Самый большой в мире компьютер


Самый быстрый суперкомпьютер в мире побил рекорд ИИ / Хабр


Суперкомпьютер Summit, разработанный компанией IBM для Окриджской Национальной лаборатории, в 2018-м стал самым мощным в мире, забрав этот титул у китайцев впервые за пять лет

На западном побережье США самые ценные компании в мире соревнуются в попытках сделать ИИ умнее. Google и Facebook хвастались экспериментами, использующими миллиарды фотографий и тысячи мощных процессоров. Однако после этого в прошлом году проект из восточного Теннеси по-тихому превзошёл масштабы любого корпоративного ИИ. И шёл он под руководством правительства США.

В рекордном проекте участвовал самый мощный суперкомпьютер в мире, Summit, из Окриджской Национальной лаборатории. Этот титул компьютер смог захватить в июне прошлого года, забрав его обратно в США после пяти лет превосходства китайцев. В рамках проекта изучения климата гигантский компьютер загрузил эксперимент по машинному обучению, работающий быстрее всего, что было ранее.

Summit, занимающий территорию, по площади равную двум теннисным кортам, использовал в этом проекте более 27 000 мощных графических процессоров. Они направили свои возможности на работу алгоритмов глубинного обучения, технологии, ведущей за собой передние рубежи ИИ, способной перемалывать информацию со скоростью миллиард миллиардов операций в секунду – эта скорость в суперкомпьютерных кругах известна, как экзаоп [тут у автора были экзафлопсы — он перепутал флопсы, операции с плавающей точкой, с опами, операциями вообще. Вычислительная мощность Summit составляет 122 петафлопс, потенциально максимальная – 200 петафлопс. При этом он стал первым компьютером, достигшим показателя в экзаоп, или 1018 операций в секунду. Во время анализа генетической информации была достигнута скорость в 1,88 экзаоп, и ожидается, что во время смешанных вычислений будет достигнуто 3,3 экзаоп / прим. перев.].

«До сих пор глубинное обучение не расширялось до таких масштабов», — говорит Прабхат, ведущий исследовательскую группу в Национальном научном вычислительном центре энергетических исследований в Национальной лаборатории Лоуренса Беркли. (Да, у него одно имя). Его группа сотрудничала с исследователями с домашней базы Summit, Окриджской национальной лаборатории.

Подходящим образом ИИ на мощнейшем компьютере сконцентрировался на одной из крупнейших проблем мира: изменении климата. Технокомпании тренируют алгоритмы на распознавание лиц или дорожных знаков; государственные учёные тренируют их на распознавание погодных закономерностей, к примеру, циклонов, в обильных наборах данных, полученных в климатических симуляциях, трёхчасовых прогнозах состояния атмосферы Земли, простирающихся на целый век. (Неизвестно, сколько энергии потратил этот проект или к выделению какого количества углерода в атмосферу это привело).


Стойки с оборудованием Summit соединяют 300 км оптоволоконного кабеля, а 15 000 литров воды циркулируют каждую минуту рядом с 37 000 процессорами, охлаждая их.

Последствия эксперимента Summit отразятся на будущем как ИИ, так и климатологии. Проект демонстрирует научный потенциал возможностей применения ГО к суперкомпьютерам, которые традиционно занимались симуляцией физических и химических процессов, таких, как ядерные взрывы, чёрные дыры или новые материалы. Он также демонстрирует, что увеличение вычислительной мощности – если его получить – даёт преимущества для МО – и это служит хорошим предзнаменованием для будущих прорывов.

«Пока мы не сделали этот проект, мы не знали, что его можно так сильно масштабировать», — говорит Раджат Монга, инженерный директор в Google. Он и другие гугловцы помогали проекту, адаптировав TensorFlow, ПО для МО, к огромным масштабам Summit.

Большая часть работы по масштабированию ГО проходила в дата-центрах интернет-компаний, где сервера совместно работают над задачами, разбивая их на части, благодаря тому, что они объединены относительно свободно, и не связаны в один гигантский компьютер. У суперкомпьютеров типа Summit архитектура выглядит по-другому, у них особенные высокоскоростные соединения объединяют тысячи процессоров в единую систему, способную работать как одно целое. До недавнего времени мало кто пытался адаптировать МО для работы на подобном железе.

Монга говорит, что работа над адаптацией TensorFlow к масштабам Summit оживит попытки Google расширить собственные ИИ-системы. Инженеры из Nvidia также помогали в этом проекте, обеспечивая беспроблемную совместную работу десятков тысяч графических процессоров Nvidia.

То, что для обеспечения ГО-алгоритмов всё большей вычислительной мощностью находятся способы, сыграло свою роль в активном развитии технологии, идущем в последнее время. Технология, которую использует Siri для распознавания вашего голоса, а робомобили Waymo для распознавания дорожных знаков, стала полезной в 2012 году, после того, как исследователи адаптировали её для работы на графических процессорах Nvidia.

