был подключен к сетке в 1991 году.

В ядерном объекте Каттеном используется вода из реки Мозель. Четвертый энергоблок находится под контролем с февраля 2013 года.

Силовые трансформаторы 1-го и 3-го энергоблоков загорелись в июне 2013 года.

АЭС Ои (Япония)

Атомная электростанция, расположенная в японском городе Ои, префектура Фукуи, имеет общую установленную мощность 4 710 МВт, охватываемую двумя 1,175 МВт и двумя реакторами мощностью 1,180 МВт.

В настоящее время функционируют установки 3 и 4 энергоблоков.

Владеет и управляет АЭС компания Kansai Electric Power. Чистая проектная мощность составляет 4 494 МВт, что делает ее восьмой по величине атомной электростанцией по чистой мощности на выходе.

АЭС «Ои» превзошла атомную электростанцию ​​Фукусима, которая закрылась после цунами в 2011 году.

На Фукусима до закрытия была общая мощность 4 696 МВт. В настоящее время функционируют блоки 5 и 6 с общей мощностью 784 МВт и 1100 МВт.

АЭС Циньшань (Китай)

Китайская Народная Республика является домом для десятой крупнейшей оперативной атомной электростанции в мире – Циньшанской атомной электростанции.

Находящаяся в округе Хайян провинции Чжэцзян АЭС «Циньшань» имеет общую установленную мощность 4 310 МВт и чистую пропускную способность 4 038 МВт.

Строительство АЭС «Циньшань» началось в 1985 году. Объект вступил в строй в 1992 году.

В настоящее время он работает с семью реакторами, в том числе с двумя PWR и двумя PHWR.

Энергоблоки были построены в трех разных фазах и теперь имеется АЭС «Циньшань» – 1, 2, 3.

Владелец завода “Китайская национальная ядерная корпорация” в настоящее время осуществляет дальнейшее расширение, чтобы добавить еще 2 единицы по 1 000 МВт каждая.

Ожидается, что проект расширения составит 3,82 млрд долларов.

АЭС Фукусима-2 (Япония)

Фукусима 2 (не путайте с Фукусима 1) – атомная электростанция в Японии, которая будет считаться десятой крупнейшей атомной электростанцией в мире, если она заработает на полную мощность.

АЭС мощностью в 4 268 МВт (нетто) принадлежит и управляется TEPCO. Объект состоит из четырех блоков BWR с общей мощностью 1 100 МВт и чистой мощностью 1 067 МВт каждый.

Мощные волны цунами, вызванные подводным землетрясением 9,0 баллов, привели к краху на трех реакторах на АЭС Фукусима-Дайити.

Фукусима Дайни также пережил катастрофу из-за аварийного отключения своих реакторов.

Во Франции началась сборка самого мощного в мире термоядерного реактора

Французские ученые начали собирать гигантскую машину, предназначенную для имитации того, как солнце питается от ядерного синтеза. Термоядерный реактор должен доказать, что ядерный синтез является безопасным и устойчивым источником энергии на Земле.

Спустя четырнадцать лет после получения одобрения французские ученые, при участии инженеров и исследователей из ЕС, России, США, Китая, Японии, Индии и Южной Кореи начали собирать многочисленные компоненты для Международного термоядерного экспериментального реактора (ИТЭР).

Части реактора были доставлены на юг Франции из разных мест по всему миру. Ученые надеюсь закончить «самый большой пазл в мире» вовремя для проведения первых экспериментов, которые запланированы на декабрь 2025 года.

Фото: reuters.com

Для этого эксперимента ученые создали машину, способную собирать огромное количество энергии, и удерживать ее в корпусе реактора, который контролируется сильным магнитным полем. Технология обещает «чистую, безуглеродную, безопасную и практически безотходную энергию».

Атомный термоядерный реактор ИТЭР состоит из примерно миллиона компонентов, и около 2300 человек должны работать над его сборкой. Работа включает сборку сверхпроводящих магнитов высотой в четыре этажа и весом 360 тонн каждый.Генеральный директор проекта Бернард Биго сравнил работу инженеров со «сборкой трехмерной головоломки».

Фото: reuters.com

Проект отстает от графика на пять лет, из-за чего бюджет увеличился до 23,4 млрд долларов, что в три раза превышает первоначальную стоимость проекта. После завершения реактор должен быть способен воспроизводить процессы синтеза Солнца при сверхвысокой температуре 150 млн градусов °C, что в 10 раз превышает солнечное тепло.

Хотя реактор может достичь полной мощности к 2035 году, экспериментальный проект не предназначен для производства электроэнергии. Тем не менее, разработчики надеются на распространение термоядерных реакторов, если технология докажет эффективность. Каждый реактор может обслуживать 2 млн домов. Эксплуатационная стоимость не должна превышать аналогичной стоимости обычных атомных станций.

ИТЭР стремится производить около 500 мегаватт тепловой энергии, что составляет около 200 мегаватт электрической энергии, которая может обеспечить энергией 200 000 домов.

В заявлении партнеры ИТЭР сказали, что синтез безопасен, поскольку не влечет за собой риска инцидента с плавлением, в отличие от традиционных атомных электростанций. Реактор использует топливо, содержащееся в морской воде и литии, чтобы помочь справиться с реакцией.

Видео ниже показывает анимацию процесса сборки реактора.

Источник

крупные действующие источники атомной энергии

Топ-10 самых мощных АЭС в мире: крупные действующие источники атомной энергии
  1. Главная
  2. Интересное
  3. Самые мощные АЭС в мире: рейтинг крупнейших атомных электростанций
15 апреля 2020

Топ 10 самых мощных АЭС в мире

На сегодняшний день отношение к атомным электростанциям в мире совсем не однозначное. И причин тому найдётся немало, ведь в случае поломки таких источников энергии в опасности может оказаться буквально вся планета. Но и отвернуться от атомной энергии мир сможет ещё не скоро. Стоимость ее производства меньше, вредные выбросы отсутствуют, доставка топлива к станции стоит копейки — все плюсы налицо. Осталось разобраться с безопасностью при проектировании и строительстве – и у «мирного атома» не останется врагов! Итак, какие же АЭС самые мощные и где они расположены?

1 АЭС Касивадзаки-Карива (Япония) — 8212 МВт


В 2010 году японская АЭС вышла на установленную мощность в 8212 МВт. Это — самая мощная атомная электростанция в мире. И даже после землетрясения в 2007 году, когда на станции возникли внештатные ситуации, после всех восстановительных работ (мощность пришлось понизить), этот энергетический гигант остался на первом месте в мире (на сегодня это 7965 МВт). После инцидента на Фукусиме станция была остановлена для проверки всех систем и после этого вновь запущена.

2 АЭС Брюс (Канада) — 6232 МВт


Крупнейшая атомная электростанция самой Канады и всего Североамериканского континента – это АЭС «Брюс». Она была построена в 1987 году на берегу живописного озера Гурон (провинция Онтарио). По площади станция огромна и занимает более чем 932 гектара земли. Её 8 ядерных реакторов дают общую мощность в 6232 МВт и выводят Канаду на второе место нашего списка. Стоит отметить, что до начала 2000-х годов второй в мире считалась украинская Запорожская АЭС. Но канадцы обошли Украину, сумев «разогнать» свои реакторы до столь высоких показателей.

3 Запорожская АЭС (Украина) — 6000 МВт


Третья в мире и первая в Европе по мощности – это Запорожская АЭС. В полную силу станция заработала в 1993 году, став самой мощной во всём бывшем СССР. Общая мощность предприятия – 6000 МВт. Расположена она на берегу Каховского водохранилища рядом с городом Энергодар Запорожской области. На АЭС работает 11,5 тыс. человек. В своё время с началом строительства этой станции весь регион получил мощный экономический толчок, благодаря чему вырос и в социальном, и в производственном плане.

4 АЭС Хануль (Южная Корея) — 5900 МВт


Эта станция расположена вблизи города Ульджин в Южной Корее и располагает мощностью в 5900 МВт. Стоит сказать, что у корейцев имеется ещё одна идентичная по мощности АЭС – Ханбит, но Хануль планируется «разогнать» до рекордных 8700 МВт. В ближайшие 5 лет корейские инженеры обещают закончить работы, и тогда, возможно в нашем списке будет новый чемпион. Увидим.

5 АЭС Гравелин (Франция) — 5460 МВт


Самая мощная станция во Франции – это «Гравелин». Ее полная мощность достигает 5460 МВт. АЭС была построена на берегу Северного моря, воды которого участвуют в процессе охлаждения всех 6-ти её реакторов. Франция как ни одна страна в Европе развивает собственные технологии и разработки в ядерной сфере и имеет на своей территории самые крупные и мощные АЭС, а это более 50-ти ядерных реакторов.

6 АЭС Палюэль (Франция) — 5320 МВт


Общая мощность этой «француженки» составляет 5320 МВт. Она так же расположена на побережье, но имеет одну интересную особенность: в непосредственной близости от АЭС располагается коммуна «Палюэль» ( в честь которой, собственно, и названа станция), так вот, почти все из 1200 сотрудников станции являются жителями этой самой коммуны. Поистине «советский» подход к проблеме занятости населения!

7 АЭС Охи (Япония) — 4494 МВт


И вновь Япония. Четыре ядерных реактора этой станции выдают 4494 МВт. Станция считается одной (если не самой) надёжной и не имеет в своём «послужном списке» ни одного ЧП или инцидента, связанного с безопасностью. Этот вопрос в Японии более чем актуален после событий на Фукусиме. Скажем только, что после остановки работы всех японских АЭС для проверки технического состояния после землетрясения именно станция Охи вернулась к работе первой.

8 АЭС Palo Verde (США) — 4174 МВт


Самая мощная АЭС США располагается в нашем списке лишь на восьмой позиции. Три реактора этой станции выдают мощность в 4174 МВт. На сегодня не самый высокий показатель, но эта АЭС по-своему уникальна. Дело в том, что «Уинтерсберг» — единственная атомная электростанция в мире, которая не расположена на берегу большого водоёма. Техническая «изюминка» этой АЭС такова, что для охлаждения реакторов используются сточные воды ближайших населённых пунктов (города Пало-Верде, к примеру). Стоит только удивляться решимости американских инженеров, которые вразрез с традициями безопасности решили пойти на столь смелый шаг при проектировании данной АЭС.

