Самый распространенный в мире металл


Самый распространенный металл на Земле - Topkin

На нашей планете очень много различных металлов. Есть такие, о которых мало кому известно, а существует и самый распространенный металл на Земле. Такой металл является наиболее часто встречаемым на нашей планете и играет невероятную роль для развития всего человечества. В нашей стране самыми распространенными металлами по добыче являются хром, железо и марганец. Но если брать по всему миру в целом, то на вопрос, какой металл самый распространенный на Земле, можно уверенно ответить – алюминий.

Основные характеристики алюминия

Самый распространенный металл в земной коре содержится в количестве около девяти процентов из общего состава. Такое количество металла, который был открыт в 1825 году, действительно впечатляет – по мнению ученых, даже в далеком будущем не предвидится истощение его запасов. Однако в чистом виде в природе алюминий не встречается – это обусловлено сильной химической активностью металла. Зато ученые выявили множество минералов, в составе которых самый распространенный металл присутствует.

Высоко ценится алюминий за свои свойства. Он является прочным, пластичным, легким, не вызывает трудностей при обработке. Он устойчив к коррозии, обладает высокой степенью проводимости тепла, является электропроводимым, легко поддается ковке, прокатке, штамповке, а также сварке.

Высокая популярность алюминия объясняется его прочностными характеристиками и долгим сроком службы. Также металл не имеет в составе вредных компонентов, что свидетельствует об его высочайшей экологичности.

Присутствие не только в земной коре

Интересным является тот факт, что алюминий встречается не только в коре Земли – есть он и в живых организмах. Накапливается металл в печени, поджелудочной и щитовидной железах. В говядине алюминия содержится примерно семьдесят миллиграммов на один килограмм.

Из-за своей распространенности алюминий очень широко используется в различных сферах жизни. Поэтому совершенно неудивительно, что данный металл серебристого цвета применяется в различных отраслях промышленности (авиационная, космическая, строительство, автомобилестроение).

А сколько посуды изготавливается из этого замечательного металла – фляжки, ложки, вилки, миски, чашки и т.д. Еще сто пятьдесят лет назад из такой посуды принимали пищу лишь богатейшие люди, ведь до конца девятнадцатого столетия алюминий по своей ценности превышал даже серебро. Из этого серебристого металла изготавливали не только посуду, но и украшения, которые любили показать всему свету знатные особы. Сегодня же из алюминиевой посуды может есть каждый, и она не считается дорогостоящей. Однако степень распространенности металла от этого ничуть не снижается.

Все характеристики, присущие алюминию, позволяют применять его практически везде. Главным образом, используются сплавы, которые требуются для применения в сферах от электротехники до космических разработок. Широко применяется алюминий для производства взрывчатых веществ.

Распространенным сплавом считается дюралюминий, который применяется при производстве фюзеляжей и крыльев летательных аппаратов. А во Франции даже имеется океанский лайнер, выполненный полностью из алюминия – длина такого судна составляет 300 метров. Причем судно имеет не только алюминиевый корпус, но и многие его «внутренности» (стены кают, переборки, мебель) выполнены из этого серебристого металла.

Еще сравнительно недавно редко можно было встретить на окнах алюминиевые рамы. Сегодня же это повсеместное явление – особенно окна с алюминиевыми профилями используются при остеклении балконов. Также алюминиевый профиль применяется при изготовлении рекламных баннеров, перегородок, рам для штендеров и т.д.

Лидером среди драгоценных металлов по распространенности является родий. Он отличается высокой стойкостью к коррозии, химическим воздействиям и плавлению. За эти характеристики пользуется большим спросом в автомобилестроении. Вторым распространенным среди драгоценных металлов идет платина, из которой изготавливаются ювелирные украшения.

Самый распространенный металл в мире

Наша земля полна самыми разнообразными металлами и материалами. Существуют крайне-редкие из них, о них говорится много, и часто. А вот о самых распространенных металлах приходится слышать далеко не часто. А вот о самых распространенных металлах приходится слышать далеко не часто. Но, люди спросят, а ведь самих по себе металлов не так много, как можно подумать, но, на самом же деле, металлы входят в счет большого количества минералов, причем достаточно большое их количество находятся там в виде сплавов. 

Россия и металлы

Если взять российское производство, то металло-добывающая промышленность, которая, в большинстве своем строится на добыче 3 основных активных металлов железа, марганца и хрома, стоит на 2 месте после газодобывающей промышленности, а также добычи топлива. 

Мировое распространение

Самый распространенный металл земной коры – это алюминий. Он был открыт ещё в 1825 году. Во всей коре он содержится в 8,8 процента из общего состава. Этот металл, помимо того, что он является одним из самых распространенных во всем мире, считается ещё и наиболее часто используемым. Производство техники не обходится без него, а это, как можно понять, солидная доля от общего мирового производства всего и вся. 

Что же касается самого распространенного металла в природе, то на это звание претендует всё тот же алюминий. Следующим в списке стоит классическое железо 4,1 % от общей массы металлов. Железо не редко используют в составе смесей, так называемых металлических сплавов. Далее следует кальций, его доля составляет всё те же 4.1 процента. 

Самое минимальное содержание приходится на долю титана. Он содержится в земной коре всего лишь в 0,56 % от общей массы. Данный металл является самым прочным из всех известных науке, а если учесть, что он является самым редким, то не трудно предположить, что он чрезвычайно ценен.

Драгметаллы 

Существует ещё один список самых распространенных металлов в мире, на этот раз по версии ценности в ювелирных изделиях. 

На первом месте в данном списке стоит малоизвестный металл под названием родий. Он очень ценится в промышленности автомобилей, так как он очень стоек к плавлению, не подвергается химическим воздействиям и ржавчине. 

На втором месте стоит очень популярная платина. Ювелирные изделия из этого металла стоят очень и очень дорого, и не редко они поставляются именно в виде чистого металла, без украшения драгоценными камнями.

Третье место, по праву, занимает всем известное золото. Для простых обывателей, по мимо серебра, имеет самую высокую ценность. Это единственный из всех элементов, который обладает не серебристым цветом, а желтым, то есть, золотым.

Все они имеются в гораздо меньшем количестве, нежели простые металлы, по этому на них не действует стандартная классификация распространенности.

 

14 различных типов металлов | New-Science.ru

Термин "металл" происходит от греческого слова "metalléuō", что означает выкапываю или добываю из земли. Наша планета содержит много металла. На самом деле из 118 элементов периодической системы порядка 95 являются металлами.

Это число не является точным, потому что граница между металлами и неметаллами довольно расплывчата: нет стандартного определения металлоида, как нет и полного согласия относительно элементов, соответствующим образом классифицированных как таковые.

Сегодня мы используем различные виды металлов, даже не замечая их. Начиная с зажимов в сантехнике и заканчивая устройством, которое вы используете для чтения этой статьи, все они сделаны из определенных металлов. Фактически, некоторые металлические элементы необходимы для биологических функций, таких как приток кислорода и передача нервных импульсов. Некоторые из них также широко используются в медицине в виде антацидов.

Все металлы в периодической таблице можно классифицировать по их химическим или физическим свойствам. Ниже мы перечислили некоторые различные типы металлов вместе с их реальным применением.

Классификация по физическим свойствам

14. Легкие металлы

Сплав титана 6AL-4V

Примеры: Алюминий, титан, магний

Легкие металлы имеют относительно низкую плотность. Формального определения или критериев для идентификации этих металлов нет, но твердые элементы с плотностью ниже 5 г/см³ обычно считаются легкими металлами.

Металлургия легких металлов была впервые развита в середине 19 века. Хотя большинство из них происходит естественным путем, значительная их часть образуется при электротермии и электролизе плавленых солей.

Их сплавы широко используются в авиационной промышленности благодаря их низкой плотности и достаточным механическим свойствам. Например, сплав титана 6AL-4V составляет почти 50 процентов всех сплавов, используемых в авиастроении. Он используется для изготовления роторов, лопастей компрессоров, мотогондол, компонентов гидравлических систем.

13. Тяжелые металлы

Окисленные свинцовые конкреции и кубик размером 1 см3

Примеры: железо, медь, кобальт, галлий, олово, золото, платина.

Тяжелые металлы - это элементы с относительно высокой плотностью (обычно более 5 г/см³ ) и атомным весом. Они, как правило, менее реактивны и содержат гораздо меньше растворимых сульфидов и гидроксидов, чем более легкие металлы.

Эти металлы редки в земной коре, но они присутствуют в различных аспектах современной жизни. Они используются в солнечных батареях, сотовых телефонах, транспортных средствах, антисептиках и ускорителях частиц.

Тяжелые металлы часто смешиваются в окружающей среде из-за промышленной деятельности, ухудшая качество почвы, воды и воздуха, а затем вызывая проблемы со здоровьем у животных и растений. Выбросы транспортных средств, горнодобывающие и промышленные отходы, удобрения, свинцово-кислотные батареи и микропластики, плавающие в океанах, являются одними из наиболее распространенных источников тяжелых металлов в этом контексте.

12. Белый металл

Подшипники из белого металла

Примеры: Обычно изготавливается из олова, свинца, висмута, сурьмы, кадмия, цинка.

Белые металлы - это различные светлые сплавы, используемые в качестве основы для украшений или изделий из серебра. Например, многие сплавы на основе олова или свинца используются в ювелирных изделиях и подшипниках.

Белый металлический сплав изготавливается путем объединения определенных металлов в фиксированных пропорциях в соответствии с требованиями конечного продукта. Основной металл для ювелирных изделий, например, формуется, охлаждается, экстрагируется, а затем полируется, чтобы придать ему точную форму и блестящий вид.

Они также используются для изготовления тяжелых подшипников общего назначения, подшипников внутреннего сгорания среднего размера и электрических машин.

11. Хрупкий металл

Хрупкое разрушение чугуна

Примеры: сплавы углеродистой стали, чугуна и инструментальной стали.

Металл считается хрупким, если он твердый, но не может противостоять ударам или вибрации под нагрузкой. Такие металлы под воздействием напряжения ломаются без заметной пластической деформации. Они имеют низкую прочность на разрыв и часто издают щелкающий звук при поломке.

Многие стальные сплавы становятся хрупкими при низких температурах, в зависимости от их обработки и состава. Чугун, например, твердый, но хрупкий из-за высокого содержания углерода. Напротив, керамика и стекло гораздо более хрупки, чем металлы, из-за их ионных связей.