В аналитической статье, опубликованной в прошлом мае, исследователи из OpenAI, исследовательского института из Сан-Франциско, одним из инвесторов которого был Илон Маск, подсчитали, что количество вычислительных ресурсов в крупнейших проектах, связанных с МО, о которых известно обществу, с 2012 года удваивается примерно каждые 3,43 месяца – или растёт в 11 раз ежегодно. Такой прогресс помог ботам из Alphabet, родительской компании Google, победить чемпионов сложных настольных игр и видеоигр, и помог сделать большой рывок в точности переводов сервиса Google.

Теперь Google и другие компании создают новые виды чипов, приспособленных специально для ИИ, чтобы продолжить эту тенденцию. В Google говорят, что их «стручки», плотно интегрирующие по 1000 их чипов для ИИ – они называют их тензорными процессорами, или TPU – могут выдавать 100 петафлопс вычислительной мощности, что в 10 раз [видимо, реально в два раза / прим. перев.] меньше, чем Summit достиг в своём эксперименте с ИИ.

Вклад проекта Summit в климатологию состоит в демонстрации того, как ИИ огромных масштабов могут улучшить наше понимание будущих погодных закономерностей. Когда исследователи выдают предсказания климата на сто лет вперёд, то прочесть его становится довольно сложно. «Представьте себе, что у вас есть ролик на YouTube, длящийся 100 лет. Вручную вы никак не сможете найти там всех кошек и собак», — говорит Прабхат. ПО, которое обычно используется для автоматизации процессов, по его словам, несовершенно. Результаты Summit показали, что МО может справиться с этим лучше, и это должно помочь предсказывать такие последствия штормов, как наводнения и разрушения. Результаты Summit принесли исследователям из Окриджа и Nvidia премию Гордона Белла за передовую работу в области суперкомпьютеров.

Запуск ГО на суперкомпьютерах – это новая идея, пришедшая как раз в нужный момент для климатологов, говорит Майкл Причард, профессор из калифорнийского университета в Ирвине. Замедляющаяся скорость улучшений обычных процессоров заставила инженеров перейти к наполнению суперкомпьютеров всё большим количеством графических чипов, где быстродействие растёт надёжнее. «Пришло время, когда уже нельзя было наращивать вычислительную мощность обычным способом», — говорит Причард.

Эти изменения представляют собой препятствия на пути обычных симуляций, которые приходится адаптировать. Также они дают возможность обратиться ко всей мощи ГО, которая естественным образом подходит к графическим чипам. Это может дать нам более ясное представление о будущем нашего климата. Группа Причарда в прошлом году продемонстрировала, что ГО может выдавать более реалистичные симуляции облаков в прогнозах климата, что может улучшить прогнозы изменения в закономерностях выпадения осадков.

: Технологии и медиа :: РБК

США опередили КНР, создав самый мощный суперкомпьютер в мире, способный проводить 200 тыс. трлн операций в секунду. Суперкомпьютер Summit может использоваться в том числе и для исследований в сфере ядерного оружия

Фото: Oak Ridge National Laboratory

В американской национальной лаборатории Оук-Ридж 8 июня был запущен самый мощный суперкомпьютер мира, говорится в пресс-релизе, опубликованном учеными. Производительность машины с названием Summit достигает 200 ​петафлопс — 200 тыс. трлн вычислений в секунду.

Запуск Summit позволил США сместить с первой строчки рейтинга суперкомпьютеров китайский Sunway TaihuLight, вычислительная мощность которого составляет порядка 93 петафлопс, и вновь выйти в лидеры суперкомпьютерной гонки.

«Сегодняшний запуск суперкомпьютера Summit демонстрирует американское лидерство в области научных инноваций и развития технологий. Это будет иметь огромное влияние на исследования в сфере энергетики, научные открытия, экономическую конкурентоспособность и национальную безопасность», — прокомментировал успех американских ученых министр энергетики США Рик Перри.

Видео: Телеканал РБК

Video

Summit состоит из 4608 вычислительных серверов, на каждом из которых установлено два 22-ядерных процессора IBM Power9. Встроенная память машины достигает 10 петабайт. Издание MIT Technology Review приводит слова исследователя из Оук-Ридж Джека Уэллса, описывающего суперкомпьютер. По его словам, блоки Summit занимают площадь, сравнимую с двумя теннисными кортами. Для охлаждения системы требуется более 15 тыс. л воды.

Cerebras Systems представила компьютер с самым большим в мире процессором 22×22 сантиметра / Блог компании Дата-центр «Миран» / Хабр


Схема компьютера CS-1 показывает, что большая часть отведена для питания и охлаждения гигантского «процессора-на-пластине» Wafer Scale Engine (WSE). Фото: Cerebras Systems

В августе 2019 года компания Cerebras Systems и её производственный партнер TSMC анонсировали крупнейшую микросхему в истории компьютерной техники. С площадью 46 225 мм² и 1,2 триллиона транзисторов микросхема Wafer Scale Engine (WSE) примерно в 56,7 раз больше, чем самый большой GPU (21,1 млрд транзисторов, 815 мм²).