9 Балаковская АЭС (Россия) — 4000 МВТ


Самая мощная АЭС в России была введена в эксплуатацию в 1985 году. На сегодня её полная мощность составляет 4000 МВТ. Расположена АЭС на берегу Саратовского водохранилища и обеспечивает пятую часть выработки энергии всеми АЭС в России. Коллектив станции составляет 3770 человек. Балаковская АЭС является «первопроходцем» всех исследований ядерного топлива в России. В целом можно сказать, что все новейшие разработки внедрялись в эксплуатацию именно на этой АЭС. И лишь пройдя практические испытания здесь, после получали разрешение на использование на других АЭС России и других стран.

10 АЭС Хамаока (Япония) — 3617 МВт


Последняя в нашем списке станция расположена на острове Хонсю в Японии. Мощность данной АЭС составляет 3617 МВт. На сегодняшний день в эксплуатации 3 реактора из 5. Оставшиеся 2 остановлены в связи с техническими работами по повышению безопасности и защиты от природных катаклизмов. И вновь после Фукусимы японцы демонстрируют высокий профессионализм и организованность, по отношению не только к себе, но и ко всему миру.

Атомная Энергия сегодня | Ядерная энергия

(обновлено в октябре 2020 г.)

  • Первые коммерческие атомные электростанции начали работать в 1950-х годах.
  • Ядерная энергия в настоящее время обеспечивает около 10% мировой электроэнергии примерно за счет 440 энергетических реакторов.
  • Атомная энергия - второй по величине источник низкоуглеродной энергии в мире (29% от общего количества в 2018 году).
  • Более 50 стран используют ядерную энергию примерно в 220 исследовательских реакторах.Помимо исследовательских, эти реакторы используются для производства медицинских и промышленных изотопов, а также для обучения.

Ядерная технология использует энергию, выделяемую при расщеплении атомов определенных элементов. Впервые он был разработан в 1940-х годах, а во время Второй мировой войны исследования первоначально были сосредоточены на производстве бомб. В 1950-х годах внимание обратилось на мирное использование ядерного деления, контролируя его для производства электроэнергии. Для получения дополнительной информации см. Страницу «История ядерной энергии».

Гражданская атомная энергетика теперь может похвастаться более чем 17 000 реакторно-летним опытом, а атомные электростанции работают в 31 стране мира. Фактически, благодаря региональным передающим сетям, многие другие страны частично зависят от ядерной энергии; Например, Италия и Дания получают почти 10% электроэнергии за счет импорта ядерной энергии.

Когда в 1960-х годах зародилась коммерческая ядерная промышленность, между отраслями Востока и Запада существовали четкие границы.Сегодня разделенных американской и советской сфер больше не существует, и ядерная промышленность характеризуется международной торговлей. Компоненты строящегося сегодня в Азии реактора могут поставляться из Южной Кореи, Канады, Японии, Франции, Германии, России и других стран. Точно так же уран из Австралии или Намибии может попасть в реактор в ОАЭ, после конвертации во Франции, обогащения в Нидерландах, деконверсии в Великобритании и производства в Южной Корее.

Использование ядерной технологии выходит далеко за рамки обеспечения низкоуглеродной энергии.Он помогает контролировать распространение болезней, помогает врачам в диагностике и лечении пациентов, а также обеспечивает выполнение наших самых амбициозных миссий по исследованию космоса. Такое разнообразное использование ставит ядерные технологии в центр мировых усилий по достижению устойчивого развития. Для получения дополнительной информации см. Страницу «Ядерная энергия и устойчивое развитие».

Количество действующих реакторов в мире

Около 10% мировой электроэнергии вырабатывается примерно 440 ядерными энергетическими реакторами.Еще около 50 реакторов находятся в стадии строительства, что эквивалентно примерно 15% существующей мощности.

В 2019 году атомные станции поставили 2657 ТВтч электроэнергии по сравнению с 2563 ТВтч в 2018 году. Это седьмой год подряд, когда мировая атомная генерация растет, при этом выработка на 311 ТВтч выше, чем в 2012 году.

Атомное производство электроэнергии

Мировое производство электроэнергии по источникам 2018

Двенадцать стран в 2019 году произвели не менее четверти своей электроэнергии на атомных станциях.Франция получает около трех четвертей своей электроэнергии от ядерной энергетики, Словакия и Украина получают более половины от атомной энергии, в то время как Венгрия, Бельгия, Швеция, Словения, Болгария, Швейцария, Финляндия и Чехия получают одну треть или более. Южная Корея обычно получает более 30% электроэнергии от ядерной энергетики, в то время как в США, Великобритании, Испании, Румынии и России около одной пятой электроэнергии приходится на атомную энергию. Япония привыкла полагаться на ядерную энергию в производстве более четверти своей электроэнергии, и ожидается, что она вернется примерно к этому уровню.

Производство ядерной энергии по странам 2019

Атомная энергия и Covid-19

Коронавирусная болезнь 2019 (Covid-19) - это инфекционное заболевание, вызываемое тяжелым острым респираторным синдромом, вызванным коронавирусом 2 (SARS-CoV-2). Распространение нового коронавируса потребовало решительных действий во всех сферах жизни во всем мире.

Обеспечение надежного электроснабжения жизненно важно. Ядерная энергия обеспечивает около 10% мировой электроэнергии, поэтому ядерные реакторы должны играть ключевую роль.Операторы реакторов предприняли шаги для защиты своих сотрудников и внедрили планы обеспечения непрерывности бизнеса, чтобы обеспечить непрерывное функционирование ключевых аспектов своей деятельности. Эти действия более подробно описаны в нашем специальном информационном документе COVID-19 Coronavirus and Nuclear Energy.

Помимо выработки электроэнергии, ядерные технологии имеют медицинские приложения, которые помогут в борьбе с Covid-19. Международное агентство по атомной энергии (МАГАТЭ) предоставляет диагностические наборы, оборудование и обучение методам обнаружения ядерного происхождения странам, обращающимся за помощью в борьбе с глобальным распространением нового коронавируса, вызывающего Covid-19.

Потребность в новых генерирующих мощностях

Существует очевидная потребность в новых генерирующих мощностях по всему миру, как для замены старых установок, работающих на ископаемом топливе, особенно работающих на угле, которые выделяют много углекислого газа, так и для удовлетворения возросшего спроса на электроэнергию во многих странах. В 2018 году 64% электроэнергии было произведено за счет сжигания ископаемого топлива. Несмотря на решительную поддержку и рост возобновляемых источников электроэнергии в последние годы, вклад ископаемого топлива в производство электроэнергии практически не изменился в последние 10 лет или около того (66.5% в 2005 г.).

Международное энергетическое агентство ОЭСР ежегодно публикует сценарии в области энергетики. В его «Перспективе развития мировой энергетики на 2020 год» 1 содержится амбициозный «Сценарий устойчивого развития», который, помимо прочего, соответствует обеспечению чистой и надежной энергии и сокращению загрязнения воздуха. В этом сценарии декарбонизации производство электроэнергии на атомных станциях увеличится почти на 55% к 2040 году до 4320 ТВтч, а мощность вырастет до 599 ГВт. Всемирная ядерная ассоциация выдвинула более амбициозный сценарий, чем этот: программа Harmony предлагает добавить к 2050 году новые ядерные мощности на 1000 ГВт, чтобы обеспечить 25% электроэнергии (около 10 000 ТВт-ч) из 1250 ГВт-ч мощности (после разрешения на пенсию).Для этого потребуется добавление 25 ГВт в год с 2021 года с увеличением до 33 ГВт в год, что не сильно отличается от 31 ГВт, добавленного в 1984 году, или общего рекорда в 201 ГВт в 1980-х годах. Обеспечение четверти мировой электроэнергии за счет ядерной энергетики существенно снизит выбросы углекислого газа и улучшит качество воздуха.

Обзор мира

Все части мира участвуют в развитии ядерной энергетики, и некоторые примеры приведены ниже.

Актуальные данные о действующих, строящихся и планируемых реакторах по всему миру см. В таблице «Мировые ядерные энергетические реакторы и потребности в уране».

Подробную информацию на уровне страны см. В разделе «Профили стран» Информационной библиотеки Всемирной ядерной ассоциации.

Северная Америка

В Канаде имеется 19 действующих ядерных реакторов общей полезной мощностью 13,6 ГВт. В 2019 году атомная энергия произвела 15% электроэнергии страны.

Все, кроме одного из 19 ядерных реакторов страны, расположены в Онтарио. Десять из этих единиц - шесть в Брюсе и четыре в Дарлингтоне - подлежат ремонту.Программа продлит срок эксплуатации на 30-35 лет. Аналогичные ремонтные работы позволили Онтарио отказаться от угля в 2014 году, достигнув одного из самых чистых видов электроэнергии в мире.

В Мексике есть два действующих ядерных реактора общей полезной мощностью 1,6 ГВт. В 2019 году атомная энергия произвела 4,5% электроэнергии страны.

В США имеется 95 действующих ядерных реакторов общей полезной мощностью 97,2 ГВт. В 2019 году атомная энергия произвела 20% электроэнергии страны.

Четыре реактора AP1000 строились, но два из них были списаны. Одной из причин перерыва в строительстве новых зданий в США на сегодняшний день является чрезвычайно успешная эволюция стратегий технического обслуживания. За последние 15 лет улучшение эксплуатационных характеристик привело к увеличению использования атомных электростанций США, при этом увеличенная мощность эквивалентна строительству 19 новых станций мощностью 1000 МВт.

В 2016 году в стране был введен в эксплуатацию первый новый ядерный реактор за 20 лет.Несмотря на это, количество действующих реакторов в последние годы сократилось с пикового значения в 104 в 2012 году. Досрочное закрытие было вызвано сочетанием факторов, включая дешевый природный газ, либерализацию рынка, чрезмерное субсидирование возобновляемых источников и политические агитация.

Южная Америка

Аргентина имеет три реактора общей полезной мощностью 1,6 ГВт. В 2019 году страна вырабатывала 6% электроэнергии на атомной электростанции.

Бразилия имеет два реактора общей полезной мощностью 1.9 ГВт. В 2019 году атомная энергия произвела 3% электроэнергии страны.

Западная и Центральная Европа

Бельгия имеет семь действующих ядерных реакторов общей полезной мощностью 5,9 ГВт. В 2019 году атомная энергия произвела 48% электроэнергии страны.