Галлий, висмут, хром, марганец и бериллий также хрупки. Они часто используются в различных гражданских и военных целях, связанных с высокими деформационными нагрузками. Чугун, устойчивый к повреждениям в результате окисления, используется в машинах, трубах и деталях автомобильной промышленности, таких как корпуса коробок передач и головки цилиндров.

10. Тугоплавкий металл

Микроскопическое изображение вольфрамовой нити в лампе накаливания

Примеры: молибден, вольфрам, тантал, рений, ниобий.

Тугоплавкие металлы имеют чрезвычайно высокие температуры плавления (более 2000 °С) и устойчивы к износу, деформации и коррозии. Они являются хорошими проводниками тепла и электричества и имеют высокую плотность.

Другой ключевой характеристикой является их термостойкость: они не расширяются и не растрескиваются при многократном нагревании и охлаждении. Однако они могут деформироваться при высоких нагрузках и окисляться при высоких температурах.

Благодаря своей прочности и твердости они идеально подходят для сверления и резки. Карбиды и сплавы тугоплавких металлов используются почти во всех отраслях промышленности, включая горнодобывающую, автомобильную, аэрокосмическую, химическую и ядерную.

Металлический вольфрам, например, используется в ламповых нитях. Сплавы рения используются в гироскопах и ядерных реакторах. А ниобиевые сплавы используются для форсунок жидкостных ракетных двигателей.

9. Черные и цветные металлы

Валы-шестерни из (черной) нержавеющей стали

Черные металлы: Сталь, чугун, сплавы железа.
Цветные металлы: Медь, алюминий, свинец, цинк, серебро, золото.

Термин "железо" происходит от латинского слова "Ferrum", что переводится как «железо». Таким образом, термин «черный металл» обычно означает "содержащий железо", тогда как "цветной металл" означает металлы и сплавы, которые не содержат достаточного количества железа.

Поскольку черные металлы могут иметь широкий спектр легирующих элементов, которые значительно изменяют их характеристики, очень трудно поместить свойства всех черных металлов под один зонт. Тем не менее, некоторые обобщения могут быть сделаны, например, большинство черных металлов являются твердыми и магнитными.

Черные металлы используются для применения с высокой нагрузкой и низкой скоростью, в то время как цветные металлы предпочтительны для применения с высокой скоростью и нулевой нагрузкой для применения с низкой нагрузкой.

Сталь является наиболее распространенным черным металлом. Она составляет около 80% всего металлического материала благодаря своей доступности, высокой прочности, низкой стоимости, простоте изготовления и широкому спектру свойств. Она широко используется в строительстве и обрабатывающей промышленности. Фактически, рост производства стали показывает общее развитие промышленного мира.

8. Цветные и благородные металлы

Ассортимент благородных металлов

Цветные металлы: медь, алюминий, олово, никель, цинк
Благородные металлы: родий, ртуть, серебро, рутений, осмий, иридий

Цветные металлы - это обычные и недорогие металлы, которые корродируют, окисляются или тускнеют быстрее, чем другие металлы, когда подвергаются воздействию воздуха или влаги. Они в изобилии встречаются в природе и легко добываются.

Они широко используются в промышленных и коммерческих целях и имеют неоценимое значение для мировой экономики благодаря своей полезности и повсеместности. Некоторые цветные металлы обладают отличительными характеристиками, которые не могут быть продублированы другими металлами. Например, цинк используется для гальванизации стали, чтобы защитить ее от коррозии, а никель - для изготовления нержавеющей стали.

Благородные металлы, с другой стороны, устойчивы к окислению и коррозии во влажном воздухе. Согласно атомной физике, благородные металлы имеют заполненный электрон d-диапазона. В соответствии с этим строгим определением, медь, серебро и золото являются благородными металлами.

Они находят применение в таких областях, как орнамент, металлургия и высокие технологии. Их точное использование варьируется от одного элемента к другому. Некоторые благородные металлы, такие как родий, используются в качестве катализаторов в химической и автомобильной промышленности.

7. Драгоценные металлы

Родий: 1 грамм порошка, 1 грамм прессованного цилиндра и 1 г аргонодуговой переплавленной гранулы

Примеры: палладий, золото, платина, серебро, родий.

Драгоценные металлы считаются редкими и имеют высокую экономическую ценность. Химически они менее реакционноспособны, чем большинство элементов (включая благородные металлы). Они также пластичны и имеют высокий блеск.

Несколько веков назад эти металлы использовались в качестве валюты. Но сейчас они в основном рассматриваются как промышленные товары и инвестиции. Многие инвесторы покупают драгоценные металлы (в основном золото), чтобы диверсифицировать свои портфели или победить инфляцию.

Серебро - второй по популярности драгоценный металл для ювелирных изделий (после золота). Однако его значение выходит далеко за рамки красоты. Оно обладает исключительно высокой тепло- и электропроводностью и чрезвычайно низким контактным сопротивлением. Именно поэтому серебро широко используется в электронике, батареях и противомикробных препаратах.

Классификация по химическим свойствам

6. Щелочные металлы

Твердый металлический натрий

Примеры: натрий, калий, рубидий, литий, цезий и франций.

Щелочь относится к основной природе гидроксидов металлов. Когда эти металлы реагируют с водой, они образуют сильные основания, которые легко нейтрализуют кислоты.

Они настолько реактивны, что обычно встречаются в природе в слиянии с другими веществами. Карналлит (хлорид калия-магния) и сильвин (хлорид калия), например, растворимы в воде и, таким образом, легко извлекаются и очищаются. Нерастворимые в воде щелочи, такие как фторид лития, также существуют в земной коре.

Одно из самых популярных применений щелочных металлов - использование цезия и рубидия в атомных часах, наиболее точных из известных эталонов времени и частоты. Литий используется в качестве анода в литиевых батареях, композиты калия используются в качестве удобрений, а ионы рубидия используются в фиолетовых фейерверках. Чистый металлический натрий широко используется в натриевых лампах, которые очень эффективно излучают свет.

5. Щелочноземельные металлы

Изумрудный кристалл, основной минерал бериллия.

Примеры: бериллий, кальций, магний, барий, стронций и радий.

Щелочноземельные металлы в стандартных условиях мягкие и серебристо-белые. Они имеют низкую плотность, температуру кипения и температуру плавления. Хотя они не так реакционноспособны, как щелочные металлы, они очень легко образуют связи с элементами. Как правило, они вступают в реакцию с галогенами, образуя галогениды щелочноземельных металлов.

Все они встречаются в земной коре, кроме радия, который является радиоактивным элементом. Радий уже распадался в ранней истории Земли из-за относительно короткого периода полураспада (1600 лет). Современные образцы поступают из цепочки распада урана и тория.

Щелочноземельные металлы имеют широкий спектр применения. Бериллий, например, используется в полупроводниках, теплопроводниках, электрических изоляторах и в военных целях. Магний часто сплавляют с цинком или алюминием для получения материалов со специфическими свойствами. Кальций в основном используется в качестве восстановителя, а барий используется в вакуумных трубках для удаления газов.

4. Переходные металлы

Примеры: титан, ванадий, хром, никель, серебро, вольфрам, платина, кобальт.

Большинство элементов используют электроны из своей внешней оболочки для связи с другими элементами. Переходные металлы, однако, могут использовать две крайние оболочки для соединения с другими элементами. Это химическая особенность, которая позволяет им связываться со многими различными элементами в различных формах.

Они занимают среднюю часть таблицы Менделеева, служа мостом между (или переходом) между двумя сторонами таблицы. Более конкретно, есть 38 переходных металлов в группах с 3 по 12 периодической таблицы. Все они являются пластичными, податливыми и хорошими проводниками тепла и электричества.

Многие из этих металлов, такие как медь, никель, железо и титан, используются в конструкциях и в электронике. Большинство из них образуют полезные сплавы друг с другом и с другими металлическими веществами. Некоторые из них, включая золото, серебро и платину, называются благородными металлами, потому что они крайне инертны и устойчивы к кислотам.

3. Постпереходные металлы

Висмут в виде синтетических кристаллов

Примеры: алюминий, галлий, олово, свинец, таллий, индий, висмут.

Постпереходные металлы в периодической таблице - это элементы, расположенные справа от переходных металлов и слева от металлоидов. Из-за своих свойств они также называются "бедными" или "другими" металлами.

Физически они хрупки (или мягки) и имеют более низкую температуру плавления и механическую прочность, чем переходные металлы. Их кристаллическая структура довольно сложна: они проявляют ковалентные или направленные эффекты связи.

Различные металлы этого семейства имеют различное применение. Алюминий, например, используется для изготовления оконных рам, кухонной посуды, банок, фольги, деталей автомобилей. Оловянные сплавы используются в мягких припоях, оловянных и сверхпроводящих магнитах.

Индиевые сплавы используются для изготовления плоских дисплеев и сенсорных экранов, а галлий - в топливных элементах и полупроводниках.

2. Лантаноиды

1-сантиметровый кусок чистого лантана

Примеры: лантан, церий, прометий, гадолиний, тербий, иттербий, лютеций.

Лантаноиды - это редкоземельные металлы с атомными номерами от 57 до 71. Впервые они были обнаружены в 1787 году в необычном черном минерале (гадолините), обнаруженном в Иттербю, Швеция. Позже минерал был разделен на различные элементы лантаноидов.

Лантаноиды - это металлы с высокой плотностью, плотность которых колеблется от 6,1 до 9,8 г/см³, и они, как правило, имеют очень высокие температуры кипения (1200-3500 °C) и очень высокие температуры плавления (800-1600 °C).

Сплавы лантаноидов используются в металлургии из-за их сильных восстановительных способностей. Около 15 000 тонн лантаноидов ежегодно расходуется в качестве катализаторов и при производстве стекол. Они также широко используются в лазерах и оптических усилителях.

Некоторые исследования показывают, что лантаноиды могут быть использованы в качестве противораковых средств. Лантан и церий, в частности, могут подавлять пролиферацию раковых клеток и способствовать цитотоксичности.

1. Актиниды

Металлический уран, высокообогащенный ураном-235

Примеры: актиний, уран, торий, плутоний, фермий, нобелий, лоренций

Подобно лантаноидам, актиниды образуют семейство редкоземельных элементов с аналогичными свойствами. Они представляют собой серию из 15 последовательных химических элементов в периодической системе от атомных номеров 89 до 103.

Все они радиоактивны по своей природе. Синтетически произведенный плутоний, а также природные уран и торий являются наиболее распространенными актинидами на Земле. Первым актинидом, который был открыт в 1789 году, был уран. И большая часть существующих продуктов актинидов была произведена в 20 веке.