Скептики говорили, что разработать процессор — не самая сложная задача. Но вот как он будет работать в реальном компьютере? Каков процент брака на производстве? Какое потребуется питание и охлаждение? Сколько будет стоить такая машина?

Похоже, инженерам Cerebras Systems и TSMC удалось решить эти проблемы. 18 ноября 2019 года на конференции Supercomputing 2019 они официально представили CS-1 — «самый быстрый в мире компьютер для расчётов в области машинного обучения и искусственного интеллекта».

Первые экземпляры CS-1 уже отправлены заказчикам. Один из них установлен в Аргоннской национальной лаборатории министерства энергетики США, той самой, в которой скоро начнётся сборка самого мощного в США суперкомпьютера из модулей Aurora на новой архитектуре GPU от Intel. Другим заказчиком стала Ливерморская национальная лаборатория.

Процессор с 400 000 вычислительными ядрами предназначен для дата-центров по обработке вычислений в области машинного обучения и искусственного интеллекта. Cerebras заявляет, что компьютер обучает системы AI на порядки эффективнее, чем существующее оборудование. CS-1 по производительности эквивалентен «сотням серверов на базе GPU», потребляющих сотни киловатт. В то же время он занимает всего 15 юнитов в серверной стойке и потребляет около 17 кВт.


Процессор WSE. Фото: Cerebras Systems

Генеральный директор и соучредитель Cerebras Systems Эндрю Фельдман (Andrew Feldman) говорит, что CS-1 является «самым быстрым в мире компьютером AI». Он сравнил его с кластерами TPU от Google и отмечает, что каждый из них «занимает 10 стоек и потребляет более 100 киловатт, чтобы обеспечить треть производительности одной установки CS-1».


Компьютер CS-1. Фото: Cerebras Systems

Обучение больших нейронных сетей может занимать недели на стандартном компьютере. Установка CS-1 с процессорным чипом из 400 000 ядер и 1,2 триллиона транзисторов выполняет эту задачу за минуты или даже секунды, пишет IEEE Spectrum. Однако Cerebras не представила реальные результаты тестов, чтобы проверить заявления о высокой производительности, например, тесты MLPerf. Вместо этого компания напрямую установила контакты с потенциальными клиентами — и позволила обучать собственные модели нейронных сетей на CS-1.

Такой подход не является чем-то необычным, считают аналитики: «Каждый управляет своими собственными моделями, которые они разработали для своего собственного бизнеса, — говорит Карл Фройнд (Karl Freund), аналитик по приложениям искусственного интеллекта в Moor Insights & Strategies. — Это единственное, что имеет значение для покупателей».

Разработкой специализированных чипов для AI занимаются многие компании, в том числе традиционные представители индустрии, такие как Intel, Qualcomm, а также различные стартапы в США, Великобритании и Китае. Google разработала чип специально для нейронных сетей — тензорный процессор, или TPU. Несколько других производителей последовали её примеру. Системы AI работают в многопоточном режиме, а узким местом становится перемещение данных между чипами: «Соединение микросхем на самом деле замедляет их — и требует много энергии, — объясняет Субраманьян Айер (Subramanian Iyer), профессор Калифорнийского университета в Лос-Анджелесе, который специализируется на разработке чипов для искусственного интеллекта. Производители оборудования изучают множество различных вариантов. Некоторые пытаются расширить межпроцессорные соединения.

Основанный три года назад стартап Cerebras, который получил более $200 млн венчурного финансирования, предложил новый подход. Идея в том, чтобы сохранить все данные на гигантском чипе — и тем самым ускорить вычисления.

Вся пластина-микросхема разделена на 400 000 более мелких секций (ядра), с учётом того, что некоторые из них не будут работать. Чип разработан с возможностью маршрутизации вокруг дефектных областей. Программируемые ядра SLAC (Sparse Linear Algebra Cores) оптимизированы для линейной алгебры, то есть для вычислений в векторном пространстве. Компания также разработала технологию «утилизации разреженности» (sparsity harvesting) для повышения производительности вычислений при разреженных рабочих нагрузках (содержащих нули), таких как глубокое обучение. Векторы и матрицы в векторном пространстве обычно содержат множество нулевых элементов (от 50% до 98%), поэтому на традиционных GPU большая часть вычислений уходит впустую. В отличие от них, ядра SLAC предварительно отфильтровывают нулевые данные.

Коммуникации между ядрами обеспечивает система Swarm с пропускной способностью 100 петабит в секунду. Маршрутизация аппаратная, задержки измеряются в наносекундах.

Стоимость компьютера не называется. Независимые эксперты считают, что реальная цена зависит от процента брака. Также достоверно не известна производительность микросхемы и сколько ядер работоспособны в реальных образцах.