Финляндия имеет четыре действующих ядерных реактора общей полезной мощностью 2,8 ГВт. В 2019 году атомная энергия произвела 35% электроэнергии страны. Пятый реактор - EPR мощностью 1720 МВт (эл.) - находится в стадии строительства, и есть планы построить российский блок ВВЭР-1200 на новой площадке (Ханхикиви).

Франция имеет 56 действующих ядерных реакторов общей полезной мощностью 61,4 ГВт. В 2019 году атомная энергия произвела 71% электроэнергии страны.

Энергетическая политика 2015 года была нацелена на сокращение доли страны в ядерной генерации до 50% к 2025 году. Эта цель теперь перенесена на 2035 год. Министр энергетики страны заявил, что цель нереалистична и что она увеличит выбросы углерода в стране. выбросы диоксида ставят под угрозу надежность поставок и создают опасность для рабочих мест.

Один реактор в настоящее время строится во Франции - EPR мощностью 1750 МВт во Фламанвилле.

В Германии продолжают работать шесть ядерных энергетических реакторов общей полезной мощностью 8,1 ГВт. В 2019 году атомная энергия произвела 12,5% электроэнергии страны.

Германия прекращает производство ядерной энергии примерно к 2022 году в рамках своей политики Energiewende . Energiewende , широко известный как наиболее амбициозная национальная политика смягчения последствий изменения климата, еще не обеспечила значительного сокращения выбросов двуокиси углерода (CO 2 ).В 2011 году, через год после введения этой политики, в результате сжигания топлива в Германии было выброшено 731 млн тонн CO 2 ; В 2018 году страна выбросила 677 млн ​​тонн CO 2 и была седьмым по величине источником выбросов CO 2 в мире. 2 Правительство Германии рассчитывает не достичь своей цели по сокращению выбросов на 40% по сравнению с уровнями 1990 года с большим отрывом.

В Нидерландах есть один действующий ядерный реактор полезной мощностью 0,5 ГВт. В 2019 году атомная энергия произвела 3% электроэнергии страны.

Испания имеет семь действующих ядерных реакторов общей полезной мощностью 7,1 ГВт. В 2019 году атомная энергия произвела 21% электроэнергии страны.

В Швеции имеется семь действующих ядерных реакторов общей полезной мощностью 7,7 ГВт. В 2019 году атомная энергия произвела 34% электроэнергии страны.

Страна закрывает несколько старых реакторов, но вложила значительные средства в продление срока эксплуатации и повышение номинальной мощности.

В Швейцарии имеется четыре действующих ядерных реактора общей полезной мощностью 3.0 ГВт. В 2019 году атомная энергия произвела 24% электроэнергии страны.

В Соединенном Королевстве имеется 15 действующих ядерных реакторов общей полезной мощностью 8,9 ГВт. В 2019 году атомная энергия произвела 16% электроэнергии страны.

В середине 2006 года в правительственном энергетическом документе Великобритании была одобрена замена устаревшего парка ядерных реакторов в стране новыми ядерными реакторами. Начато строительство первой из станций нового поколения.

Центральная и Восточная Европа, Россия

В Армении есть один ядерный энергетический реактор полезной мощностью 0.4 ГВт. В 2019 году атомная энергия произвела 28% электроэнергии страны.

В Беларуси строится первая атомная электростанция, и к 2020 году планируется ввести в действие первый из двух российских реакторов. В настоящее время почти вся электроэнергия в стране производится из природного газа.

Болгария имеет два действующих ядерных реактора общей полезной мощностью 2,0 ГВт. В 2019 году атомная энергия произвела 38% электроэнергии страны.

В Чешской Республике имеется шесть действующих ядерных реакторов общей полезной мощностью 3.9 ГВт. В 2019 году атомная энергия произвела 35% электроэнергии страны.

В Венгрии есть четыре действующих ядерных реактора общей полезной мощностью 1,9 ГВт. В 2019 году атомная энергия произвела 49% электроэнергии страны.

В Румынии есть два действующих ядерных реактора общей полезной мощностью 1,3 ГВт. В 2019 году атомная энергия произвела 19% электроэнергии страны.

В России действует 38 ядерных реакторов общей полезной мощностью 28,5 ГВт. В 2019 году атомная энергия произвела 20% электроэнергии страны.

Постановление правительства от 2016 года определило строительство к 2030 году 11 атомных энергетических реакторов в дополнение к уже строящимся. В начале 2020 года в России строились четыре реактора суммарной мощностью 4,8 ГВт.

Сила российской атомной отрасли отражается в ее доминировании на экспортных рынках новых реакторов. Национальная ядерная промышленность страны в настоящее время участвует в проектах новых реакторов в Беларуси, Китае, Венгрии, Индии, Иране и Турции, а также в различной степени в качестве инвестора в Алжире, Бангладеш, Боливии, Индонезии, Иордании, Казахстане, Нигерии, Южной Африке, Таджикистан и Узбекистан среди других.

В Словакии имеется четыре действующих ядерных реактора общей полезной мощностью 1,8 ГВт. В 2019 году атомная энергия произвела 54% электроэнергии страны. Еще два блока находятся в стадии строительства.

В Словении имеется один действующий ядерный реактор полезной мощностью 0,7 ГВт. В 2019 году Словения вырабатывала 37% электроэнергии на атомной электростанции.

Украина имеет 15 действующих ядерных реакторов общей полезной мощностью 13,1 ГВт. В 2019 году атомная энергия произвела 54% электроэнергии страны.

Турция начала строительство своей первой атомной электростанции в апреле 2018 года, начало эксплуатации ожидается в 2023 году.

Азия

Бангладеш приступила к строительству первого из двух запланированных российских реакторов ВВЭР-1200 в 2017 году. Строительство второго началось в 2018 году. Он планирует ввести в эксплуатацию первый блок к 2023 году. В настоящее время страна производит практически всю электроэнергию из ископаемого топлива. .

Китай имеет 48 действующих ядерных реакторов общей полезной мощностью 46.5 ГВт. В 2019 году атомная энергия произвела 5% электроэнергии страны.

Страна продолжает доминировать на рынке строительства новых ядерных объектов. В начале 2020 года 11 из 53 строящихся в мире реакторов находились в Китае. В 2018 году Китай стал первой страной, которая ввела в эксплуатацию два новых образца - AP1000 и EPR. Китай начинает экспортный маркетинг реактора Hualong One, в основном собственной конструкции.

Сильный импульс для развития новой ядерной энергетики в Китае исходит из необходимости улучшить качество городского воздуха и сократить выбросы парниковых газов.Заявленная правительством долгосрочная цель, изложенная в Плане действий Стратегии развития энергетики на 2014-2020 гг. - это мощность 58 ГВт к 2020 году, еще 30 ГВтэ находятся в стадии строительства.

Индия имеет 22 действующих ядерных реактора общей полезной мощностью 6,3 ГВт. В 2019 году атомная энергия произвела 3% электроэнергии страны.

Правительство Индии намерено наращивать свои ядерные мощности в рамках своей масштабной программы развития инфраструктуры. В 2010 году правительство поставило амбициозную цель - 14.К 2024 году выйдет 6 ГВт ядерной мощности. В начале 2020 года в Индии строились семь реакторов общей мощностью 5,3 ГВт.

Япония имеет 33 действующих ядерных реактора общей полезной мощностью 31,7 ГВт. В начале 2020 года после аварии на Фукусиме в 2011 году только девять реакторов были снова введены в эксплуатацию, а еще 17 находятся в процессе утверждения перезапуска. В прошлом 30% электроэнергии в стране производилось на атомных станциях; в 2019 году этот показатель составлял всего 8%.

Южная Корея имеет 24 действующих ядерных реактора общей полезной мощностью 23,2 ГВт. В 2019 году атомная энергия произвела 26% электроэнергии страны.

В Южной Корее четыре новых реактора строятся внутри страны, а также четыре в Объединенных Арабских Эмиратах. Он планирует еще два, после чего энергетическая политика остается неопределенной. Он также участвует в интенсивных исследованиях будущих конструкций реакторов.

Пакистан имеет пять действующих ядерных реакторов общей полезной мощностью 1.3 ГВт. В 2019 году атомная энергия произвела 7% электроэнергии страны. В Пакистане строятся два китайских блока Hualong One.

Африка

В Южной Африке есть два действующих ядерных реактора общей полезной мощностью 1,9 ГВт, и это единственная африканская страна, которая в настоящее время производит электроэнергию на атомных станциях. В 2019 году атомная энергия произвела 7% электроэнергии страны. Южная Африка по-прежнему привержена планам по наращиванию мощностей, но финансовые ограничения значительны.

Ближний Восток

У Ирана есть один действующий ядерный реактор полезной мощностью 0.9 ГВт. В 2019 году атомная энергия произвела 2% электроэнергии страны. Строится второй энергоблок ВВЭР-1000 российской разработки.

В Объединенных Арабских Эмиратах имеется один действующий ядерный реактор мощностью 1,3 ГВт. Еще три блока находятся в стадии строительства на том же заводе (Бараках).

Страны с развивающейся ядерной энергетикой

Как указано выше, Бангладеш, Беларусь, Турция и Объединенные Арабские Эмираты строят свои первые атомные электростанции. Ряд других стран переходят к использованию ядерной энергии для производства электроэнергии.Для получения дополнительной информации см. Страницу о странах с развивающейся ядерной энергетикой.

Повышенная производительность существующих реакторов

Характеристики ядерных реакторов со временем значительно улучшились. За последние 40 лет доля реакторов с высокими коэффициентами мощности значительно увеличилась. Например, 62% реакторов достигли коэффициента мощности выше 80% в 2018 году по сравнению с 28% в 1978 году, тогда как только 7% реакторов имели коэффициент мощности ниже 50% в 2018 году по сравнению с 20% в 1978 году.

Долгосрочные тенденции в факторах мощности

Следует также отметить отсутствие значимой возрастной тенденции в среднем коэффициенте мощности реакторов за последние пять лет.

Коэффициент средней мощности 2015-2018 гг. По возрасту реакторов

Реакторы ядерные прочие

Помимо коммерческих атомных электростанций, в более чем 50 странах работают около 220 исследовательских реакторов, еще больше строятся.Многие из этих реакторов используются не только для исследований и обучения, но и для производства медицинских и промышленных изотопов.