Их свойства, такие как излучение радиоактивности, пирофорность, токсичность и ядерная критичность, делают их опасными для обращения. Сегодня значительная часть (кратковременных) актинидов производится ускорителями частиц в исследовательских целях.

Некоторые актиниды нашли применение в повседневной жизни, например, газовые баллоны (торий) и детекторы дыма (америций), большинство из них используются в качестве топлива в ядерных реакторах и для изготовления ядерного оружия. Уран-235 является наиболее важным изотопом для применения в ядерной энергетике, который широко используется в тепловых реакторах.

Самый распространенный металл в земной коре. Металлы в природе

Металлы представляют собой группу элементов, которые обладают такими уникальными свойствами, как электропроводность, высокая теплопередача, положительный коэффициент сопротивления, характерный блеск и относительная пластичность. Данный вид веществ является простым по химическим соединениям.

Классификация по группам

Металлы относятся к самым распространенным материалам, которые используются человечеством на протяжении всей его истории. Большинство из них находится в средних слоях земной коры, но есть и те, что спрятаны глубоко в горных залежах.

На данный момент металлы занимают большую часть таблицы Менделеева (94 из 118 элементов). Из официально признанных стоит отметить следующие группы:

1. Щелочные (литий, калий, натрий, франций, цезий, рубидий). При контакте с водой они образуют гидроксиды.

2. Щелочноземельные (кальций, барий, стронций, радий). Отличаются плотностью и твердостью.

3. Легкие (алюминий, свинец, цинк, галлий, кадмий, олово, ртуть). Из-за незначительной плотности часто используются в сплавах.

4. Переходные (уран, золото, титан, медь, серебро, никель, железо, кобальт, платина, палладий и пр.). Обладают изменчивой степенью окисления.

5. Полуметаллы (германий, кремний, сурьма, бор, полоний и др.). В своей структуре имеют кристаллическую ковалентную решетку.

6. Актиноиды (америций, торий, актиний, берклий, кюрий, фермий и пр.).

7. Лантаноиды (гадолиний, самарий, церий, неодим, лютеций, лантан, эрбий и др.).

Стоит отметить, что есть металлы в земной коре и такие, которые не определены в группы. К ним относят магний и бериллий.

Самородные соединения

В природе существует отдельный класс кристаллохимической кодификации. К таким элементам относят самородные металлы. Это минералы по составу между собой не связанные. Чаще всего самородные металлы в природе образуются в результате геологических процессов.

В кристаллическом состоянии в земной коре известны 45 веществ. Большинство из них в природе встречается крайне редко, отсюда и их высокая стоимость. Доля таких элементов составляет всего 0,1 %. Стоит отметить, что нахождение этих металлов также является трудоемким и недешевым процессом. Он основывается на использовании атомов с устойчивыми оболочками и электронами.

Самородные металлы называются также благородными. Для них характерны химическая инерция и устойчивость соединений. К таковым относят золото, палладий, платину, иридий, серебро, рутений и пр. Чаще всего в природе встречается медь. Железо в самородном состоянии присутствует в основном в горных залежах в виде метеоритов. Самыми редкими элементами группы являются свинец, хром, цинк, индий и кадмий.

Основные свойства

Практически все металлы в нормальных условиях отличается твердостью и стойкостью. Исключение - франций и ртуть, щелочные металлы. Температура плавления для всех элементов группы разная. Ее диапазон колеблется от -39 до +3410 градусов по Цельсию. Самым устойчивым к плавлению считается вольфрам. Его соединения теряют стойкость только при температуре выше +3400 С. Из легкорасплавляемых металлов следует выделить свинец и олово.

Также элементы делятся относительно плотности (легкие и тяжелые) и пластичности (твердые и мягкие). Все металлические соединения отлично проводят ток. Данное свойство обуславливается наличием кристаллических решеток с активными электронами. Максимальную проводимость имеют медь, серебро и алюминий, чуть меньшую – натрий. Стоит отметить и высокие термические свойства металлов. Наилучшим теплопроводником считается серебро, наихудшим – ртуть.

Металлы в окружающей среде

Чаще всего такие элементы можно встретить в виде соединений и руд. Металлы в природе образуют сульфиты, оксиды, карбонаты. Для очищения соединений сперва необходимо выделить их из состава руды. Следующим шагом будет легирование и финальная обработка.

В промышленной металлургии различаются черные и цветные руды. Первые строятся на основе железных соединений, вторые – на прочих металлах. Драгоценными металлами считаются платина, золото и серебро. Большая их часть находится в земной коре. Тем не менее, малая доля приходится и на морскую воду.

Есть благородные элементы даже в живых организмах. В человеке содержится около 3 % металлических соединений. По большей степени в организме находятся натрий и кальций, которые выступают в роли межклеточного электролита. Магний необходим для нормальной работы ЦНС и мышечной массы, железо полезно для крови, медь – для печени.

Нахождение металлических соединений

Большинство элементов располагается под верхним слоем грунта повсеместно. Самый распространенный металл в земной коре – это алюминий. Его процентное содержание варьируется в пределах 8,2 %. Найти самый распространенный металл в земной коре несложно, так как он встречается в виде руд.

Железо и кальций в природе встречают чуть реже. Их процентное содержание равно 4,1 %. Далее идут магний и натрий – по 2,3 %, калий – 2,1 %. Остальные металлы в природе занимают не более 0,6 %. Примечательно, что магний и натрий в равной степени можно добывать как в земле, так и в морской воде.

Металлические элементы в природе встречаются в виде руд или в самородном состоянии, как медь или золото. Есть вещества, которые нужно получать из оксидов и сульфидов, например, гематит, каолин, магнетит, галенит и пр.

Производство металлов

Процедура добычи элементов сводится к извлечению полезных ископаемых. Нахождение металлов в природе в виде руд является самым простым и распространенным процессом в широкой промышленности. Для поиска кристаллических залежей используется специальное геологическое оборудование, анализирующее состав веществ на конкретном участке земли. Реже нахождение металлов в природе сводится к банальному открыто-подземному методу.

После добычи наступает этап обогащения, когда из исходного минерала выделяется рудный концентрат. Для отличия элементов используют смачивание, электрический ток, химические реакции, термообработку. Чаще всего выделение металлический руды происходит в результате плавления, то есть разогрева с восстановлением.

Добыча алюминия

Данным процессом занимается цветная металлургия. По масштабам потребления и производства она является лидером среди прочих отраслей тяжелой промышленности. Самый распространенный металл в земной коре очень востребован в современном мире. По объему производства алюминий уступает только стали.

Больше всего данный элемент используется в авиационной, автомобильной и электротехнической промышленности. Примечательно, что самый распространенный металл в земной коре можно получить и «искусственным» путем. Для такой химической реакции потребуются бокситы. Из них формируется глинозем. При соединении этого вещества с угольными электродами и фтористой солью под действием электрического тока можно получить чистейшую алюминиевую руду.

Страной-лидером среди производителей данного компонента является Китай. В год там выплавляется до 18,5 млн тонн металла. Компанией-лидером в аналогичном рейтинге по добыче алюминия является российско-швейцарское объединение UC RUSAL.

Применение металлов

Все элементы группы отличаются прочностью, непроницаемостью и относительной устойчивостью к температурному воздействию. Именно поэтому металлы столь распространены в повседневной жизни. Сегодня из них делают электрические провода, резисторы, технику, предметы обихода.

Металлы являются идеальным конструкционными и инструментальными материалами. В строительстве используют чистые и комбинированные сплавы. В машиностроении и авиации главными соединениями являются сталь и более твердые связи.

Самый распространенный металл в мир

Наша земля полна самыми разнообразными металлами и материалами. Существуют крайне-редкие из них, о них говорится много, и часто. А вот о самых распространенных металлах приходится слышать далеко не часто. Но, люди спросят, а ведь самих по себе металлов не так много, как можно подумать, но, на самом же деле, металлы входят в счет большого количества минералов, причем достаточно большое их количество находятся там в виде сплавов.

Россия и металлы

Если взять российское производство, то металло-добывающая промышленность, которая, в большинстве своем строится на добыче 3 основных активных металлов железа, марганца и хрома, стоит на 2 месте после газодобывающей промышленности, а также добычи топлива.

Мировое распространение

Самый распространенный металл земной коры – это алюминий. Он был открыт ещё в 1825 году. Во всей коре он содержится в 8,8 процента из общего состава. Этот металл, помимо того, что он является одним из самых распространенных во всем мире, считается ещё и наиболее часто используемым. Производство техники не обходится без него, а это, как можно понять, солидная доля от общего мирового производства всего и вся.

Что же касается самого распространенного металла в природе, то на это звание претендует всё тот же алюминий. Следующим в списке стоит классическое железо 4,1 % от общей массы металлов. Железо не редко используют в составе смесей, так называемых металлических сплавов. Далее следует кальций, его доля составляет всё те же 4.1 процента. Самое минимальное содержание приходится на долю титана. Он содержится в земной коре всего лишь в 0,56 % от общей массы. Данный металл является самым прочным из всех известных науке, а если учесть, что он является самым редким, то не трудно предположить, что он чрезвычайно ценен.

Драгметаллы

Существует ещё один список самых распространенных металлов в мире, на этот раз по версии ценности в ювелирных изделиях. На первом месте в данном списке стоит малоизвестный металл под названием родий. Он очень ценится в промышленности автомобилей, так как он очень стоек к плавлению, не подвергается химическим воздействиям и ржавчине. На втором месте стоит очень популярная платина. Ювелирные изделия из этого металла стоят очень и очень дорого, и не редко они поставляются именно в виде чистого металла, без украшения драгоценными камнями. Третье место, по праву, занимает всем известное золото.

Для простых обывателей, по мимо серебра, имеет самую высокую ценность. Это единственный из всех элементов, который обладает не серебристым цветом, а желтым, то есть, золотым. Все они имеются в гораздо меньшем количестве, нежели простые металлы, по этому на них не действует стандартная классификация распространенности.

Стекло, которое по силе и прочности не уступает стали? Новый вид стрессоустойчивого металлического стекла, был разработан и протестирован Национальной Лаборатории в Беркли Департамента Энергетики США совместно с Калифорнийским Технологическим Институтом

 

У человечества множество проблем, которые портят жизнь тому же самому человечеству, и при этом наносят вред экономике. Долгое время именно разрушение металлов была главной проблемой для многих отраслей промышленности. Конечно человечество постепенно сумело защититься от вредного действия коррозии, когда металлические изделия стремительно разрушались. Были придуманы различные гальванические покрытия, которые методом электролиза наносились

 

Инженеры создали комплементарный металл оксидный полупроводниковый микрочип, который питает молекулу АТФ, являющуюся универсальным источником энергии для большинства биохимических процессов. В интервью журналистам, ученые сообщили: данный подход – новое слово в создании «живых» электроприборов, несмотря на то, что изначально биологическая система конфликтует с бытовой электроникой. В компьютерных системах носители информации

Самые интересные металлы / Хабр


Кто не слушает металл — тому бог ума не дал!