Cerebras огласила некоторые подробности о программной части системы CS-1. Программное обеспечение даёт возможность пользователям создавать собственные модели машинного обучения с использованием стандартных фреймворков, таких как PyTorch и TensorFlow. Затем система распределяет 400 000 ядер и 18 гигабайт памяти SRAM на чипе по слоям нейронной сети таким образом, чтобы все слои завершали работу примерно в одно время со своими соседями (задача оптимизации). В результате информация обрабатывается всеми слоями без задержек. Благодаря подсистеме ввода-вывода из 12 линий 100-гигабитного Ethernet машина CS-1 может обрабатывать 1,2 терабита данных в секунду.

Преобразованием исходной нейросети в оптимизированную исполняемую репрезентацию (Cerebras Linear Algebra Intermediate Representation, CLAIR) занимается компилятор графов (Cerebras Graph Compiler, CGC). Компилятор выделяет вычислительные ресурсы и память для каждой части графа, а затем сопоставляет их с вычислительным массивом. Затем вычисляется путь коммуникации по внутренней структуре пластины, уникальный для каждой сети.


Распределение математических операций нейросети по ядрам процессора. Фото: Cerebras

Из-за огромного размера WSE все слои в нейронной сети одновременно размещаются на нём и работают параллельно. Этот подход уникален для WSE — ни у одного другого устройства недостаточно встроенной памяти, чтобы поместить все слои сразу на одном чипе, заявляет Cerebras. Такая архитектура с размещением сразу всей нейросети на чипе даёт огромные преимущества благодаря высокой пропускной способности и низкой задержке.

Программное обеспечение может выполнять задачу оптимизации для нескольких компьютерах, позволяя кластеру компьютеров действовать как одна большая машина. Кластер из 32 компьютеров CS-1 показывает примерно 32-кратное увеличение производительности, что свидетельствует об очень хорошей масштабируемости. Фельдман говорит, что это отличается от поведения кластеров на основе GPU: «Сегодня, когда вы составляете кластер из графических процессоров, он не ведёт себя как одна большая машина. Вы получаете множество маленьких машин».

В пресс-релизе сказано, что Аргоннская национальная лаборатория работает с Cerebras уже два года: «Развернув CS-1, мы резко увеличили скорость обучения нейронных сетей, что позволило повысить продуктивность наших исследований и добиться значительных успехов».

Одной из первых нагрузок для CS-1 станет нейросетевая симуляция столкновения чёрных дыр и гравитационных волн, которые создаются в результате этого столкновения. Предыдущая версия этой задачи работала на 1024 из 4392 узлов суперкомпьютера Theta.

12 самых быстрых суперкомпьютеров в мире — В 2020 году

Для большинства из нас компьютер, вероятно, кажется достаточно быстрым, если он может воспроизводить видео 8K или последнюю версию Far Cry со скоростью 60 кадров в секунду без замедления. Однако есть много сложных задач, которые требуют миллиардов вычислений в секунду, чего не может сделать настольный компьютер с процессором i9.

Вот где суперкомпьютеры пригодятся. Они предлагают высокий уровень производительности, который позволяет правительствам и организациям решать проблемы, которые были бы невозможны с обычными компьютерами.

Современные суперкомпьютеры строятся с учетом рабочих нагрузок ИИ (искусственного интеллекта). В дополнение к прогнозированию погоды, климатическим исследованиям, физическому моделированию и разведке нефти и газа, суперкомпьютеры помогают ученым открывать более устойчивые строительные материалы и изучать белки человека и клеточные системы с экстремальным уровнем детализации.

Обычно производительность суперкомпьютера измеряется в операциях с плавающей запятой в секунду (флопы). В области научных вычислений флоп - это более точная цифра, чем измерительные инструкции в секунду.

Первый суперкомпьютер - Livermore Atomic Research Computer - был построен для Центра исследований и разработок ВМС США в 1960 году.

Чтобы показать вам, как далеко мы продвинулись с тех пор, мы составили подробный список самых быстрых суперкомпьютеров в мире. Все они являются нераспределенными компьютерными системами, работающими на Linux.

12. Суперкомпьютер Секвойя

Скорость: 17,1 петафлопс
Ядра: 1,572,864

Поставщик: IBM.
Расположение: Ливерморская национальная лаборатория им. Лоуренса, США.

Sequoia использует серверы IBM BlueGene/Q для достижения теоретической пиковой производительности в 20 петафлопсов. Он имеет 123% больше ядер и является на 37% более энергоэффективным, чем его предшественник компьютер K.

Хотя машина в основном используется для моделирования ядерного оружия, она также доступна для многих научных целей, таких как изменение климата и анализ генома человека. Он также продемонстрировал свою большую масштабируемость с помощью 3D-моделирования электрофизиологии человеческого сердца.

11. Суперкомпьютер ПАНГЕЯ III

Скорость: 17.8 петафлопс
Ядра: 291,024

Поставщик: IBM
Расположение: Центр технических и научных исследований CSTJF в Пау, Франция.