Использование реакторов для морских силовых установок в основном ограничивается основными военно-морскими силами, где они играли важную роль в течение пяти десятилетий, обеспечивая энергией подводные лодки и большие надводные корабли. Свыше 160 кораблей, в основном подводных лодок, приводятся в движение примерно 200 ядерными реакторами, и накоплен более чем 13 000 реакторно-летний опыт работы с морскими реакторами. Россия и США списали многие свои атомные подводные лодки со времен холодной войны.

Россия также управляет флотом крупных атомных ледоколов, и еще несколько строятся. Он также подключил плавучую атомную электростанцию ​​с двумя реакторами мощностью 32 МВт к сети в отдаленном арктическом районе Певек. Реакторы адаптированы от ледоколов.

Для получения дополнительной информации см. Страницу «Многообразие использования ядерных технологий».


Примечания и ссылки

Список литературы

1. Международное энергетическое агентство ОЭСР, World Energy Outlook 2020 [Назад]
2.Статистика Международного энергетического агентства ОЭСР [Назад]

Общие ссылки

Всемирная ядерная ассоциация, Отчет о результатах деятельности в ядерной сфере за 2020 год

.

Факты и информация об атомной энергии

Ядерная энергия генерируется путем расщепления атомов для высвобождения энергии, содержащейся в ядре или ядре этих атомов. Этот процесс, ядерное деление, генерирует тепло, которое направляется к охлаждающему агенту, обычно воде. Образующийся пар вращает турбину, соединенную с генератором, производя электричество.

Около 450 ядерных реакторов производят около 11 процентов мировой электроэнергии. Странами, производящими больше всего ядерной энергии, являются США, Франция, Китай, Россия и Южная Корея.

Самым распространенным топливом для ядерной энергетики является уран, металл в изобилии встречается во всем мире. Добытый уран перерабатывается в U-235, обогащенную версию, используемую в качестве топлива в ядерных реакторах, поскольку его атомы легко разделяются на части.

В ядерном реакторе нейтроны - субатомные частицы, не имеющие электрического заряда - сталкиваются с атомами, вызывая их расщепление. Это столкновение, называемое ядерным делением, высвобождает больше нейтронов, которые вступают в реакцию с большим количеством атомов, создавая цепную реакцию.Побочный продукт ядерных реакций, плутоний, также можно использовать в качестве ядерного топлива.

Типы ядерных реакторов

В США большинство ядерных реакторов представляют собой либо реакторы с кипящей водой, в которых вода нагревается до точки кипения для выпуска пара, либо реакторы с водой под давлением, в которых вода под давлением не кипит, а отводит тепло во вторичный источник воды для пара. поколение. Другие типы ядерных энергетических реакторов включают реакторы с газовым охлаждением, в которых в качестве охлаждающего агента используется диоксид углерода, которые используются в США.К., и реакторы на быстрых нейтронах, охлаждаемые жидким натрием.

История атомной энергетики

Идея ядерной энергетики зародилась в 1930-х годах, когда физик Энрико Ферми впервые показал, что нейтроны могут расщеплять атомы. Ферми возглавил команду, которая в 1942 году осуществила первую цепную ядерную реакцию под стадионом Чикагского университета. За этим последовала серия вех в 1950-х: первое электричество, произведенное с помощью атомной энергии на экспериментальном реакторе-размножителе I в Айдахо в 1951 году; первая атомная электростанция в городе Обнинск в бывшем Советском Союзе в 1954 году; и первая коммерческая атомная электростанция в Шиппорте, штат Пенсильвания, в 1957 году.( Пройдите наши викторины об атомной энергетике и посмотрите, сколько вы узнали: для части I перейдите сюда; для части II перейдите сюда.)

Ядерная энергия, изменение климата и проекты будущего

Ядерная энергия не считается возобновляемой энергией, учитывая ее зависимость от добываемых конечных ресурсов, но поскольку действующие реакторы не выделяют парниковые газы, которые способствуют глобальному потеплению, сторонники говорят, что это следует рассматривать как решение проблемы изменения климата.Молодой исследователь National Geographic Лесли Деван, например, хочет воскресить реактор с расплавленной солью, в котором в качестве топлива используется жидкий уран, растворенный в расплаве соли, утверждая, что он может быть более безопасным и менее дорогостоящим, чем реакторы, используемые сегодня.

Другие работают над небольшими модульными реакторами, которые могли бы быть портативными и более простыми в сборке. Подобные инновации нацелены на спасение отрасли в условиях кризиса, поскольку существующие атомные станции продолжают стареть, а новые не могут конкурировать по цене с природным газом и возобновляемыми источниками, такими как ветер и солнце.

Святой Грааль для будущего ядерной энергетики включает ядерный синтез, который генерирует энергию, когда два легких ядра сталкиваются вместе, образуя единое, более тяжелое ядро. Термоядерный синтез может дать больше энергии с большей безопасностью и с гораздо меньшим количеством вредных радиоактивных отходов, чем деление, но лишь небольшому количеству людей, включая 14-летнего подростка из Арканзаса, удалось построить работающие термоядерные реакторы. Такие организации, как ITER во Франции и Институт физики плазмы Макса Планка, работают над коммерчески жизнеспособными версиями, которые пока остаются неуловимыми.

.

История ядерной энергии - Всемирная ядерная ассоциация

(Обновлено в феврале 2020 г.)

  • Наука об атомной радиации, атомных изменениях и ядерном делении развивалась с 1895 по 1945 год, большая часть из них - в последние шесть из этих лет.
  • В 1939-45 годах большая часть разработок была сосредоточена на атомной бомбе.
  • С 1945 года внимание было уделено использованию этой энергии управляемым способом для военно-морских силовых установок и для производства электроэнергии.
  • С 1956 года основное внимание уделяется технологической эволюции надежных атомных электростанций.

Изучение природы атома

Уран был открыт в 1789 году немецким химиком Мартином Клапротом и назван в честь планеты Уран.

Ионизирующее излучение было открыто Вильгельмом Рентгеном в 1895 году, когда электрический ток пропускался через вакуумированную стеклянную трубку и производился непрерывное рентгеновское излучение. Затем в 1896 году Анри Беккерель обнаружил, что урановая обманка (руда, содержащая радий и уран) вызывает потемнение фотопластинки.Далее он продемонстрировал, что это происходит из-за испускания бета-излучения (электронов) и альфа-частиц (ядер гелия). Виллар обнаружил третий тип излучения урановой обманки: гамма-лучи, которые очень похожи на рентгеновские лучи. Затем в 1896 году Пьер и Мария Кюри дали этому явлению название «радиоактивность», а в 1898 году выделили полоний и радий из урана. Позднее радий использовался в лечении. В 1898 году Сэмюэл Прескотт показал, что радиация уничтожает бактерии в пище.

В 1902 году Эрнест Резерфорд показал, что радиоактивность как спонтанное событие, испускающее альфа- или бета-частицу из ядра, создает другой элемент.Он продолжил развивать более полное понимание атомов и в 1919 году выстрелил альфа-частицами из источника радия в азот и обнаружил, что происходит ядерная перегруппировка с образованием кислорода. Нильс Бор был еще одним ученым, продвинувшим наше понимание атома и того, как электроны располагаются вокруг его ядра, вплоть до 1940-х годов.

К 1911 году Фредерик Содди обнаружил, что естественно радиоактивные элементы имеют ряд различных изотопов (радионуклидов) с одинаковым химическим составом.Также в 1911 году Джордж де Хевеши показал, что такие радионуклиды неоценимы в качестве индикаторов, поскольку мельчайшие количества могут быть легко обнаружены с помощью простых инструментов.

В 1932 году Джеймс Чедвик открыл нейтрон. Также в 1932 году Кокрофт и Уолтон произвели ядерные превращения, бомбардируя атомы ускоренными протонами, а в 1934 году Ирен Кюри и Фредерик Жолио обнаружили, что некоторые такие превращения создают искусственные радионуклиды. В следующем году Энрико Ферми обнаружил, что гораздо большее разнообразие искусственных радионуклидов может быть образовано, если вместо протонов использовать нейтроны.

Ферми продолжил свои эксперименты, производя в основном более тяжелые элементы из своих мишеней, но также, с ураном, некоторые гораздо более легкие. В конце 1938 года Отто Хан и Фриц Штрассманн в Берлине показали, что новыми более легкими элементами были барий и другие элементы, которые составляли примерно половину массы урана, тем самым продемонстрировав, что произошло деление атома. Лиз Мейтнер и ее племянник Отто Фриш, работавшие под руководством Нильса Бора, затем объяснили это, предположив, что нейтрон был захвачен ядром, вызывая сильную вибрацию, приводящую к разделению ядра на две не совсем равные части.Они подсчитали, что высвобождение энергии от этого деления составляет около 200 миллионов электрон-вольт. Затем Фриш экспериментально подтвердил эту цифру в январе 1939 года.

Лиз Мейтнер и Отто Хан, гр. 1913

Это было первое экспериментальное подтверждение статьи Альберта Эйнштейна об эквивалентности массы и энергии, опубликованной в 1905 году.

Использование ядерного деления

Эти разработки 1939 года вызвали активность во многих лабораториях.Хан и Штрассманн показали, что при делении не только выделяется много энергии, но и выделяются дополнительные нейтроны, которые могут вызвать деление в других ядрах урана и, возможно, самоподдерживающуюся цепную реакцию, приводящую к огромному выделению энергии. Это предположение вскоре было экспериментально подтверждено Жолио и его коллегами в Париже, а также Лео Сциллардом, работавшим с Ферми в Нью-Йорке.

Бор вскоре предположил, что деление гораздо более вероятно в изотопе урана-235, чем в U-238, и что деление будет происходить более эффективно с медленными нейтронами, чем с быстрыми.Последнее было подтверждено Сциллардом и Ферми, которые предложили использовать «замедлитель» для замедления испускаемых нейтронов. Бор и Уиллер расширили эти идеи до того, что стало классическим анализом процесса деления, и их статья была опубликована всего за два дня до начала войны в 1939 году.

Другим важным фактором было то, что тогда было известно, что U-235 составляет только 0,7% природного урана, а остальные 99,3% составляют U-238 с аналогичными химическими свойствами. Следовательно, разделение этих двух компонентов для получения чистого U-235 было бы трудным и потребовало бы использования их очень немного разных физических свойств.Это увеличение доли изотопа U-235 стало известно как «обогащение».