— Народное творчество

Привет, %username%.

gjf снова на связи. Сегодня буду совсем краток, потому что через шесть часов вставать и ехать.

А рассказать я сегодня хочу о металле. Но не о том, который музыка, — о том мы можем поговорить как-нибудь за кружечкой пива, а не на Хабре. И даже не о металле — а о металлах! И рассказать я хочу о тех металлах, которые меня в жизни так или иначе поразили своими свойствами.

Поскольку все участники хит-парада отличаются какими-то своими суперспособностями, то мест и победителей не будет. Будет — металлическая десятка! Так что порядковый номер ничего не означает.

Поехали.

1. Ртуть

Ртуть — самый жидкий металл: температура её плавления составляет -39 °C. О том, что она токсична — и даже очень — я уже писал, а потому повторяться не буду.

С древних времён на ртуть разве что не молились — ещё бы, «жидкое серебро»! Алхимики считали, что именно во ртути где-то прячется знаменитый философский камень, например Джабир ибн Хайян считал, что раз ртуть — это жидкий металл, то она — «абсолютна»: она свободна от любых примесей, присущих твёрдым металлам. Сера — другой предмет восхищения Хайяна — элемент огня, он способен давать чистое «абсолютное» пламя, а потому все остальные металлы (а поскольку это был VIII век — их было негусто: семь) образованы из ртути и серы.

Что в VIII веке, что сейчас — если смешать ртуть и серу, то получится чёрный сульфид ртути (и это, кстати, один из способов дезактивации пролитой ртути) — но уж никак не металл. Эту досадную неудачу Хайян объяснял тем, что все тупые не хватает некоего «созревателя», который из чёрной ерунды приведёт к получению металла. И конечно все бросились искать «созреватель», чтобы получить золото. История поиска философского камня официально объявлена открытой.

%username%, ты вот сейчас смеёшься над алхимиками — но ведь они-таки добились своего! В 1947 году американскими физиками при бета-распаде изотопа Hg-197 получен единственный устойчивый изотоп золота Au-197. Из 100 мг ртути добыли целых 35 мкг золота — и они сейчас красуются в Чикагском музее науки и промышленности. Так что алхимики были правы — ведь можно! Только, блин, дорого…

Кстати, единственным алхимиком, который не верил в возможность получения золота из других металлов был Абу Али Хусейн ибн Абдуллах ибн аль-Хасан ибн Али ибн Сина — а для тёмных неверных — просто Авиценна.

Между прочим, со ртутью по своему виду очень соперничает другой металл — галлий. Его температура плавления 29 °C, в школе мне показывали эффектный фокус: на руку кладётся кусок какого-то металла…

.. и вот что получается

Кстати, галлий сейчас можно купить на алике, чтобы показывать такой фокус. Не знаю, правда, проедет ли он таможню.2. Титан

Суровый титан — это тебе не ртутные сопли! Это — самый твёрдый металл! Ну в моём детстве и юношестве титаном писали на всех этих стёклах в общественном транспорте. Потому что царапал — и мелкой металлической пылью окрашивал.

Все знают, что титан благодаря твёрдости и лёгкости используют в авиации. Расскажу о некоторых интересных применениях.

Будучи нагретым, титан начинает поглощать разные газы — кислород, хлор и даже азот. Это используют в установках очистки инертных газов (аргона, например) — его продувают через трубки, заполненные титановой губкой и нагретые до 500-600 °C. Кстати, при этой температуре титановая губка взаимодействует с водой — кислород поглощается, водород отдаётся, но обычно водород в инертных газах никого не беспокоит, в отличие от воды.

Белый диоксид титана TiO2 используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Пищевая добавка E171. Кстати, при производстве диоксида титана обязательно контролируют его элементный состав — но вовсе не для того, чтобы снизить примеси, а чтобы добавить «белизны»: нужно, чтобы окрашивающих элементов — железа, хрома, меди и т.д. — было поменьше.

Карбид титана, диборид титана, карбонитрид титана — конкуренты карбида вольфрама по твёрдости. Недостаток — они его легче.

Нитрид титана применяется для покрытия инструментов, куполов церквей и при производстве бижутерии, так как имеет цвет, похожий на золото. Все эти «медицинские сплавы», похожие на золото — это покрытие нитридом титана.

Кстати, упорные учёные недавно сделали всё-таки сплав, который твёрже титана! Только чтобы этого добиться — пришлось смешать палладий, кремний, фосфор, германий и серебро. Штука получилась недешёвая, а потому опять победил титан.

3. Вольфрам

Вольфрам — тоже противоположность ртути: самый тугоплавкий металл с температурой плавления 3422 °C. Он известен ещё с XVI века, правда, известен не сам металл, а минерал вольфрамит, в котором содержится вольфрам. Кстати, название Wolf Rahm на языке суровых немцев означает «волчьи сливки»: немцы, которые плавили олово, очень не любили примеси вольфрамита, который мешал плавке, переводя олово в пену шлаков («пожирал олово как волк овцу»). Сам металл уже выделили позже, примерно через 200 лет.

То, что на фото — не вольфрам на самом деле, а карбид вольфрама, так что если у тебя на руке такое кольцо, %username%, то не сильно задавайся. Карбид вольфрама — тяжёлое и крайне твёрдое соединение — а потому используется во всяких деталях, которыми бьют, кстати «победит» — это 90% карбида вольфрама. А ещё карбид вольфрама добрые люди добавляют в качестве наконечника бронебойных снарядов и пуль. Но не только его, позже расскажу про другой металл.

Кстати, хоть вольфрам и тяжёлый — но несмотря на бо́льшую плотность по сравнению с традиционным и более дешёвым свинцом, радиационная защита из вольфрама оказывается менее тяжёлой при равных защитных свойствах или более эффективной при равном весе. Из-за тугоплавкости и твёрдости вольфрама, затрудняющих его обработку, в таких случаях используются более пластичные сплавы вольфрама с добавлением других металлов либо взвесь порошкообразного вольфрама (или его соединений) в полимерной основе. Выходит легче, эффективнее — но только дороже. Так что в случае фолаута, %username%, бери себе вольфрамовую броню!

Кстати, на своём «вечном кольце» я умудрился какой-то химией поставить пятно — и даже не знаю, чем. Так что «вечное» оно только у обычных людей )))

4. Уран

Единственный природный металл, который используют, как топливо, и при этом используется без остатка, буквально на атомном уровне.

Когда я был ещё школьником, но был вхож в университет (не скажу почему!), то меня всегда смешила реакция иностранных студентов, когда им в микроскоп показывали кристаллы уранил-ацетата натрия. Ну есть такая качественная реакция. Когда иностранцам говорили слово «уранил» — их сдувало с этажа. Все смеялись.

Мне смешно и грустно, что теперь и большая часть наших людей тоже считают, что уран- страшен, опасен и ужасен. Падение образования налицо.

На самом деле ещё в древнейшие времена природная окись урана использовалась для изготовления жёлтой посуды. Так, возле Неаполя найден осколок жёлтого стекла, содержащий 1 % оксида урана и датируемый 79 годом н. э. Он не светится в темноте и не фонит. Я был в Жёлтых Водах на Украине, где добывают урановый концентрат. Никто там не светится и не фонит. А разгадка проста: природный уран слаборадиоактивен — не более, чем граниты и базальты, а также терриконы и метрополитен. Тот уран, который УРАН — это изотоп U-235, которого в природе всего 0,7204%. Его так мало, что для ядерщиков нужно выделять и концентрировать этот изотоп («обогащать») — так просто работать реактор не будет.

Кстати, раньше в природе U-235 было больше — просто со временем он распался. И поскольку его было больше — ядерный реактор сделать можно было прямо на коленке. В прямом смысле. Так и произошло в Габоне на месторождении Окло примерно 2 миллиарда лет назад: через руду бежала вода, вода — естественный замедлитель нейтронов, которые вылетают при распаде урана-235 — в итоге энергии нейтронов было как раз столько, сколько нужно для захвата ядром урана-235 — и пошла-поехала цепная реакция. И уранчик горел себе несколько сотен лет, пока не выгорел…

Обнаружили это значительно позже, в 1972 году, когда на урановой обогатительной фабрике в Пьерлате (Франция) во время анализа урана из Окло было найдено отклонение от нормы изотопного состава урана. Содержание изотопа U-235 составило 0,717% вместо обычных 0,720%. Уран — не колбаса, тут недовес строго карается: все ядерные объекты подвергаются жёсткому контролю с целью недопущения незаконного использования расщепляющихся материалов в военных целях. А потому учёные стали исследовать, нашли ещё пару элементов, типа неодима и рутения, и поняли — U-235 украли до нас просто выгорел, как в реакторе. То есть ядерный реактор природа изобрела задолго до нас. Впрочем, как и всё.

Обеднённый уран (это когда 235-й забрали и отдали атомщикам, а остался U-238) — тяжёлый и твёрдый, напоминает чем-то по свойствам вольфрам, а потому — точно так же используется там, где надо бить. Об этом есть история из бывшей Югославии: там использовали бронебойные снаряды с бойком, содержащим уран. Проблемы у населения были, но вовсе не из-за радиации: мелкая урановая пыль попадала в лёгкие, усваивалась — и давала плоды: уран токсичен для почек. Вот так-то — и нечего бояться уранил-ацетата! Правда, законам РФ это не указ — а потому вечные проблемы с заездом химических реактивов, содержащих уран — потому как для чиновника уран бывает только один.

А ещё есть урановое стекло: небольшая добавка урана придаёт красивую жёлто-зелёную флуоресценцию.

И это, блин, красиво!


Кстати, очень полезно предложить гостям яблоки или салатик, а потом включить немножко ультрафиолета и показать, как красиво. Когда все закончат восторгаться — небрежно так бросить: «Ну да, ещё бы, это же урановое стекло...» И откусить кусочек яблочка с вазы…5. Осмий

Ну раз уж поговорили о тяжёлых уранах-вольфрамах, то настало время назвать самый тяжёлый металл вообще — это осмий. Его плотность составляет 22,62 г/см3!