Pangea III опирается на высокопроизводительную архитектуру IBM, оптимизированную для искусственного интеллекта. IBM и NVIDIA работали вместе над созданием единственного в отрасли соединения между процессорами и графическими процессорами NVLink, которое обеспечивает более чем в 5 раз более высокую пропускную способность памяти между процессорами IBM POWER9 и NVIDIA Tesla V100 Tensor Core, чем традиционные системы на базе x86.

Архитектура не только повышает производительность вычислений, но и повышает энергоэффективность. Новая система использует менее 10% потребления энергии на петафлоп, как и ее предшественница, Pangea I и II.

Pangea III имеет различные применения, особенно в трех различных областях - разведка и разработка сейсмических изображений, модели разработки и добычи, а также оценка и селективность активов.

10. Суперкомпьютер Lassen

Скорость: 18.2 петафлопс
Ядра: 288,288

Поставщик: IBM
Расположение: Ливерморская национальная лаборатория им. Лоуренса, США.

Лассен предназначен для несекретной симуляции и анализа. Он устанавливается в той же лаборатории и использует те же компоненты здания, что и Sierra (самый быстрый суперкомпьютер № 2).

Несмотря на то, что Sierra - большая система, Lassen сам по себе имеет приличный размер: он составляет ровно 1/6 от размера старшего брата. Система Lassen содержится в 40 стойках, в то время как Sierra поднимается на 240 стоек.

Процессоры IBM Power9 и 253 терабайта оперативной памяти помогают Лассену достигать невероятной производительности в 23 петафлопс.

9. Суперкомпьютер SuperMUC-NG

Скорость: 19.4 петафлопс
Ядра: 305,856

Поставщик: Lenovo
Расположение: Суперкомпьютерный центр Лейбница, Германия

SuperMUC-NG имеет 6400 вычислительных узлов Lenovo ThinkSystem SD650 с непосредственным водяным охлаждением и более 700 терабайт основной памяти и 70 петабайт дискового пространства.
Он подключен к мощным системам визуализации, которые содержат большой 4K стереоскопический сетевой экран и 5-стороннюю среду искусственной виртуальной реальности CAVE.

Суперкомпьютер обслуживает европейских ученых во многих областях, включая анализ генома, гидродинамику, квантовую хромодинамику, науки о жизни, медицину и астрофизику.

8. Облачная инфраструктура AI Bridging

Скорость: 19.8 петафлопс
Ядра: 391,680

Поставщик: Fujitsu
Расположение: Национальный институт передовых промышленных наук и технологий, Япония.

Это первая в мире крупномасштабная вычислительная инфраструктура с открытым ИИ, которая обеспечивает 32,577 петафлопс пиковой производительности. Она насчитывает 1088 узлов, каждый из которых содержит 2 золотых процессора Intel Xenon Gold Scalable, 4 GPU NVIDIA Tesla V100, 2 HCA InfiniBand EDR и 1 твердотельный накопитель NVMe.

Fujitsu Limited утверждает, что суперкомпьютер может достичь 20-кратной тепловой плотности обычных центров обработки данных и охлаждающей способности стойки мощностью 70 кВт с использованием горячей воды и воздушного охлаждения.

7. Суперкомпьютер Trinity

Скорость: 21.2 петафлопс
Ядра: 979,072

Продавец: Cray
Расположение: Лос-Аламосская национальная лаборатория, США

Trinity построен для обеспечения экстраординарных вычислительных возможностей для предприятия по ядерной безопасности NNSA. Он направлен на повышение геометрических и физических достоверностей в коде моделирования ядерного оружия, обеспечивая при этом безопасность, надежность и эффективность ядерного арсенала.

Суперкомпьютер разрабатывался в два этапа: на первом этапе использовался процессор Intel Xeon Haswell, а на втором - значительное повышение производительности с использованием процессора Intel Xeon Phi Knights Landing. Он может обеспечить максимальную производительность более 41 петафлопс.

6. Суперкомпьютер Piz Daint

Скорость: 21.2 петафлопс
Ядра: 387,872

Продавец: Cray
Расположение: Швейцарский национальный суперкомпьютерный центр, Швейцария

Этот суперкомпьютер, названный в честь горы Piz Daint в швейцарских Альпах, работает на микропроцессоре Intel Xeon E5-26xx и NVIDIA Tesla P100.

Piz Daint использует DataWarp в «режиме импульсного буфера», чтобы увеличить эффективную полосу пропускания для устройств хранения и обратно. Это ускоряет скорость ввода / вывода данных, облегчая анализ миллионов небольших неструктурированных файлов.

В дополнение к своим ежедневным задачам, он может выполнять анализ данных некоторых из самых интенсивных проектов в мире, таких как данные, полученные в результате экспериментов на Большом адронном коллайдере.

5. Суперкомпьютер Frontera

Скорость: 23.5 петафлопс
Ядра: 448,448

Поставщик: Dell EMC
Расположение: Техасский вычислительный центр, США

Frontera открывает новые возможности в разработке и исследованиях, предоставляя обширные вычислительные ресурсы, которые облегчают ученым решение многих сложных задач в широком диапазоне областей.