Оставшаяся часть концепции деления / атомной бомбы была предоставлена ​​в 1939 году Фрэнсисом Перреном, который ввел концепцию критической массы урана, необходимой для самоподдерживающегося высвобождения энергии. Его теории были расширены Рудольфом Пайерлсом из Бирмингемского университета, и полученные расчеты сыграли важную роль в разработке атомной бомбы. Группа Перрина в Париже продолжила свои исследования и продемонстрировала, что цепная реакция может поддерживаться в смеси уран-вода (вода используется для замедления нейтронов) при условии, что в систему вводятся внешние нейтроны.Они также продемонстрировали идею внедрения материала, поглощающего нейтроны, для ограничения размножения нейтронов и, таким образом, контроля ядерной реакции (которая является основой работы атомной электростанции).

Пайерлс был учеником Вернера Гейзенберга, который с апреля 1939 года руководил немецким ядерным энергетическим проектом под руководством Немецкого артиллерийского управления. Первоначально это было направлено на военные применения, и к концу 1939 года Гейзенберг подсчитал, что возможны цепные реакции ядерного деления.При замедлении и управлении в «урановой машине» (ядерном реакторе) эти цепные реакции могут генерировать энергию; если их не контролировать, то они могут привести к ядерному взрыву, во много раз более мощному, чем обычный взрыв. Было высказано предположение, что природный уран может быть использован в урановой машине с тяжеловодным замедлителем (из Норвегии), но, похоже, исследователи не знали о запаздывающих нейтронах, которые позволили бы управлять ядерным реактором. Гейзенберг отметил, что они могут использовать чистый уран-235, редкий изотоп, в качестве взрывчатого вещества, но он, очевидно, полагал, что требуемая критическая масса была выше, чем это было возможно.

Летом 1940 года Карл Фридрих фон Вайцзеккер, младший коллега и друг Гейзенберга, опираясь на публикации ученых, работающих в Великобритании, Дании, Франции и США, пришел к выводу, что если урановая машина может выдерживать цепную реакцию, то некоторые из более распространенных уран-238 будут преобразованы в «элемент 94», который теперь называется плутонием. Как и уран-235, элемент 94 будет невероятно мощным взрывчатым веществом. В 1941 году фон Вайцзекер зашел так далеко, что подал заявку на патент на использование урановой машины для производства этого нового радиоактивного элемента.

К 1942 году военный объект был ликвидирован как непрактичный, требующий больше ресурсов, чем было доступно. Приоритетом стало строительство ракет. Однако существование немецкого проекта Uranverein послужило основным стимулом для разработки атомной бомбы в военное время Великобританией и США.

Ядерная физика в России

Российская ядерная физика опередила большевистскую революцию более чем на десять лет. Работа с радиоактивными минералами, обнаруженными в Центральной Азии, началась в 1900 году, а в 1909 году Петербургская Академия наук начала широкомасштабное исследование.Революция 1917 года дала толчок научным исследованиям, и в последующие годы в крупных городах России, особенно в Санкт-Петербурге, было создано более 10 физических институтов. В 1920-х и начале 1930-х годов многие выдающиеся российские физики работали за границей, изначально воодушевленные новым режимом как лучшим способом быстрого повышения уровня знаний. В их числе Кирилл Синельников, Петр Капица и Владимир Вернадский.

К началу 1930-х гг. Существовало несколько исследовательских центров, специализирующихся в области ядерной физики.Кирилл Синельников вернулся из Кембриджа в 1931 году, чтобы организовать отделение в Украинском физико-техническом институте (позже переименованном в Харьковский физико-технический институт, ХФТИ) в Харькове, созданном в 1928 году. Академик Абрам Иоффе сформировал другую группу Ленинградский физико-технический институт (ФТИ), впоследствии ставший самостоятельным институтом Иоффе, в том числе молодой Игорь Курчатов. Иоффе был его первым директором вплоть до 1950 года.

К концу десятилетия циклотроны были установлены в Радиевом институте и Ленинградском ФТИ (самом большом в Европе).Но к этому времени многие ученые начали становиться жертвами сталинских чисток - например, половина сотрудников Харьковского института была арестована в 1939 году. Тем не менее, 1940 год стал годом больших успехов в понимании ядерного деления, включая возможность цепной реакции. реакция. По настоянию Курчатова и его коллег в июне 1940 г. в Академии наук был создан «Комитет по проблеме урана» под председательством Виталия Хлопина, а также учрежден фонд для исследования урановых месторождений в Центральной Азии.У Радиевого института в Татарстане был завод, на котором Хлопин произвел первый в России радий высокой чистоты. Вторжение Германии в Россию в 1941 году направило большую часть этих фундаментальных исследований на потенциальное военное применение.

Создание атомной бомбы

британских ученых продолжали оказывать давление на свое правительство. Физики-беженцы Пайерлс и Фриш (которые остались в Англии вместе с Пайерлсом после начала войны) дали серьезный толчок концепции атомной бомбы в трехстраничном документе, известном как Меморандум Фриша-Пайерлса.В этом они предсказали, что из примерно 5 кг чистого U-235 может получиться очень мощная атомная бомба, эквивалентная нескольким тысячам тонн динамита. Они также предположили, как такая бомба может быть взорвана, как может быть произведен U-235, и какие радиационные эффекты могут быть в дополнение к эффектам взрыва. Они предложили термодиффузию как подходящий метод отделения U-235 от природного урана. Этот меморандум вызвал значительный отклик в Великобритании в то время, когда к США не было особого интереса.

Группа выдающихся ученых, известная как Комитет MAUD, была создана в Великобритании и руководила исследованиями в университетах Бирмингема, Бристоля, Кембриджа, Ливерпуля и Оксфорда. Химические проблемы получения газообразных соединений урана и чистого металлического урана изучались в Бирмингемском университете и Imperial Chemical Industries (ICI). Доктор Филип Бакстер из ICI изготовил первую небольшую партию газообразного гексафторида урана для профессора Джеймса Чедвика в 1940 году. Позднее в 1940 году ICI получила официальный контракт на производство 3 кг этого жизненно важного материала для будущих работ.Большинство других исследований финансировалось самими университетами.

Работа в Кембридже привела к двум важным изменениям. Первым было экспериментальное доказательство того, что цепная реакция может поддерживаться медленными нейтронами в смеси оксида урана и тяжелой воды, т.е. выход нейтронов был больше, чем вход. Второй был написан Бретчером и Фезером на основе более ранней работы Халбана и Коварски вскоре после того, как они прибыли в Великобританию из Парижа. Когда U-235 и U-238 поглощают медленные нейтроны, вероятность деления в U-235 намного выше, чем в U-238.U-238 с большей вероятностью образует новый изотоп U-239, и этот изотоп быстро испускает электрон, чтобы стать новым элементом с массой 239 и атомным номером 93. Этот элемент также излучает электрон и становится новым элемент с массой 239 и атомным номером 94, который имеет гораздо больший период полураспада. Бретшер и Фезер утверждали на теоретических основаниях, что элемент 94 будет легко расщепляться медленными и быстрыми нейтронами, а также имеет дополнительные преимущества, заключающиеся в том, что он химически отличается от урана и, следовательно, может быть легко отделен от него.

Это новое развитие было также подтверждено в независимой работе Макмиллана и Абельсона в США в 1940 году. Доктор Кеммер из Кембриджской группы предложил названия нептуний для нового элемента № 93 и плутоний для № 94 по аналогии с внешними планетами Нептун и Плутон. за пределами Урана (уран, элемент № 92). Американцы случайно предложили те же названия, и идентификация плутония в 1941 году обычно приписывается Гленну Сиборгу.

Разработка концепций

К концу 1940 г. несколько групп ученых, координируемых Комитетом MAUD, при затратах относительно небольшой суммы денег добились заметного прогресса.Вся эта работа держалась в секрете, в то время как в США в 1940 году продолжали выходить несколько публикаций, и не было ощущения срочности.

К марту 1941 г. была подтверждена одна из самых сомнительных сведений - сечение деления U-235. Пайерлс и Фриш первоначально предсказали в 1940 году, что почти каждое столкновение нейтрона с атомом U-235 приведет к делению и что и медленные, и быстрые нейтроны будут одинаково эффективны. Позже выяснилось, что медленные нейтроны намного эффективнее, что имело огромное значение для ядерных реакторов, но довольно академично в контексте бомбы.Затем Пайерлс заявил, что теперь нет никаких сомнений в том, что вся схема бомбы осуществима при условии получения высокообогащенного U-235. Прогнозируемый критический размер сферы из металла U-235 составлял около 8 кг, и его можно было уменьшить, используя соответствующий материал для отражения нейтронов. Однако прямые измерения U-235 все еще были необходимы, и британцы настаивали на срочном производстве нескольких микрограммов.

Окончательным результатом работы комитета MAUD стали два итоговых отчета в июле 1941 года.Один был на тему «Использование урана для бомбы», а другой - на «Использование урана в качестве источника энергии». В первом отчете был сделан вывод о том, что бомба возможна и что бомба, содержащая около 12 кг активного материала, будет эквивалентна 1800 тоннам в тротиловом эквиваленте и приведет к выбросу большого количества радиоактивных веществ, которые сделают места вблизи места взрыва опасными для человека на длительный период . Было подсчитано, что для завода, производящего 1 кг U-235 в день, потребуется 5 миллионов фунтов стерлингов и потребуется большая квалифицированная рабочая сила, которая также необходима для других частей военных действий.Предполагая, что немцы также могут работать над бомбой, он рекомендовал продолжить работу с высоким приоритетом в сотрудничестве с американцами, даже несмотря на то, что они, казалось, сосредоточились на будущем использовании урана для энергии и военно-морских силовых установок.

Во втором отчете MAUD сделан вывод о том, что контролируемое деление урана можно использовать для получения энергии в виде тепла для использования в машинах, а также для получения больших количеств радиоизотопов, которые могут использоваться в качестве заменителей радия.В нем говорилось об использовании тяжелой воды и, возможно, графита в качестве замедлителей для быстрых нейтронов, и что даже обычная вода могла бы использоваться, если бы уран был обогащен изотопом U-235. Он пришел к выводу, что «урановый котел» имеет большие перспективы для будущего мирного использования, но не стоит его рассматривать во время нынешней войны. Комитет рекомендовал, чтобы Халбан и Коварски переехали в США, где были планы по производству тяжелой воды в больших масштабах. Была упомянута возможность того, что новый элемент плутоний может оказаться более подходящим, чем U-235, так что работы Бретчера и Фезера в этой области должны быть продолжены в Великобритании.