Однако осмию, будучи самым тяжёлым, ничего не мешает быть ещё и летучим: на воздухе он постепенно окисляется до OsO4, который летучий — и кстати, очень ядовитый. Да — это элемент платиновой группы, но он вполне себе окисляется. Название «осмий» происходит от древнегреческого ὀσμή — «запах» — именно благодаря этому: химические реакции растворения щелочного сплава осмиридия (нерастворимого остатка платины в царской водке) в воде или кислоте сопровождаются выделением неприятного, стойкого запаха OsO4, раздражающего горло, похожего на запах хлора или гнилой редьки. Этот запах почувствовал Смитсон Теннант (о нём позже), работавший с осмиридием — и так и назвал металл. И знаю я, что осмий должен быть в порошке и его нужно греть, чтобы процесс пошёл интенсивно — но в любом случае я не стремлюсь долго находиться рядом с этим металлом.

Кстати, есть ещё такой изотоп Os-187. В природе его очень мало, а потому из осмия его выделяют на центрифугах путем масс-сепарации — прямо как уран. Разделения ждут 9 месяцев — да-да, вполне уже можно родить. А потому Os-187 — один из самых дорогих металлов, именно его содержание обуславливает рыночную цену природного осмия. Но он не самый дорогой, о самом расскажу ниже.

6. Иридий

Раз уж заговорили о платиновой группе, то стоит ещё вспомнить об иридии. Осмий отнял у иридия звание самого тяжёлого металла — но разошлись в копейках: плотность иридия 22,53 г/см3. Осмий с иридием даже открыты были вместе в 1803 году английским химиком С. Теннантом — оба в качестве примесей присутствовали в природной платине, доставленной из Южной Америки. Теннант был первым среди нескольких учёных, кому удалось получить в достаточном количестве нерастворимый остаток после воздействия на платину царской водки и определить в нём ранее неизвестные металлы.

Но в отличие от осмия, иридий — самый, блин, стойкий металл: в виде слитка он не растворяется ни в каких кислотах и их смесях! Вообще! Даже грозный фтор берёт его только при 400-450 °C. Чтобы всё-таки растворить иридий, приходится его сплавлять с щелочами — да ещё желательно в токе кислорода.

Механическая и химическая прочность иридия используется в Палате мер и весов — из платиноиридиевого сплава изготовлен эталон килограмма.

В настоящий момент иридий не является банковским металлом, но и в этом уже есть сдвиги: в 2013 году иридий впервые в мире был применён в изготовлении официальных монет Национальным банком Руанды, который выпустил монету из чистого металла 999-й пробы. Иридиевая монета была выпущена номиналом 10 руандийских франков. И чёрт — я бы хотел такую монету!

Кстати, я в глубокой молодости в «Юном технике» как-то прочитал какой-то фантастический рассказ, когда паренёк к успеху шёл смог наменять песок на иридий по курсу 1:1 с какими-то там инопланетянами в подвале. Ну им видите ли кремний был нужен! Название и автора рассказа уже и не вспомню. спасибо Wesha — напомнил: В.Шибаев. Кабель «оттуда».

7. ЗолотоДа ну его — все видели


В жизни часто бывает, что есть чемпион фактический и формальный. Если иридий — фактический чемпион по химической стойкости, то золото — формальный: это самый электроотрицательный металл, 2,54 по шкале Полинга. Но это не мешает золоту растворяться в смесях кислот, так что как обычно — лавры достались тому, кто побогаче.

И действительно, в настоящий момент, благодаря тому, что Китай и РФ уходят от политики накопления золотовалютного запаса в долларах США к политике накопления собственно золота, золото — самый дорогой банковский металл: по цене он давно обогнал платину — да и вообще всю платиновую группу. Так что храни деньги в сберегательной кассе золоте, %username%!

Поскольку алхимический способ добычи золота показал свою дороговизну, получают этот металл на аффинажных заводах. А монетки делают уже на монетных дворах. Так вот, как человек, побывавший и там и там, могу сказать: работники подобных предприятий при посещении зоны, где есть драгметалл, либо переодеваются — и на рабочей одежде нет ни единой булавки или скрепки — рамки на проходной совсем не такие, как в аэропортах, там всё жёстче. Или действует так называемый «голый режим» — да-да, ты понял правильно: проходная для мальчиков и проходная для девочек — оденетесь уже внутри. Если у тебя имплант из металла — куча справок, куча разрешений, каждый раз индивидуально проверяют, что имплант на месте, где должен быть.

Кстати, а как ты думаешь — как организованы проходные на банкнотном дворе? Бумажки же не звенят на рамках!

Ответ тут, но подумай чуток сам

После работы не выпускают никого, включая руководство, пока не посчитают всю продукцию. Да — всё строго. Зато никто не против, когда в трудные времена зарплату выдавали продукцией.


8. Литий

В отличие от тяжёлых осмиев-иридиев литий — самый лёгкий металл, его плотность всего 0,534 г/см3. Это — щелочной металл, но самый неактивный из всей группы: в воде не взрывается, а спокойно взаимодействует, на воздухе тоже не сильно окисляется, да и поджечь его непросто: после 100 °C так хорошо покрывается оксидом, что дальше и не окисляется. Поэтому литий — единственный щелочной металл, который не хранят в керосине — зачем, если он достаточно инертный? И это к счастью — из-за своей низкой плотности литий бы в керосине плавал.

Природный литий состоит из двух изотопов: Li-6 и Li-7. Поскольку сам атом так мал, то лишний нейтрон значимо влияет на радиус орбитали и энергию возбуждения электрона, а потому обычный атомный спектр этих двух изотопов отличается — следовательно, возможно определять их даже без всяких масс-спектрометров — и это единственное исключение в природе! Оба изотопа очень важны в ядерной энергетике, кстати, дейтерид Li-6 используется как термоядерный порох в термоядерном оружии — и больше я не скажу ни слова на эту тему!

Литий также используют психиатры в качестве нормометика для лечения и профилактики маний. Когда я студентом подрабатывал на кафедре, к нам приходила тётенька с плазмой крови, в которой надо было определять литий. С какого-то раза я взял и полез в литературу (интернета ещё не было), чтобы понять, зачем там вообще литий определять? И узнал… Со следующего визита я так невзначай спросил тётю, а чья кровь вообще была? Когда она ответила, что её, я больше старался с ней лично не встречаться.

Ну то так — литий и литий, он даже в воде иногда определяется. Кстати, во Львове в воде его довольно много.

Да и кстати — с ростом популярности электромобилей, портативных девайсов и всего, что работает на литий-содержащих аккумуляторах, есть мнение, что цена на литий довольно быстро вырастет. Так что может деньги лучше хранить не в золоте, а в литии. Но это неточно, особенно после того, как на рынок лития вышла ещё и Австралия.

9. Франций

У франция целый набор титулов. Ну во-первых, франций — самый редкий металл. Всё его содержание — полностью радиогенное: он существует как промежуточный продукт распада урана-235 и тория-232. Общее содержание франция в земной коре оценивается в 340 граммов. Так что пятно на картинке выше — это не фото чёрной дыры в анфас, а около 200 000 атомов франция в магнитно-оптической ловушке. Все изотопы франция радиоактивны, самый долгоживущий из изотопов — Fr-223 — имеет период полураспада 22,3 минуты. Потому франция так и мало.

Тем не менее, франций имеет самую низкую электроотрицательность из всех элементов, известных в настоящее время, — 0,7 по шкале Полинга. Соответственно, франций является и самым химически активным щелочным металлом и образует самую сильную щёлочь — гидроксид франция FrOH. И не спрашивай, %username%, как это всё определяли с элементом, которого пшик — да маленько, и которого каждые 22,3 минуты становится ещё в два раза меньше, а исследователь светится сам всё ярче. А потому всё это интересно и занимательно, но франций практически нигде не используется.

10. Калифорний/>

Калифорния в этом мире нет совсем, а производят его в двух местах: Димитровграде в РФ и Окриджской национальной лаборатории в США. Для производства одного грамма калифорния плутоний или кюрий подвергают длительному нейтронному облучению в ядерном реакторе — от 8 месяцев до 1,5 лет. Вся линейка распадов выглядит следующим образом: Плутоний-Америций-Кюрий-Берклий-Калифорний. Калифорний-252 является конечным результатом цепочки — этот элемент невозможно превратить в более тяжелый изотоп, так как его ядро как бы говорит «спасибо, наелось» слабо откликается на воздействие нейтронами.

На пути преобразования плутония в калифорний из 100% ядер распадается 99,7%. Лишь 0,3% ядер удерживается от распада и проходит до конца весь этап. А ещё продукт нужно выделить! Выделение изотопа происходит методом экстракции, экстракционной хроматографии либо вследствие ионного обмена. Чтобы придать ему металлический вид, производится восстановительная реакция.

На получение одного грамма калифорния-252 затрачивается 10 килограммов плутония-239.

Ежегодное количество добываемого калифорния-252 составляет 40-80 микрограмм, а по оценкам специалистов мировой запас калифорния составляет не более 8 граммов. Поэтому калифорний, а точнее — калифорний-252 – самый дорогой в мире промышленный металл, стоимость его одного грамма в разные годы варьировала от 6,5 до 27 миллионов долларов.

Логичный вопрос: а кому он вообще нужен? Цепь из него на шею не сделаешь, любимой в виде кольца не подаришь. Дело в том, что Cf-252 имеет высокий коэффициент размножения нейтронов (выше 3). Грамм Cf-252 испускает около 3⋅1012 нейтронов в секунду. Да, потенциально можно сделать атомную бомбу, но из урана и того же плутония дешевле, поэтому сам калифорний используется как источник нейтронов в различных исследованиях, в том числе в промышленных поточных нейтронно-активационных анализаторах на конвейерной ленте. Кстати, %username%, я лично видел этот калифорний в виде маленькой ампулки, которую вытащили из здоровенной бочки радиационной защиты и быстренько засунули в нужное место анализатора.

Понятно, что за такие деньги калифорний просто обязан быть ядом, пусть и не таким крутым, как полоний, который лупит альфа-частицами, но нейтроны — тоже ничего. Но выходит дороговато, конечно.

Ну вроде всё — осталось поспать примерно четыре часа перед дорогой. Надеюсь, что вышло интересно, и я всё это корябал не зря.

Желаю тебе, %username%, быть твёрдым, как титан, лёгким на подъём, как литий, непреклонным, как иридий и ценным, как калифорний! Ну и побольше золота в кармане, само собой.
(можешь блеснуть этим тостом на следующем празднике — не благодари)

P.S. Поскольку с титаном к твёрдости придрались (почему-то больше ни к чему не придрались???) — достану туз из рукава.