Frontera имеет две вычислительные подсистемы: первая ориентирована на производительность с двойной точностью, а вторая - на потоковую память одинарной точности. Он также имеет облачные интерфейсы и несколько узлов приложений для размещения виртуальных серверов.

4. Суперкомпьютер Tianhe-2A

Скорость: 61.4 петафлопс
Ядра: 4,981,760

Поставщик: NUDT
Расположение: Национальный суперкомпьютерный центр в Гуанчжоу, Китай

Обладая более чем 16 000 компьютерными узлами, Tianhe-2A представляет собой крупнейшую в мире установку процессоров Intel Ivy Bridge и Xeon Phi. Хотя каждый узел имеет 88 гигабайт памяти, общая память (процессор+сопроцессор) составляет 1375 тебибайт.

Китай потратил 2,4 миллиарда юаней (390 миллионов долларов США) на строительство этого суперкомпьютера. В настоящее время он в основном используется в приложениях моделирования, анализа и государственной безопасности.

3. Суперкомпьютер Sunway TaihuLight

Скорость: 93 петафлопса
Ядра: 10,649,600

Поставщик: NRCPC
Расположение: Национальный суперкомпьютерный центр в Уси, Китай

Вычислительная мощность TaihuLight исходит от собственного многоядерного процессора SW26010, который включает в себя как элементы вычислительной обработки, так и элементы управления обработкой.

Один SW26010 обеспечивает пиковую производительность более 3 терафлопс благодаря 260 вычислительным элементам (интегрированным в один процессор). Каждый вычислительный обрабатывающий элемент имеет скрэтчпад-память, которая служит кэш-памятью, управляемой пользователем, что значительно уменьшает узкие места в памяти в большинстве приложений.

В дополнение к наукам о жизни и фармацевтическим исследованиям, TaihuLight используется для моделирования Вселенной с 10 триллионами цифровых частиц. Однако Китай пытается достичь гораздо большего: страна уже заявила о своей цели стать лидером в области искусственного интеллекта к 2030 году.

2. Суперкомпьютер Sierra

Скорость: 94.6 петафлопс
Ядра: 1.572.480

Поставщик: IBM.
Расположение: Ливерморская национальная лаборатория им. Лоуренса, США.

Sierra предлагает до 6 раз устойчивую производительность и в 7 раз производительность рабочей нагрузки своего предшественника Sequoia. Он сочетает в себе два типа процессорных чипов: процессоры IBM Power 9 и графические процессоры Nvidia Volta.

Sierra специально предназначена для оценки эффективности систем ядерного оружия. Он используется для прогнозных применений в управлении запасами, американской программе испытаний надежности и технического обслуживания ядерного оружия без каких-либо ядерных испытаний.

1. Суперкомпьютер Summit

Скорость: 148,6 петафлопс
Ядра: 2,414,592

Поставщик: IBM.
Расположение: Национальная лаборатория Ок-Риджа, США.

Summit является самым быстрым суперкомпьютером в мире, который может обеспечить 200 петафлопс в пике. Это эквивалентно 200 квадриллионам операций с плавающей запятой в секунду.

Это также третий по величине энергосберегающий суперкомпьютер в мире с зарегистрированной эффективностью энергопотребления 14,66 гигафлопс на ватт.

На 4600+ серверах Summit, занимающих два баскетбольных поля, размещено более 9 200 процессоров IBM Power9 и более 27 600 графических процессоров NVIDIA Tesla V100. Система соединена волоконно-оптическим кабелем длиной 298 км и потребляет достаточно энергии для работы 8 100 домов.

В 2018 году Summit стал первым суперкомпьютером, преодолевшим эксафлопный барьер. Анализируя геномные данные, он достиг пиковой пропускной способности в 1,88 эксафлопс, что составляет почти 2 миллиарда миллиардов вычислений в секунду.

Суперкомпьютер на чипах ARM признан самым мощным в мире | Технологии | Дайджест новостей

В тот же день, когда Apple объявила о плане тотального перехода на собственные процессоры, рейтинг Top500 суперкомпьютеров мира возглавило устройство на базе ARM. Примечательно, что система с процессорами ARM впервые оказалась на первой строчке списка самых мощных суперкомпьютеров. Более того, лидер рейтинга расположен в Японии, а не в США или Китае, как многие системы, которые доминировали в списке в последние годы.

В основе суперкомпьютера Fugaku Центра вычислительных наук RIKEN лежит 48-ядерная система A64FX от Fujitsu. Работая вместе, 158 976 чипа достигли отметки в 415,5 петафлопс и пиковой производительности в 1 экзафлоп. Ранее номером один в списке был принадлежащий национальной лаборатории Oak Ridge в Теннесси суперкомпьютер Summit с 148,8 петафлопс вычислительной мощности. Результаты Fugaku превзошли этот показатель в 2,8 раза.