Эти два отчета привели к полной реорганизации работы над бомбой и «котлом». Утверждалось, что работа комитета вывела британцев на первое место и что «за пятнадцать месяцев своего существования он показал себя одним из самых эффективных научных комитетов, которые когда-либо существовали». Основное решение о том, что проект бомбы будет реализован в срочном порядке, было принято премьер-министром Уинстоном Черчиллем с согласия начальников штабов.

Эти отчеты также привели к рассмотрению на высоком уровне в США, в частности, Комитетом Национальной академии наук, первоначально сосредоточившим внимание на аспекте ядерной энергетики.Концепции бомбы уделялось мало внимания до 7 декабря 1941 года, когда японцы атаковали Перл-Харбор, и американцы напрямую вступили в войну. Огромные ресурсы США тогда безоговорочно направлялись на разработку атомных бомб.

Проект "Манхэттен"

Американцы быстро увеличили свои усилия и вскоре обогнали англичан. Исследования продолжались в каждой стране с некоторым обменом информацией. Несколько ключевых британских ученых посетили США в начале 1942 года и получили полный доступ ко всей доступной информации.Американцы параллельно осуществляли три процесса обогащения: профессор Лоуренс изучал электромагнитное разделение в Беркли (Калифорнийский университет), Э.В. Мерфри из Standard Oil изучал метод центрифуги, разработанный профессором Бимсом, а профессор Юри координировал работу по диффузии газов в Колумбии. Университет. Ответственность за строительство реактора для производства делящегося плутония была возложена на Артура Комптона из Чикагского университета. Британцы изучали только газовую диффузию.

В июне 1942 года армия США взяла на себя разработку процессов, инженерное проектирование, закупку материалов и выбор площадки для пилотных заводов по четырем методам производства расщепляющегося материала (поскольку ни один из четырех на тот момент не показал явных преимуществ). как производство тяжелой воды. С этим изменением поток информации в Великобританию иссяк. Это было серьезной неудачей для британцев и канадцев, которые сотрудничали в области производства тяжелой воды и по некоторым аспектам исследовательской программы.После этого Черчилль запросил информацию о стоимости строительства диффузионного завода, завода по производству тяжелой воды и атомного реактора в Великобритании.

После многих месяцев переговоров в августе 1943 г. в Квебеке г-ном Черчиллем и президентом Рузвельтом было наконец подписано соглашение, в соответствии с которым британцы передали все свои отчеты американцам, а взамен получали копии отчетов генерала Гроувса о проделанной работе. Президент. Последнее показало, что вся программа США будет стоить более 1 000 миллионов долларов, и все это будет связано с бомбой, поскольку никаких работ по другим приложениям ядерной энергии не проводилось.

Строительство производств для электромагнитной сепарации (в калютронах) и газовой диффузии идет полным ходом. Экспериментальный графитовый котел, построенный Ферми, работал в Чикагском университете в декабре 1942 года - первая управляемая цепная ядерная реакция.

Энрико Ферми, ок. 1943-1949 (Национальное управление архивов и документации)

Полномасштабный реактор для производства плутония строился в Аргонне, еще один - в Ок-Ридже, а затем в Хэнфорде, а также завод по переработке плутония.Строятся четыре завода по производству тяжелой воды: один в Канаде и три в США. Команда под командованием Роберта Оппенгеймера в Лос-Аламосе в Нью-Мексико работала над проектированием и созданием бомб U-235 и Pu-239. Результатом огромных усилий при поддержке британских групп стало то, что к середине 1945 года было произведено достаточное количество Pu-239 и высокообогащенного U-235 (из калютронов и диффузии в Ок-Ридже). Уран в основном поступает из Бельгийского Конго.

Первое атомное устройство, успешно испытанное в Аламагордо в Нью-Мексико 16 июля 1945 года.Он использовал плутоний, произведенный в ядерном котле. Команды не посчитали необходимым испытывать более простую установку У-235. Первая атомная бомба, содержащая U-235, была сброшена на Хиросиму 6 августа 1945 года. Вторая бомба, содержащая Pu-239, была сброшена на Нагасаки 9 августа. В тот же день СССР объявил войну Японии. 10 августа 1945 года японское правительство капитулировало.

Советская бомба

Изначально Сталин без особого энтузиазма относился к отвлечению ресурсов на разработку атомной бомбы, пока в отчетах разведки не говорилось, что такие исследования ведутся в Германии, Великобритании и США.Консультации с академиками Иоффе, Капицей, Хлопиным и Вернадским убедили его в том, что бомбу можно разработать относительно быстро, и в 1942 году он инициировал скромную исследовательскую программу. Руководителем ее был выбран Игорь Курчатов, тогда относительно молодой и неизвестный, а в 1943 году он стал директором. Лаборатории №2, недавно созданной на окраине Москвы. Позже он был переименован в ЛИПАН, затем стал Курчатовским институтом атомной энергии. Общая ответственность за программу взрыва была возложена на начальника службы безопасности Лаврентия Берия, а ее руководство взяло на себя Первое главное управление (позднее названное Министерством среднего машиностроения).

Исследования преследовали три основные цели: достижение управляемой цепной реакции; исследовать методы разделения изотопов; и изучить конструкции как обогащенных ураном, так и плутониевых бомб. Были предприняты попытки инициировать цепную реакцию с использованием двух разных типов атомных котлов: один с графитом в качестве замедлителя, а другой с тяжелой водой. Были изучены три возможных метода разделения изотопов: противоточная термодиффузия, газовая диффузия и электромагнитное разделение.

После поражения нацистской Германии в мае 1945 года, немецкие ученые были «привлечены» к программе создания бомбы для работы, в частности, над разделением изотопов для производства обогащенного урана.Это включало исследования технологии газовых центрифуг в дополнение к трем другим технологиям обогащения.

Испытание первой атомной бомбы в США в июле 1945 года мало повлияло на советские усилия, но к этому времени Курчатов добился значительных успехов в создании как урановой, так и плутониевой бомб. Он начал проектировать реактор промышленного масштаба для производства плутония, в то время как ученые, работавшие над разделением изотопов урана, добивались успехов в методе газовой диффузии.

Бомбардировка Хиросимы и Нагасаки в следующем месяце придала программе высокий статус, и в ноябре 1945 года началось строительство нового города на Урале, в котором будут размещены первые реакторы для производства плутония - Челябинск-40 (позже известный как Челябинск). -65 или ПО «Маяк»). Это был первый из десяти секретных ядерных городов, построенных в Советском Союзе. Первый из пяти реакторов Челябинска-65 был введен в эксплуатацию в 1948 году. В этом же городе находился завод по извлечению плутония из облученного урана.

Что касается технологии обогащения урана, то в конце 1945 года было решено начать строительство первого газодиффузионного завода в Верх-Нейвинске (позднее закрытый город Свердловск-44), примерно в 50 км от Екатеринбурга (бывший Свердловск) на Урале. Созданы специальные конструкторские бюро на Ленинградском металлургическом и машиностроительном заводе им. С. М. Кирова и Горьковском (Нижегородском) машиностроительном заводе. Поддержку оказала группа немецких ученых, работающих в Сухумском физико-техническом институте.

В апреле 1946 года работы по проектированию бомбы были переданы в Конструкторское бюро-11 - новый центр в Сарове, примерно в 400 км от Москвы (впоследствии закрытый город Арзамас-16). К программе было привлечено больше специалистов, в том числе металлург Ефим Славский, которому было поручено немедленно произвести очень чистый графит, необходимый Курчатову для его котла для производства плутония, построенного в Лаборатории № 2, известной как F-1. Впервые сваю была введена в эксплуатацию в декабре 1946 г. Поддержку также оказала Лаборатория №3 в Москве - ныне Институт теоретической и экспериментальной физики, - где раньше работали ядерные реакторы.

На работу в Арзамасе-16 повлиял сбор внешней разведки, и первое устройство было основано на бомбе Нагасаки (плутониевое устройство). В августе 1947 года недалеко от Семипалатинска в Казахстане был создан испытательный полигон, который через два года был готов к взрыву первой бомбы РСД-1. Еще до того, как это было испытано в августе 1949 года, другая группа ученых во главе с Игорем Таммом, включая Андрея Сахарова, приступила к работе над водородной бомбой.

Возрождение «атомного котла»

К концу Второй мировой войны проект, предсказанный и подробно описанный всего за пять с половиной лет до этого в меморандуме Фриша-Пайерлса, был частично реализован, и внимание могло быть обращено на мирное и непосредственно полезное применение ядерной энергии. . Послевоенная разработка оружия продолжалась по обе стороны «железного занавеса», но новое внимание было сосредоточено на использовании огромной атомной энергии, которая теперь была продемонстрирована драматично (хотя и трагически), для производства пара и электричества.

В ходе разработки ядерного оружия Советский Союз и Запад приобрели ряд новых технологий, и ученые поняли, что огромное количество тепла, производимого в процессе, можно использовать либо для прямого использования, либо для выработки электроэнергии. Было также ясно, что эта новая форма энергии позволит разрабатывать компактные источники энергии с длительным сроком службы, которые могут иметь различные применения, не в последнюю очередь для судоходства, особенно на подводных лодках.

Первым ядерным реактором, вырабатывающим электричество (хотя и незначительное количество), был небольшой экспериментальный реактор-размножитель (EBR-1), спроектированный и эксплуатируемый Аргоннской национальной лабораторией и расположенный в Айдахо, США.Реактор пущен в декабре 1951 года.

В 1953 году президент Эйзенхауэр предложил свою программу «Атом для мира», которая переориентировала значительные исследовательские усилия на производство электроэнергии и задала курс на развитие гражданской ядерной энергетики в США.