11. Радий

Радий — это металл обмана и разочарования. И я поясню. Сам металл довольно редок и полностью радиогенен — возникает при распаде урана-238, урана-235 или тория-232; из четырёх найденных в природе наиболее распространённым и долгоживущим изотопом (период полураспада 1602 года) является радий-226, входящий в радиоактивный ряд урана-238. За время, прошедшее с момента его открытия супругами Кюри, — более столетия — во всём мире удалось добыть всего только 1,5 кг чистого радия. Одна тонна урановой смолки, из которой супруги Кюри получили радий, содержала лишь около 0,1 г радия-226.

Радий в буквальном смысле слова испаряется: все изотопы радия (за исключением радия-228) распадаются до газа радона — кстати, тоже радиоактивного. Тип распада — α, однако гамма-кванты тоже выделяются.

Мария Кюри трудилась 12 лет, чтобы получить крупинку чистого радия. Чтобы получить всего 1 г чистого радия, нужно было несколько вагонов урановой руды, 100 вагонов угля, 100 цистерн воды и 5 вагонов разных химических веществ. Поэтому на начало XX века в мире не было более дорогого металла. За 1 г радия нужно было заплатить больше 200 кг золота.

А ещё этот металл красиво светится в темноте.

Понятно, что при таком наборе свойств и цене только ленивый не стал добавлять радий в свою продукцию и рассказывать, как она чудодейственна. Появилась масса «докторов», докторами не являющихся (и что мне это напоминает) — тот же Вилльям Дж. А. Бейли. Во Франции 1930-х изготовители наиболее популярных кремов для лица, «ThoRadia», похвалялись обогащением своих мазей торием и радием. В Германии производили зубную пасту с радием. Видимо именно оттуда возникло выражение «Ваше лицо сияет» и «Ваши зубы ослепительны». Ну не знаю.

Имелись содержащие радий крекеры, а добавление бромида радия к шоколаду было запатентовано в Германии в 1936 г. Шоколадки и крекеры можно было запить радиоактивной минеральной водой. Эта вода продавалась по высоким ценам, а в рекламах гордо именовалась как «имеющая высокое содержание радиоактивных элементов». Наиболее известным брендом такой минералки был Radithor в 60-ти мл бутылках, содержащих по 2 микрокюри радия (именно его всем предлагал уже упомянутый «доктор» Бейли якобы как стимулятор эндокринной системы).

Примеры суперпродукции


Радий — щелочноземельный металл, а значит по химизму очень сходен с кальцием и магнием. И очень неплохо заменяет их в костях — а оттуда начинает прямой наводкой бомбардировать костный мозг, лёгкие и прочие нежные органы. Немного утешает то, что доступна радиевая продукция была только действительно богатым людям…

11 апреля 1932 года журнал Time сообщил, что известный богач, спортсмен и светский лев, любитель гольфа и водички Radithor (после того как повредил руку в 1927 году) Эбен Байер умер от отравления радием.

Статья Time

В 1965 его тело было эксгумировано. Обнаружено, что Байер суммарно принял порядка 500 микрокюри радия. Неудивительно, что причина смерти — множественные новообразования, абсцессы в мозгу и в прямом смысле слова дыры в черепе — проще говоря, рак.

Если ты думаешь, %username%, что это кого-то чему-то научило — то ошибаешься: вплоть до 1970-х радий вместе с люминофором — обычно, сульфидом цинка — наносили на стрелки различных приборов, в том числе часов. Это называлось «светомасса постоянного действия» — или СПД. В СССР СПД обычно была горчично-жёлтая, а в Америке — зеленовато-белая или голубоватая.

Некоторые примеры

Так вот, СПД со временем начинается иссыхаться и превращаться в пыль, ты эту пыль вдыхаешь — и куда попадает радий? Правильно! Пять! В смысле — пять лет жизни тебе осталось. Наверное. Ну в любом случае — немного.

Кстати, даже есть группа в ВК, где выкладывают фото с СПД.

Кстати, с именем радий исторически связаны и другие изотопы, никакого отношения к радию не имеющие. А именно:
Радий A 218Po
Радий B 214Pb
Радий C 214Bi
Радий C1214Po
Радий C2210Tl
Радий D 210Pb
Радий E 210Bi
Радий F 210Po

На самом деле эти изотопы были открыты как продукты в цепочке дальнейшего распада радия, но до их идентификации как элементов — их называли радием А, В и так далее. Ну а потом имена прижились.

Вот так вот бывает, когда ты к элементу со всей душой — а он тебе… Жизнь — боль.

Я оправдался за титан? ;)

Какие металлы самые твердые в мире?

Металл - это род металлов, который описывает ряд различных материалов, которые обычно являются блестящими, электрически и теплопроводными и, прежде всего, твердыми. Металлы чрезвычайно разнообразны. Фактически, более 75 процентов из 118 элементов таблицы Менделеева сделаны из металлов. Поэтому, естественно, у многих возникает вопрос: «Какие металлы самые твердые в мире?» В этой статье мы рассмотрим множество различных видов металлов, независимо от того, являются ли они элементами, соединениями или сплавами, чтобы узнать, какие металлы самые прочные и самые твердые.В нашем списке используется шкала Бринелля, которая измеряет твердость материалов при вдавливании. Важно отметить, что редко бывает одно единое значение для одного металла, поскольку они имеют тенденцию меняться в зависимости от того, из каких сплавов и соединений они состоят.

1. Вольфрам (1960–2450 МПа)

Вольфрам - один из самых твердых металлов, встречающихся в природе. Также известный как Вольфрам, этот редкий химический элемент имеет высокую плотность (19,25 г / см3), а также высокую температуру плавления (3422 ° C / 6192 ° F).С вольфрамом в его редкой форме трудно работать из-за его хрупкости, которая может измениться, когда станет чистым. Вольфрам часто используется для создания твердых сплавов, таких как быстрорежущая сталь, для повышения защиты от истирания, а также для улучшения электропроводности.

2. Иридий (1670 МПа)

Как и вольфрам, иридий представляет собой химический элемент, обладающий признаками высокой плотности и устойчивостью к высоким температурам. Иридий относится к металлам платиновой группы и по внешнему виду напоминает платину.Однако с иридием сложно работать. Поскольку иридий очень твердый, он также довольно хрупкий, что усугубляется его очень высокой температурой плавления, превышающей 2000 ° C. Иридий считается одним из самых редких элементов на поверхности Земли, а также одним из самых устойчивых к коррозии элементов.

3. Сталь

Сталь - это легированный металл, состоящий из железа и других элементов, например углерода. Это наиболее используемый материал в строительстве, машиностроении и других отраслях промышленности. Из-за множества вариантов и уровней качества стали, которые могут применяться, не существует единого значения твердости.Существует множество различных методов закалки стали для улучшения защиты стали от износа, термостойкости и защиты от истирания. Borocoat, например, оптимизирует твердость стали, не делая ее хрупкой. Узнайте больше о борировании и Borocoat.

4. Осмий (3920–4000 МПа)

Осмий относится к металлам платиновой группы и обладает высокой плотностью. Фактически, это самый плотный природный элемент на Земле - 22,59 г / см3. По этой же причине осмий не плавится до 3033 ° C, температуры, которая затрудняет работу с металлом.Когда он легирован другими металлами платиновой группы (такими как иридий, платина и палладий), его можно использовать во многих различных областях, где необходимы твердость и долговечность.

5. Хром (687-6500 МПа)

Хром - элемент, часто встречающийся в сплавах, таких как нержавеющая сталь. По шкале Мооса, которая измеряет устойчивость к царапинам, он находится среди лучших. Хром ценится как за высокую коррозионную стойкость, так и за твердость. Поскольку с ним легче обращаться, а также он более распространен, чем металлы платиновой группы, хром является популярным элементом, используемым в сплавах.

6. Титан (от 716 до 2770 МПа)

Титан известен своей прочностью. Хотя по твердости по Бринеллю он не совсем сравнивается с другими металлами из этого списка, титан имеет впечатляющее соотношение прочности и веса. Даже в чистом виде титан тверже многих стальных форм. Как тугоплавкий металл, он обладает высокой устойчивостью к нагреванию и истиранию, поэтому титан является популярным сплавом. Его можно легировать, например, железом и углеродом.

.

языковых семей мира

Автор Amber Pariona 9 июля 2018 года в Обществе

Во всем мире было идентифицировано как минимум 135 языковых семей, каждая из которых принадлежит к разным языковым семьям.

Термин «языковая семья» используется для описания ряда родственных языков, которые, как считается, имеют одного общего предка или протоязыка.Лингвисты называют каждого потомка одной языковой семьи дочерним языком, и все носители языковой семьи являются частью общего речевого сообщества. Лингвисты идентифицировали по крайней мере 135 живых языковых семей и еще 12, которые в настоящее время вымерли. В этой статье исследуется, какая из этих живых языковых семей имеет наибольшее общее речевое сообщество или количество носителей.

крупнейших языковых семей по количеству говорящих

1.Индоевропейцы - 2,910 миллиарда

Индоевропейская языковая семья - самая большая в мире. Он состоит из 437 дочерних языков и насчитывает 2,91 миллиарда носителей в Европе и Азии. Это количество говорящих составляет почти половину всего населения мира. широко используются многие языки индоевропейской семьи, включая английский, испанский, французский, немецкий, русский, пенджаби, бенгали и хиндустани. Все эти современные языки происходят от протоиндоевропейских языков, возникших в эпоху неолита.По мере того как человеческое население рассредоточивалось по региону, расстояния и географические барьеры создавали изолированные очаги цивилизаций. Со временем сформировались новые языки и диалекты. Некоторые из наиболее важных из этих ранних языков включают латынь, микенский греческий и ведический санскрит.

2. Китайско-тибетские языки - 1,268 миллиарда

Сино-тибетская языковая семья - вторая по численности в мире.Он состоит из 453 дочерних языков и насчитывает около 1,268 миллиарда носителей по всей Азии. На некоторых из этих языков говорит лишь небольшое население, живущее в отдаленных районах. Эта изоляция означает, что лингвисты не смогли полностью исследовать и задокументировать эти языки. Из дочерних китайско-тибетских языков наиболее распространены тибетский, бирманский и китайский. Из них на китайском языке и на всех его вариантах и ​​диалектах говорят 1,3 миллиарда человек - больше, чем на любом другом языке в мире.Все современные сино-тибетские языки произошли от прото-сино-тибетского языка.