Суперкомпьютер на ARM стоил более 1 миллиарда долларов, на его проектирование и сборку ушло около шести лет. По данным The New York Times, исследователи уже используют Fugaku для проведения исследований, связанных с коронавирусом.

Эксперты предсказывают, что Fugaku вряд ли долго удержит первое место. Cray Computing, например, создает систему 1,5 exaflop для Министерства энергетики и Национальной лаборатории Oak Ridge. Она должна быть запущена в 2021 году. Тем не менее, это значительное достижение для Японии в пространстве, где доминируют Китай и США.  Две эти страны представлены 340 суперкомпьютерами в списке Top500.

Список TOP500 впервые возглавил суперкомпьютер на процессорах Arm

Вчера была опубликована 55 редакция списка TOP500 — рейтинга наиболее высокопроизводительных суперкомпьютеров мира. На первое место в нем вырвалась система из Японии.

Суперкомпьютер Fugaku показал в тесте High Performance Linpack (HPL) результат 415,5 петафлопса, в 2,8 раза опередив занимающую второе место американскую систему IBM Summit. Примечательно, что в Fugaku используются 48-ядерные однокристальные системы Fujitsu A64FX SoC на архитектуре Arm. В операциях с одинарной или меньшей точностью, которые часто используются в задачах ИИ, включая машинное обучение, пиковая производительность Fugaku превышает 1 экзафлопс.

В упомянутой выше системе IBM Summit используются 22-ядерные процессоры Power9 и ускорители Nvidia Tesla V100. Этот суперкомпьютер демонстрирует производительность 148,8 петафлопса.

На третьем месте тоже находится американский суперкомпьютер — IBM Sierra, по архитектуре близкий к IBM Summit. Его результат равен 94,6 петафлопса.

Китайская система Sunway TaihuLight на 260-ядерных процессорах Sunway SW26010 демонстрирует результат 93 петафлопса.

Пятую позицию списка с результатом 61,4 петафлопса занимает китайский суперкомпьютер Tianhe-2A на процессорах Intel Xeon и сопроцессорах Matrix-2000.

Далее следует итальянская система HPC5 на базе Intel Xeon Gold и Nvidia Tesla V100, построенная компанией Dell. Ее результат в тесте HPL равен 33,5 петафлопса.

Седьмое место принадлежит американской системе Selene на процессорах AMD Epyc и ускорителях Nvidia Ampere A100. Ее результат — 27,58 петафлопса.

В Америке же находится восьмая система из списка TOP500. Это суперкомпьютер Frontera на процессорах Intel Xeon, набирающий в тесте 23,5 петафлопса.

Интересно, что на девятом месте находится вторая итальянская система из первой десятки. Это суперкомпьютер Marconi-100 на процессорах IBM Power9 и ускорителях Nvidia V100. Производительность Marconi-100 составляет 21,6 петафлопса.

Замыкает десятку установленная в Швейцарии система Piz Daint производительностью 19,6 петафлопса. Это суперкомпьютер Cray XC50 на процессорах Intel Xeon и ускорителях Nvidia P100.

Лучшая из двух российских систем, попавших в список, набирает в тесте HPL 6,67 петафлопса, занимая 36 место. Это суперкомпьютер «Кристофари» (Christofari) на базе Xeon Platinum, Nvidia DGX-2 и Tesla V100.

крупнейших технологических компаний мира

Автор: Эмбер Париона, 10 июня 2019 г., в World Facts

Штаб-квартира Apple в Купертино, Калифорния, США. Кредит редакции: Владимир Крыхин / Shutterstock.com.

Технологические компании в основном производят компьютерное оборудование, Интернет, телекоммуникационное оборудование, программное обеспечение, полупроводники, электронную коммерцию и компьютерные услуги.В этой статье рассматриваются некоторые из крупнейших технологических компаний в мире по размеру выручки.

Apple Inc.

Apple была основана в апреле 1976 года Стивом Джобсом, Рональдом Уэйном и Стивом Возняком. Штаб-квартира находится в Купертино, штат Калифорния, США. Сегодня у нее 115 000 сотрудников и 478 розничных магазинов в 17 странах. Apple - крупнейшая технологическая компания в мире с годовым доходом около 29 долларов.2000000000. Этот доход составляет 1,25% национального валового внутреннего продукта (ВВП) США. В 2014 году Apple стала первой американской компанией, стоимость которой превышает 700 миллиардов долларов.

Samsung Electronics

Компания Samsung была основана в Сувоне, Южная Корея, в 1969 году, когда в основном производила электрические приборы и электронику. Сегодня это вторая по величине технологическая компания в мире с годовым доходом 211 долларов США.9 миллиардов. В Samsung работает около 319 000 штатных сотрудников в 80 странах. Кроме того, эта компания является крупнейшим производителем мобильных телефонов, смартфонов и телевизоров в мире.