В Советском Союзе в различных центрах велась работа по доработке существующих конструкций реакторов и разработке новых. Физико-энергетический институт (ФЭИ) был основан в мае 1946 года в тогда еще закрытом городе Обнинске, в 100 км к юго-западу от Москвы, с целью развития технологий ядерной энергетики.Существующий реактор для производства плутония канального типа с графитовым замедлителем был модернизирован для выработки тепла и электроэнергии, и в июне 1954 года в ФЭИ в Обнинске начал работать первый в мире электрогенератор на атомной энергии. Реактор АМ-1 («Атом Мирный - мирный атом») был водоохлаждаемым, с графитовым замедлителем, проектной мощностью 30 МВт или 5 МВт. Он был принципиально подобен реакторам для производства плутония в закрытых военных городках и послужил прототипом для других конструкций реакторов с графитовым каналом, в том числе реакторов РБМК чернобыльского типа (реактор большой мощности канал).АМ-1 производил электроэнергию до 1959 года и использовался до 2000 года в качестве исследовательской установки и для производства изотопов.

Также в 1950-х годах ФЭИ в Обнинске разрабатывала реакторы-размножители на быстрых нейтронах (FBR) и свинцово-висмутовые реакторы для военно-морского флота. В апреле 1955 г. начал работу реактор на быстрых нейтронах БР-1 ( быстрый реактор - быстрый реактор). Он не производил мощности, но напрямую вел к БР-5, который был запущен в 1959 году с мощностью 5 МВт и который использовался для проведения фундаментальных исследований, необходимых для проектирования реакторов FBR с натриевым охлаждением.Он был модернизирован и модернизирован в 1973 году, а затем претерпел капитальную реконструкцию в 1983 году и стал БР-10 мощностью 8 МВт, который сейчас используется для исследования долговечности топлива, исследования материалов и производства изотопов.

Основные усилия США были предприняты под руководством адмирала Хаймана Риковера, который разработал реактор с водой под давлением (PWR) для военно-морского (особенно подводного) использования. В реакторе PWR использовалось топливо из обогащенного оксида урана, замедление и охлаждение осуществлялось обычной (легкой) водой. Опытный военно-морской реактор Mark 1 был запущен в марте 1953 года в Айдахо, а первая атомная подводная лодка, USS Nautilus , была спущена на воду в 1954 году.В 1959 году США и СССР спустили на воду первые надводные корабли с ядерной установкой.

Реактор Mark 1 привел к тому, что Комиссия по атомной энергии США построила демонстрационный реактор PWR в Шиппорте мощностью 60 МВт в Пенсильвании, который был запущен в 1957 году и проработал до 1982 года.

Установка корпуса реактора в Шиппорте, первой коммерческой атомной электростанции США (Библиотека Конгресса США)

Поскольку у США была фактическая монополия на обогащение урана на Западе, британские разработки пошли по другому пути и привели к созданию серии реакторов, работающих на металлическом природном уране, с замедлителем из графита и с газовым охлаждением.Первый из этих типов Magnox мощностью 50 МВт, Calder Hall 1, был запущен в 1956 году и проработал до 2003 года. Однако после 1963 года (и 26 единиц) запуск больше не производился. Затем Великобритания обратилась к усовершенствованному реактору с газовым охлаждением (использующему обогащенное оксидное топливо), прежде чем признать прагматические достоинства конструкции PWR.

Атомная энергия становится коммерческой

В США Westinghouse спроектировал первый полностью промышленный PWR мощностью 250 МВт, Yankee Rowe, который был запущен в 1960 году и проработал до 1992 года. Тем временем реактор с кипящей водой (BWR) был разработан Аргоннской национальной лабораторией, и первый реактор, Дрезден-1 мощностью 250 МВт, разработанный General Electric, был пущен ранее в 1960 году.Прототип BWR, Vallecitos, эксплуатировался с 1957 по 1963 год. К концу 1960-х годов уже были размещены заказы на реакторные блоки PWR и BWR мощностью более 1000 МВт.

Разработка канадского реактора пошла по совершенно иному пути, используя топливо из природного урана и тяжелую воду в качестве замедлителя и теплоносителя. Первый блок был запущен в 1962 году. Этот дизайн CANDU продолжает совершенствоваться.

Франция начала с газо-графитовой конструкции, подобной Magnox, и первый реактор был запущен в 1956 году.Коммерческие модели эксплуатировались с 1959 года. Затем было остановлено на трех последовательных поколениях стандартизированных PWR, что было очень рентабельной стратегией.

В 1964 году введены в эксплуатацию первые две советские атомные электростанции. В Белоярске (Урал) введен в эксплуатацию кипящий графитовый канальный реактор мощностью 100 МВт. В Нововоронеже (Поволжье) построен новый проект - небольшой (210 МВт) реактор с водой под давлением (PWR), известный как ВВЭР (веда-водяной энергетический реактор - водоохлаждаемый энергетический реактор).

Первый крупный реактор РБМК (1000 МВт - канальный реактор большой мощности) был запущен в 1973 году в Сосновом Бору под Ленинградом, а на северо-западе Арктики начал работу ВВЭР проектной мощностью 440 МВт. Он был заменен версией на 1000 МВт, которая стала стандартной конструкцией.

В Казахстане первый в мире прототип реактора на быстрых нейтронах (БН-350) был запущен в 1972 году с проектной мощностью 135 МВт (нетто), вырабатывая электроэнергию и тепло для опреснения морской воды Каспия.В США, Великобритании, Франции и России ряд экспериментальных реакторов на быстрых нейтронах производил электроэнергию с 1959 года, последний из них был закрыт в 2009 году. В результате российский БН-600 оставался единственным коммерческим реактором на быстрых нейтронах, пока к нему не присоединился БН-800. 2016.

Во всем мире, за некоторыми исключениями, другие страны выбрали легководные конструкции для своих ядерно-энергетических программ, так что сегодня 69% мировых мощностей составляют реакторы PWR и 20% BWR.

Отключение и возрождение ядерной энергетики

С конца 1970-х до примерно 2002 года в атомной энергетике наблюдался некоторый спад и стагнация.Было заказано несколько новых реакторов, число, введенное в эксплуатацию с середины 1980-х годов, немногим больше, чем количество списанных, хотя мощность увеличилась почти на треть, а выработка увеличилась на 60% за счет мощности плюс улучшенные коэффициенты нагрузки. Доля ядерной энергетики в мировой электроэнергии с середины 1980-х годов была довольно постоянной и составляла 16-17%. Многие заказы на реакторы с 1970-х годов были отменены. Соответственно упала цена на уран, в том числе из-за увеличения вторичных поставок. Выручили нефтяные компании, которые вышли на урановое месторождение, и произошла консолидация производителей урана.

Однако к концу 1990-х годов в Японии был введен в эксплуатацию первый реактор третьего поколения - Kashiwazaki-Kariwa 6 - усовершенствованный BWR мощностью 1350 МВт (эл.). Это был знак грядущего выздоровления.

В новом веке несколько факторов в сочетании возродили перспективы ядерной энергетики. Во-первых, осознание масштаба прогнозируемого роста спроса на электроэнергию во всем мире, особенно в быстро развивающихся странах. Во-вторых, осознание важности энергетической безопасности - первостепенной важности того, чтобы каждая страна имела гарантированный доступ к доступной энергии, и особенно к диспетчеризуемой электроэнергии, способной удовлетворить спрос в любое время.В-третьих, необходимость ограничения выбросов углерода из-за опасений по поводу изменения климата.

Эти факторы совпали с появлением нового поколения ядерных энергетических реакторов, и в 2004 году для Финляндии был заказан первый из последних блоков третьего поколения - европейский PWR (EPR) мощностью 1600 МВт. Аналогичная установка строится во Франции, а две новые установки Westinghouse AP1000 строятся в США.

Но планы в Европе и Северной Америке омрачены планами в Азии, особенно в Китае и Индии.Один только Китай планирует и стремится к огромному увеличению мощностей ядерной энергетики к 2030 году, и у него есть еще более сотни крупных энергоблоков, предложенных и поддержанных заслуживающей доверия политической решимостью и поддержкой населения. Многие из них представляют собой новейшие западные разработки или их модификации. Другие - в основном местные образцы.

Таким образом, история ядерной энергетики начинается с науки в Европе, расцветает в Великобритании и США благодаря технологической и экономической мощи последних, замирает на несколько десятилетий, а затем имеет новый всплеск роста в Восточной Азии.При этом было накоплено более 17 000 реакторо-лет эксплуатации, обеспечивающих значительную часть мировой электроэнергии.


Примечания и ссылки

Общие источники

Взлет и падение атома, Комиссия по атомной энергии Австралии 1953–1987 , Кларенс Харди, Глен Хейвен, 1999. В главе 1 приводится основной источник для 1939-45 годов
Radiation in Perspective, OECD NEA, 1997
Nuclear Fear , Спенсер Уарт, Гарвардский университет, 1988
Юдифь Перера (Русский материал)
Александр Петров, Российское агентство ИТЭР, Краткая история Института Иоффе
Марк Уокер, Нацисты и бомба, NOVA (ноябрь 2005 г.)
Карл Х.Мейер и Гюнтер Шварц, Теория ядерных взрывных устройств, которую Гейзенберг не представил немецким военным, Институт истории науки Макса Планка, Препринт № 467 (2015)

.

Атомные электростанции - Управление энергетической информации США (EIA)

Ядерная энергия происходит от деления ядер

Атомные электростанции нагревают воду для производства пара. Пар используется для вращения больших турбин, вырабатывающих электричество. Атомные электростанции используют тепло, выделяемое при делении ядер, для нагрева воды.

При делении ядер атомы разделяются на более мелкие атомы, высвобождая энергию. Деление происходит внутри реактора атомной электростанции.В центре реактора находится активная зона, в которой находится урановое топливо.

Из уранового топлива формуют керамические таблетки. Каждая керамическая гранула производит примерно такое же количество энергии, как 150 галлонов масла. Эти богатые энергией таблетки уложены встык в 12-футовые металлические топливные стержни. Связка топливных стержней, некоторые из которых состоят из сотен стержней, называется тепловыделяющей сборкой. Активная зона реактора содержит множество тепловыделяющих сборок.

Тепло, выделяющееся при ядерном делении в активной зоне реактора, используется для превращения воды в пар, который вращает лопатки паровой турбины.Когда лопасти турбины вращаются, они приводят в действие генераторы, вырабатывающие электричество. Атомные установки охлаждают пар обратно в воду в отдельной конструкции на электростанции, называемой градирней, или они используют воду из прудов, рек или океана. Затем охлажденная вода повторно используется для производства пара.

Ядерные реакторы в Соединенных Штатах могут иметь большие бетонные купола, закрывающие реакторы, которые должны сдерживать аварийные выбросы радиации.Не на всех АЭС есть градирни. Некоторые атомные электростанции используют для охлаждения воду из озер, рек или океана.