3. Языки Нигерии и Конго - 437 миллионов

Третья по величине языковая семья в мире и самая большая в Африке - это Нигер-Конго. Он состоит из 1524 дочерних языков и насчитывает около 437 миллионов говорящих по всей Африке.Эта языковая семья делится на 6 подгрупп: катла, атлантическое конго, иджо, догоны, манде и рашад. Из языков Нигерии и Конго наиболее широко используется суахили: от 2 до 15 миллионов носителей языка и от 50 до 100 миллионов носителей второго языка. Это официальный язык Кении, Танзании и Демократической Республики Конго. На других языках, однако, больше носителей языка, включая игбо, шона, йоруба и фула.

4.Австронезийские языки - 386 миллионов

Австронезийская языковая семья занимает четвертое место в мире по количеству говорящих. Он состоит из 1224 дочерних языков и насчитывает около 386 миллионов говорящих в Океании, Приморской Юго-Восточной Азии и некоторых регионах материковой Азии. По количеству языков это вторая по величине языковая семья в мире, которая составляет 20% языков, на которых говорят сегодня в мире.Некоторые из наиболее распространенных австронезийских языков включают яванский, тагальский и малайский. Эта языковая семья когда-то занимала самую большую территорию на земле, пока ее не превзошла евро-индонезийская семья в эпоху европейской колонизации.

Языковые изоляторы

Интересно, что в мире есть избранные языки, которые не принадлежат ни к одной языковой семье.В таком случае он называется изолятором языка . Примеры языков, которые являются языковыми изоляторами, включают корейский, шумерский и эламский. Многие из языковых изолятов мира встречаются в Папуа-Новой Гвинее, которая является страной с самым разнообразным лингвистическим разнообразием. Феномен языковой изоляции также часто наблюдается в жестовых языках, поскольку многие жестовые языки естественным образом развиваются сами по себе в небольших сообществах.

языковых семей с наибольшим количеством носителей

Рейтинг Семейство языков Предполагаемое количество носителей Место происхождения
1 Индоевропейский 2,910 000 000 Азия, Европа
2 Китайско-тибетский 1,268,000,000 Азия
3 Нигер-Конго 437,000,000 Африка
4 Австронезийская Республика 386,000,000 Азия, Океания
5 Афро-азиатский 900,00048 Африка, Азия
6 Дравидийский 229 000 000 Азия
7 Тюркский 170 000 000 Азия, Европа
8 Японский 129 000 000 Азия
9 Austroasi atic 103000000 Азия
10 Kra-Dai 80800000 Азия
.

18 средневековых изобретений, изменивших мир

После падения Рима на Западе в 5 веке нашей эры созданный им вакуум власти заставил его прежние завоевания превратиться в столетия ожесточенных войн, голода, болезней и раздоров.

Тем не менее, несмотря на постоянный страх смерти, в средние века было достаточно спокойствия для больших скачков в науке и изобретениях.

Эти 18 средневековых изобретений являются яркими примерами. Некоторые из них были настолько важны, что в конечном итоге проложили путь в современный мир, в котором мы живем.

Следующий список далеко не исчерпывающий и в нем нет определенного порядка.

1. Печатный станок был революционным

Источник: Даниэль Ходовецкий / Wikimedia Commons

Печатный станок, вероятно, является самым важным изобретением Средневековья. Он вырвал контроль над распространением информации у государства и церкви и проложил путь протестантской реформации, эпохе Возрождения и Просвещению.

Хотя знаменитая пресса Иоганнеса Гуттенберга была разработана в 15 веке, ее история восходит к Китаю 3 века.Без современного мира действительно было бы совсем другое место.

2. Кофейня опередила свое время

Источник: Эким Каглар / Wikimedia Commons

Любой, кто когда-либо побывал на Ближнем Востоке, подтвердит, что кофе является огромной частью их культуры. Впервые он появился в Османской империи где-то в 15 веке и покорил весь Османский мир.

Вскоре после этого повсюду возникли кофейни, и в Европу в ранний современный период появился кофе.

3. Тяжелый плуг привел к аграрной революции

Появление тяжелого плуга в 6 веке произвело революцию в сельском хозяйстве во всем мире. Ранее конструкция отвала отвала ограничивала свою эффективность, поскольку требовалось найти компромисс между весом и способностью тянуть бегунок.

Тяжелые плуги представили колеса для замены направляющих своих предшественников, что позволило им значительно увеличиться в размерах и использовать металлические компоненты, при этом их по-прежнему могли тянуть тягловые животные.

Производство продуктов питания после этого резко увеличится, что в конечном итоге будет способствовать большей части современной истории, не говоря уже о резком изменении ландшафта.

4. Торцевой спуск / механические часы заменили песочные часы

Источник: Rauantiques / Wikimedia Commons

Развитие краевого спуска привело к созданию первых механических часов примерно в 1300 году нашей эры. К 15 веку они получили широкое распространение по всей Европе.

Их изобретение быстро бросило вызов популярности песочных часов и в конечном итоге изменило всеобщее восприятие времени.

5. Бумажные «деньги» старше, чем вы думаете.

Источник: PHGCOM / Wikimedia Commons

Первое зарегистрированное использование государственных бумажных денег было в Китае 11 века. Эта валюта заменила те, которые производились частными предприятиями того времени.

Все случаи их использования заключались в предоставлении формы простого векселя, подлежащего оплате эмитентом на предъявителя по требованию. Они были предназначены для устранения необходимости носить с собой драгоценные металлы, которые можно было легко потерять или украсть.

Марко Поло напишет о своих наблюдениях за этим нововведением по возвращении в Европу, но это не станет обычным явлением в Европе до конца 1600-х годов.

6. Песочные часы были прекрасным средством отсчета времени.

Источник: Michael Himbeault / Flickr

Песочные часы впервые появились в Европе в 8 веке нашей эры, но, похоже, стали обычным явлением в начале 14 века. Они быстро заменили старые средства измерения времени, такие как солнечные часы, и были особенно полезны в длительных морских путешествиях.

СВЯЗАННЫЕ: 15 ИЗОБРЕТЕНИЙ, КОТОРЫЕ СДЕЛАЮТ ВАШ 2019 ГОД НАМНОГО ИНТЕРЕСНОГО

К 15 веку они были обычным явлением на кораблях, в церквях и в промышленности. Они были первым надежным, многоразовым и довольно точным средством измерения времени, и их заменили только с изобретением механических часов.

7. Порох изменил мир

Источник: Mondebleu / Wikimedia Commons

Монах-францисканец Роджер Бэкон был первым европейцем, подробно описавшим в 13 веке процесс производства пороха.

Конечно, сегодня общеизвестно, что порох широко использовался в Китае с IX века, и Роджер, вероятно, получил свою формулу из китайских источников.

Многие считают, что он был завезен в Европу через монголов, но это горячо обсуждается. Однако произошла война, и мир в целом изменился навсегда.

8. Доменная печь впервые появилась в Швейцарии и Германии.

Источник: Tungsten / Wikimedia Comons

Доменные печи, возможно, возникли еще в 1 веке нашей эры в Китае, но впервые появились в Европе в 1200-х годах.Эти первые доменные печи были очень неэффективными по современным меркам.

Самые старые европейские образцы были построены в Дюрстеле и Лаппхиттане в Швейцарии и Зауэрланде в Германии. Есть также некоторые предварительные свидетельства более ранних в Ярнбоосе, Швеция, которые датируются примерно 1100 годом нашей эры.

9. Ликер был средневековой вещью

Источник: Marco Verch / Flickr

Дистилляция для производства спиртных напитков, по-видимому, берет свое начало в «Монгольском перегонном кубе», который впервые появился в 7 веке нашей эры.При этом все еще использовалась перегонка с замораживанием, при которой жидкость замораживалась и кристаллы воды удалялись.

Неизвестно, использовался ли он для производства алкоголя.

Перегонный куб в том виде, в каком мы его знаем сегодня, возможно, впервые появился в Ираке 8 или 9 веков, когда арабский алхимик Аль-Кинди использовал его для производства алкоголя. Однако это горячо обсуждается.

Позже он распространился в Европу, а именно в Италию, и впервые был описан Салерно в 12 веке. Большинство историков считают, что настоящие перегонные кубы для производства алкоголя, по-видимому, впервые появились в Европе в 13 веке.

10. Тачка была изобретена в средние века.

Источник: Public Domain / Wikimedia Commons

Тачка, хотите верьте, хотите нет, изобрели только в средние века. Хотя подобные устройства могли быть в Китае и Древней Греции, первое упоминание о них появилось в Европе 12 века.

Они быстро докажут свою ценность, но не сразу добьются успеха. Однако к 15 веку они стали обычным явлением для всего, от добычи полезных ископаемых до строительства.

11. Аркбутан - знаковое сооружение Средневековья.

Источник: Wikimedia Commons

Аркбутан - знаковая архитектурная особенность средневековья. Впервые они появились в готических церквях с 12 века и до сих пор внушают благоговение.

Эти архитектурные особенности внезапно позволили возводить здания намного выше, чем считалось возможным ранее, с более высокими потолками, более тонкими стенами и гораздо большими окнами.

Это связано с тем, что эти формы контрфорса обеспечивали гораздо большую опорную силу по сравнению с более традиционными формами.

Без этого средневекового изобретения последовавшие за ним архитектурные формы действительно выглядели бы совсем иначе.

12. Вращающееся колесо было изобретено в Индии.

Источник: Ninaras / Wikimedia Commons

Прялки возникли в Индии где-то между V и X веками нашей эры. В конечном итоге они попали в Европу позже, в средние века благодаря Шелковому пути.

Они быстро вытеснили более традиционный метод ручного прядения и были предпосылкой для более поздних инноваций, сделанных во время промышленной революции, таких как прядильная машина Jenny и прядильная машина.

Таким образом, можно утверждать, что прялка помогла заложить основы современного мира - как бы маловероятно это ни казалось на первый взгляд.

13. Приливная мельница впервые появилась в Ирландии.

Источник: Flore Allemandou / Wikimedia Commons

Водные и ветряные мельницы, как известно, использовались с древних времен, но приливные мельницы кажутся исключительно средневековой инновацией.

Недавние исследования показали, что самые ранние образцы этих мельниц датируются 6 веком нашей эры в Ирландии, но они, возможно, использовались в римском Лондоне - но это предположение.

Некоторые из них до сих пор существуют с того периода, включая мельницу с вертикальными колесами, расположенную в Килотеране недалеко от Уотерфорда, EIRE. Они даже упоминаются в знаменитой книге Судного дня 1086 года.

14. Пескоструйные рули уменьшили мир

Источник: Bernd Klabunde / Wikimedia Commons

Шкворневые рули на корме были главное новшество средневековья.До своего существования лодки и большие корабли маневрировали простыми веслами или простыми рулями.

Они оказались очень успешными и использовались до конца средневековья. Впервые они начали появляться на изображениях примерно в 12 веке.

Несмотря на это, они проявили себя, когда полностью оснащенные корабли стали обычным явлением в 14 веке и были предпосылкой для наступающей Эпохи открытий. Неожиданно у европейцев появился полезный инструмент для навигации по мировым океанам.

15. Очки все прояснили

Источник: Конрад фон Сост / Wikimedia Commons

Роджер Бэкон сделал первую окончательную ссылку на очки в 13 веке. Похоже, что они были впервые разработаны в Италии неким Алессандро ди Спина из Флоренции.

Это подтверждается проповедью, произнесенной монахом-доминиканцем по имени Джордана да Пиза в конце 13 века.

Он писал: «Не прошло и двадцати лет с тех пор, как было найдено искусство изготовления очков, обеспечивающих хорошее зрение... ».

Это изобретение значительно улучшило бы качество жизни людей с нарушениями зрения и по сей день - как засвидетельствует автор.

16. Беговые краны облегчили строительство

Источник: Ji-Elle / Wikimedia Commons

Краны с беговой дорожкой представляли собой простые деревянные подъемные и опускные устройства с приводом от человека, разработанные и широко использовавшиеся в средние века.

Их часто можно увидеть изображенными на изображениях и картинах того периода во время сборки монолитных зданий, таких как замки и соборы.

Первое исчерпывающее упоминание об одном из них, называемом Magna Roat, было в некоторой французской литературе примерно до 1225 года нашей эры. Они стали обычным явлением в портах, шахтах и, очевидно, на стройках того времени.

17. Пушка навсегда изменила войну

Источник: Antgirl / Flickr

Самые ранние пушки могут быть датированы еще Китаем 12 века, а самое раннее известное изображение - скульптура из наскальных рисунков Дазу в Сычуани, датируемая примерно 1128 годом нашей эры.

Самые старые из существующих оригинальных произведений происходят из Китая 13 века и включают знаменитую бронзовую пушку Увэй (1227 г. н.э.), ручную пушку Хэйлунцзян (1288 г. н.э.) и пушку Ксанаду (1298 г.).

Технология в конечном итоге распространилась по Европе с одним из первых зарегистрированных случаев их использования англичанами в битве при Креси против французских арбалетчиков.

Они радикально изменили бы ход войны навсегда.

18. Астролябия была одним из первых компьютеров.

Источник: Elrond / Wikimedia Commons

Астролябия были эффективно разработанными инклинометрами и, по сути, могут считаться ранними компьютерами.Они станут бесценными для астрономов и мореплавателей при определении наклонного положения по отношению к данному небесному телу днем ​​или ночью.

Более ранние образцы, кажется, действительно существовали в Александрии в 5 веке нашей эры, но они достигли своего пика изощренности в средние века. Отчасти они вдохновили более позднее развитие механических часов.

Через: Mediumists.net, listverse.com, lordsandladies.org

.

Самой большой религией в мире по численности населения остается христианство

Христиане оставались самой большой религиозной группой в мире в 2015 году, составляя почти треть (31%) от 7,3 миллиарда человек на Земле, согласно новому демографическому анализу Pew Research Center. Но отчет также показывает, что число христиан в том, что многие считают сердцем религии, на континенте Европы, сокращается.

Согласно нашим демографическим моделям, у

христиан было больше всего рождений и смертей среди всех религиозных групп за последние годы.В период с 2010 по 2015 год от матерей-христианок родилось около 223 миллионов младенцев и примерно 107 миллионов христиан умерли - это естественный прирост на 116 миллионов.

Но среди христиан в Европе верно обратное: за этот короткий период количество смертей превысило количество рождений почти на 6 миллионов. В одной только Германии в период с 2010 по 2015 год было примерно на 1,4 миллиона смертей христианских смертей, чем рождений. Это естественное уменьшение на стареющего христианского населения Европы было уникальным по сравнению с христианами в других частях мира и другими религиозными группами.Фактически, как мусульмане, так и не аффилированные лица в Европе испытали естественный прирост своей численности, согласно нашему новому отчету, в период с 2010 по 2015 год рождений было на 2 миллиона и 1 миллион больше, чем смертей соответственно.

В глобальном масштабе мусульмане составляют вторую по величине религиозную группу, насчитывающую 1,8 миллиарда человек, или 24% населения мира, за ними следуют религиозные «ноны» (16%), индуисты (15%) и буддисты (7%). Приверженцы народных религий, евреи и представители других религий составляют меньшую часть населения мира.

Мусульмане испытали наибольший естественный прирост среди всех религиозных групп, включая христиан. Число рождений у мусульман в период с 2010 по 2015 год превысило число смертей на 152 миллиона (213 миллионов рождений против 61 миллиона смертей). Во всем мире у всех основных групп было больше рождений, чем смертей.

Конечно, не все дети останутся в религии своей матери. В некоторых странах, в том числе в Соединенных Штатах, взрослые довольно часто оставляют свою детскую религию и переходят на другую веру (или не верят).Однако в глобальном масштабе эффект смены религии затмевается влиянием различий в рождаемости и смертности.

Действительно, различия в рождаемости между религиозными группами являются одним из ключевых факторов нынешних демографических тенденций и будут важны для будущего роста. В глобальном масштабе мусульмане имеют самый высокий коэффициент фертильности среди любой религиозной группы - в среднем 2,9 ребенка на женщину, что намного выше уровня воспроизводства (2,1), минимума, обычно необходимого для поддержания стабильного населения.Это преимущество фертильности - одна из причин, по которой ожидается, что мусульмане догонят христиан по абсолютному количеству и доле в мировом населении в ближайшие десятилетия. Христиане занимают второе место по уровню рождаемости - 2,6 ребенка на женщину. Индийская и еврейская фертильность (по 2,3 каждого) чуть ниже среднемирового показателя, составляющего 2,4 ребенка на женщину. У всех других основных религиозных групп уровень рождаемости слишком низок, чтобы поддерживать свое население.

Попробуйте наш электронный курс по мусульманам и исламу

Узнайте о мусульманах и исламе с помощью четырех коротких уроков, которые доставляются вам на почту через день.
Зарегистрируйтесь сейчас!

Возрастные различия также важны для будущего роста. Приверженцы некоторых религиозных групп в основном молодые, и их первые детородные годы еще впереди, в то время как члены других групп старше и в большинстве своем вышли из детородного возраста. У мусульман самый молодой средний возраст (24 года) из всех религиозных групп, что также, как ожидается, будет способствовать их быстрому росту. Индусы (27 лет) также моложе среднего возраста населения мира (30 лет), тогда как средний возраст христиан (30 лет) совпадает с глобальным медианным возрастом.Все остальные группы старше среднемирового медианного возраста, что является одной из причин, по которой ожидается, что они будут отставать от темпов роста мирового населения.

Похожие сообщения:

Христиане подвергались массовым преследованиям в 2015 году, но в основном в странах с христианским большинством

10 фактов о религии в Америке

Конрад Хакетт - старший демограф и заместитель директора по исследованиям исследовательского центра Pew Research Center. Дэвид МакКлендон - бывший научный сотрудник, занимающийся исследованиями религии в исследовательском центре Pew Research Center. .

Страны мира с наибольшим ожирением

Всемирная организация здравоохранения (ВОЗ) призвала - во Всемирный день ожирения - к «повсеместным» действиям по решению проблемы веса на планете.

Согласно отчету, опубликованному ранее в этом году Институтом показателей и оценки здоровья при Вашингтонском университете в Сиэтле, более 603 миллионов взрослых и 107 миллионов детей (из примерно 7,5 миллиардов населения мира) страдают ожирением. Это составляет около пяти процентов всех детей и 12 процентов всех взрослых.

Но в каких странах самый высокий уровень ожирения?

Telegraph Travel взяла данные из World Factbook ЦРУ, и, вопреки тому, что некоторые могут полагать, не США возглавляют список, а, скорее, Американское Самоа - некорпоративная территория США в южной части Тихого океана - где колоссальные 74,6 на цент считаются страдающими ожирением.

В южной части Тихого океана проживает самое большое в мире население с избыточным весом

За ними следуют другие страны южной части Тихого океана, включая Науру, Тонга, Самоа, Палау и Кирибати.Фактически, Кувейт - единственная страна за пределами региона, которая вошла в десятку лучших. В южной части Тихого океана существует явная проблема ожирения, поскольку вес взрослого населения увеличивается в четыре раза по сравнению с среднемировым показателем. Некоторые утверждали, что островитяне генетически предрасположены к полноте, в то время как в отчете 2014 года говорилось, что виноваты колониальные поселенцы, которые научили их западным способам питания - например, жарить рыбу, а не есть ее в сыром виде.

Из 20 самых густонаселенных стран мира у Египта самая большая проблема с весом.США, где считается, что страдают ожирением 33%, фактически находятся на 18-м месте в списке, а Великобритания (26,9%) - на 43-м.

20 самых тучных мест в мире

  1. Американское Самоа
  2. Науру
  3. Острова Кука
  4. Токелау
  5. Тонга
  6. Самоа
  7. Палау
  8. Кирибати
  9. Маршалловы Острова
  10. Кувейт
  11. Сент-Китс и Невис
  12. Микронезия
  13. Багамы
  14. Барбадос
  15. Белиз
  16. Катар
  17. Египет
  18. США
  19. Саудовская Аравия
  20. Бахрейн

На другом конце шкалы доминируют страны Азии и Африки.Менее двух процентов населения Эфиопии, Бангладеш, Непала, Эритреи, Мадагаскара, Вьетнама, Демократической Республики Конго и Индии считаются страдающими ожирением.

Япония и Китай также занимают относительно низкие места в списке, занимая 157-е и 152-е места соответственно, в то время как страна Европы с наименьшим ожирением занимает 111-е место, за ней следуют Франция (108-е), Дания (107-е) и Швеция (104-е).

20 стран мира с наименьшим ожирением

  1. Эфиопия
  2. Бангладеш
  3. Непал
  4. Эритрея
  5. Мадагаскар
  6. Вьетнам
  7. Демократическая Республика Конго
  8. Индия
  9. Камбоджа
  10. Афганистан
  11. Буркина-Фасо
  12. Нигер
  13. Лаос
  14. Тимор-Лешти
  15. Чад
  16. Бурунди
  17. Центральноафриканская Республика
  18. Замбия
  19. Северная Корея
  20. Бирма
.

Смотрите также