Защитный купол ядерного реактора

Источник: стоковая фотография (защищена авторским правом)

Атомные электростанции вырабатывают около 20% электроэнергии США с 1990 года

По состоянию на 1 января 2020 года 96 ядерных реакторов работали на 58 атомных электростанциях в 29 государствах.Тридцать пять заводов имеют два или более реактора. С 1990 года атомные электростанции производят около 20% от общего годового объема электроэнергии в США. Узнайте больше об атомной энергетике США.

Соединенные Штаты производят больше ядерной энергии, чем любая другая страна

В 2017 году в 31 стране были коммерческие атомные электростанции, и в 15 из них ядерная энергия обеспечивала не менее 20% их общего годового производства электроэнергии. Соединенные Штаты обладают крупнейшими производственными мощностями ядерной энергетики и производят больше ядерной электроэнергии, чем любая другая страна.Франция, обладающая второй по величине производительностью ядерной электроэнергии и второй по величине производительностью атомной электроэнергии, имела самую большую долю - около 72% - от общего годового производства электроэнергии с помощью ядерной энергии.

Топ-5 стран, производящих атомную электроэнергию, 2017 г.

Страна Мощность атомной электростанции (млн киловатт) Производство электроэнергии на атомных станциях (млрд. Киловатт-часов) Доля атомной энергетики в общем производстве электроэнергии в стране
США 99.6 805,0 19,8%
Франция 63,1 381,8 71,5%
Китай 34,5 232,8 3,7%
Россия 26,1 190.1 18,4%
Южная Корея 22,5 141,3 26,6%
Источник: Управление энергетической информации США, Международная энергетическая статистика, по состоянию на 16 апреля 2020 г.

Последнее обновление: 16 апреля 2020 г.

.

Атомная энергия - Простая английская Википедия, бесплатная энциклопедия

Ядерная энергия - это контролируемое использование ядерной энергии. Ядерная энергия - это энергия в «делящихся» элементах, таких как уран, которые могут быть высвобождены в результате ядерных реакций в машине, называемой ядерным реактором. Эта энергия превращается в электричество, которое затем можно использовать для питания машин и обогрева домов. В 2007 году 14% мировой электроэнергии было произведено на атомной энергии. Атомные электростанции также производят радиоактивные отходы, которые могут быть вредными при неправильном хранении.

С середины 20 века люди также изучают возможность использования термоядерной энергии, которая производит гораздо больше энергии и не производит радиоактивных отходов. Ядерных термоядерных реакторов еще не существует, и они все еще разрабатываются.

Энрико Ферми создал первый ядерный реактор в 1941 году. Многие реакторы были построены в США во время Второй мировой войны во время Манхэттенского проекта. В 1954 году в подмосковном Обнинске была запущена первая атомная электростанция. Большинство атомных электростанций в США.С. были построены в 1960-1970-х гг. Ядерные реакторы также используются на некоторых крупных военных кораблях и подводных лодках.

Ядерные реакторы используют процесс, называемый ядерным делением, в котором используются такие атомы, как уран или плутоний (в частности, изотоп уран 235), и разделяются их частицами, называемыми нейтронами. Это преобразовывает часть массы в энергию, согласно уравнению Эйнштейна E = mc2. Делящиеся элементы помещаются в стержни, называемые «твэлы». Топливные стержни погружены в воду, и энергия, выделяемая в реакции деления, нагревает воду, которая превращается в пар.

Затем пар вращает турбину, которая вырабатывает электричество. Затем пар конденсируется в огромных градирнях, снова превращается в воду и снова отправляется в реактор.

Реакцией можно управлять, помещая «управляющие стержни» между топливными стержнями. Управляющие стержни обычно изготавливаются из бора, который поглощает нейтроны и останавливает реакцию.

Ядерный расплав может произойти, когда реакция не контролируется и начинает выделять опасные радиоактивные газы (например, криптон).Вопреки распространенному мнению, ядерные реакторы не могут взорваться, как ядерная бомба, но при утечке радиоактивных материалов возникает опасность.

Произошло несколько серьезных ядерных аварий. Была сделана шкала для измерения опасности несчастных случаев. Она называется Международной шкалой ядерных событий. На шкале 8 уровней (0-7), 7 - наихудший.

Аварии с атомной подводной лодкой включают аварию реактора советской подводной лодки К-19 (1961 г.), [6] аварию реактора советской подводной лодки К-27 (1968 г.), [7] и аварию реактора советской подводной лодки К-431. (1985).

Экономика ядерной энергетики является сложной задачей, и после ядерной катастрофы на Фукусиме в 2011 году затраты на действующие в настоящее время и новые атомные электростанции, вероятно, вырастут из-за возросших требований к обращению с отработавшим топливом на площадке и повышенных проектных угроз. [9]

Идут споры об использовании ядерной энергии. [10] [11] Сторонники, такие как Всемирная ядерная ассоциация и МАГАТЭ, утверждают, что ядерная энергетика является устойчивым источником энергии, сокращающим выбросы углерода. [12] Кроме того, он не способствует образованию смога или кислотных дождей. Противники ядерного оружия, такие как Гринпис Интернэшнл и Служба ядерной информации и ресурсов, считают, что ядерная энергетика представляет угрозу для людей и окружающей среды. [13] [14] [15]

Головки резервуаров для воды под давлением

В 2007 году атомные электростанции произвели около 2600 ТВтч электроэнергии и обеспечили 14 процентов электроэнергии, используемой в мире, что на 2 процента меньше, чем в 2006 году. [16] По состоянию на 9 мая 2010 г. в мире действовало 438 ядерных реакторов (372 ГВт). Пик пришелся на 2002 год, когда работало 444 ядерных реактора. [16]

Ядерная авария на японской АЭС Фукусима-дайити и других ядерных объектах подняла вопросы о будущем ядерной энергетики. [17] [18] [19] [20] [21] Platts заявила, что «кризис на японской атомной электростанции Фукусима побудил ведущие страны-потребители энергии пересмотреть безопасность своих существующих реакторов и ставят под сомнение скорость и масштабы планируемых расширений по всему миру ». [22] После ядерной катастрофы на Фукусиме Международное энергетическое агентство вдвое снизило оценку дополнительных ядерных генерирующих мощностей, которые будут построены к 2035 году. [23]

  1. ↑ В фокусе: Чернобыль
  2. ↑ Самое загрязненное место на планете
  3. ↑ Disaster - Серия 3
  4. Джунни, Марко (2004). Социальный протест и изменение политики: экологические, антиядерные и мирные движения в сравнительной перспективе . Роуман и Литтлфилд.п. 44. ISBN 978-0-7425-1827-8 .
  5. ↑ После Токаймуры Япония переосмысливает свою ядерную картину
  6. ↑ Повышение безопасности источников излучения с. 14.
  7. Джонстон, Роберт (23 сентября 2007 г.). «Самые смертоносные радиационные аварии и другие события, вызывающие радиационные потери». База данных радиологических инцидентов и связанных с ними событий.
  8. Массачусетский технологический институт (2011). «Будущее ядерного топливного цикла» (PDF).п. XV.
  9. ↑ Джеймс Дж. Маккензи. Обзор спора о ядерной энергии, сделанный Артуром У. Мерфи Ежеквартальный обзор биологии , Vol. 52, No. 4 (декабрь 1977 г.), стр. 467-468.
  10. ↑ В феврале 2010 года дебаты по ядерной энергетике разыгрались на страницах New York Times , см. Разумная ставка на ядерную энергетику и пересмотр ядерной энергетики: дебаты и возвращение к ядерной энергии?
  11. ↑ Законодательство США об энергетике может стать «возрождением» для атомной энергетики.
  12. Поделиться. «Бассейны ядерных отходов в Северной Каролине». Projectcensored.org. Проверено 24 августа 2010.
  13. ↑ NC WARN »Атомная энергия
  14. Стерджис, Сью. «Расследование: разоблачения катастрофы на Три-Майл-Айленде вызывают сомнения в безопасности атомной электростанции». Southernstudies.org. Проверено 24 августа 2010.
  15. 16,0 16,1 Спад ядерной энергетики продолжится, говорится в отчете Nuclear Engineering International от 27 августа 2009 года.
  16. ↑ Ядерному возрождению угрожает борьба с реакторами в Японии Bloomberg, опубликовано в марте 2011 г., по состоянию на 14 марта 2011 г.
  17. ↑ Анализ: Ядерный ренессанс может потерпеть неудачу после землетрясения в Японии Reuters, опубликовано 14 марта 2011 г., по состоянию на 14 марта 2011 г.
  18. ↑ Ядерные проблемы Японии бросают тень на энергетическую политику США Рейтер, опубликовано 13 марта 2011 г., по состоянию на 14 марта 2011 г.
  19. ↑ Ядерная зима? Землетрясение бросает новую тень на реакторы MarketWatch, опубликовано 14 марта 2011 г., по состоянию на 14 марта 2011 г.
  20. ↑ Будут ли ядерные нервы Китая способствовать буму зеленой энергетики? Channel 4, опубликовано 17 марта 2011 г., дата обращения 17 марта 2011 г.
  21. «НОВОСТИ АНАЛИЗ: Японский кризис ставит под сомнение глобальную ядерную экспансию».Platts. 21 марта 2011.
  22. «Измерение давления». Экономист. 28 апреля 2011 г.
.

список ядерных реакторов - wikiwand

Для более быстрой навигации этот iframe предварительно загружает страницу википедии для Список ядерных реакторов .

Подключено к:
{{:: readMoreArticle.title}}

Из Википедии, свободной энциклопедии

{{bottomLinkPreText}} {{bottomLinkText}} Эта страница основана на статье в Википедии, написанной участники (читать / редактировать).
Текст доступен под Лицензия CC BY-SA 4.0; могут применяться дополнительные условия.
Изображения, видео и аудио доступны по соответствующим лицензиям.
{{current.index + 1}} из {{items.length}}

Спасибо за жалобу на это видео!

Пожалуйста, помогите нам решить эту ошибку, написав нам по адресу support @ wikiwand.com
Сообщите нам, что вы сделали, что вызвало эту ошибку, какой браузер вы используете и установлены ли у вас какие-либо специальные расширения / надстройки.
Спасибо! .

Смотрите также