Amazon

Третья по величине технологическая компания - Amazon.Годовой доход этой организации составляет 177,9 миллиарда долларов, а штат сотрудников - около 230 800 человек. Штаб-квартира находится в Сиэтле, штат Вашингтон, США. Amazon был основан в 1994 году Джеффом Безосом как книжный онлайн-магазин. Позже он включал в себя продажу DVD и CD, загрузку и потоковую передачу видео и аудиокниг, программное обеспечение, одежду, видеоигры, украшения, продукты питания и игрушки. Сегодня это считается компанией, занимающейся облачными вычислениями и электронной коммерцией. Amazon - крупнейший интернет-ритейлер как по продажам, так и по рыночной капитализации.

Foxconn

Foxconn - четвертая по величине технологическая компания в мире со средним годовым доходом 154,7 миллиарда долларов. Она была основана в 1974 году Терри Гоу как Hon Hai Precision Industry; Foxconn изначально была его торговой маркой. Штаб-квартира компании находится в городе Нью-Тайбэй, Тайвань, и в ней работает 1,3 миллиона человек на постоянной основе. Foxconn является производителем по контракту, что означает, что он производит электронные компоненты и продукты для других компаний.Среди его крупнейших клиентов: Nokia, Nintendo 3DS, iPad, iPod, iPhone, Blackberry, Playstation 3, Playstation 4 и Xbox One.

Какие мировые технологические компании являются крупнейшими?

Рейтинг Компания Выручка (в миллиардах) Местоположение
1 Apple Inc. $ 229,2 США
2 Samsung Electronics 211,9 $ Южная Корея
3 Amazon $ 177,9 США
4 Hon Hai Precision / Foxconn 154,7 Тайвань
5 Alphabet Inc. 110,8 долл. США США
6 Microsoft 90 долл. США.0 США
7 Huawei 89,3 долл. США Китай
8 Hitachi 84,6 долл. США Япония
9 IBM 79,1 США
10 Dell Technologies 78,7 долл. США США
.

компьютер | История, сети, операционные системы и факты

Компьютер , устройство для обработки, хранения и отображения информации.

компьютер

Портативный компьютер.

© Fatman73 / Fotolia

Популярные вопросы

Что такое компьютер?

Компьютер - это машина, которая может хранить и обрабатывать информацию. Большинство компьютеров полагаются на двоичную систему, которая использует две переменные, 0 и 1, для выполнения таких задач, как хранение данных, вычисление алгоритмов и отображение информации.Компьютеры бывают самых разных форм и размеров, от карманных смартфонов до суперкомпьютеров весом более 300 тонн.

Кто изобрел компьютер?

Какой компьютер самый мощный в мире?

По состоянию на июнь 2020 года самым мощным компьютером в мире является японский суперкомпьютер Fugaku, разработанный Riken и Fujitsu. Он использовался для моделирования симуляций COVID-19.

Как работают языки программирования?

Популярные современные языки программирования, такие как JavaScript и Python, работают через несколько форм парадигм программирования.Функциональное программирование, которое использует математические функции для выдачи выходных данных на основе ввода данных, является одним из наиболее распространенных способов использования кода для предоставления инструкций компьютеру.

Что умеют компьютеры?

Самые мощные компьютеры могут выполнять чрезвычайно сложные задачи, такие как моделирование экспериментов с ядерным оружием и прогнозирование изменения климата. Развитие квантовых компьютеров, машин, которые могут обрабатывать большое количество вычислений с помощью квантового параллелизма (производного от суперпозиции), могло бы выполнять еще более сложные задачи.

Сознательны ли компьютеры?

Способность компьютера обретать сознание - широко обсуждаемая тема. Некоторые утверждают, что сознание зависит от самосознания и способности мыслить, а это означает, что компьютеры обладают сознанием, потому что они распознают свое окружение и могут обрабатывать данные. Другие считают, что человеческое сознание никогда не может быть воспроизведено физическими процессами.

Компьютер когда-то означал человека, который выполнял вычисления, но теперь этот термин почти повсеместно относится к автоматизированному электронному оборудованию.Первый раздел статьи посвящен современным цифровым электронным компьютерам и их конструкции, составным частям и приложениям. Второй раздел посвящен истории вычислительной техники. Подробнее о компьютерной архитектуре, программном обеспечении и теории, см. Computer Science.

Основы вычислений

Первые компьютеры использовались в основном для численных расчетов. Однако, поскольку любую информацию можно закодировать численно, люди вскоре поняли, что компьютеры способны обрабатывать информацию общего назначения.Их способность обрабатывать большие объемы данных расширила диапазон и точность прогнозов погоды. Их скорость позволила им принимать решения о маршрутизации телефонных соединений через сеть и управлять механическими системами, такими как автомобили, ядерные реакторы и роботизированные хирургические инструменты. Они также достаточно дешевы, чтобы их можно было встроить в бытовую технику и сделать сушилки для одежды и рисоварки «умными». Компьютеры позволили нам задавать вопросы, которые раньше не могли быть заданы, и отвечать на них.Эти вопросы могут касаться последовательностей ДНК в генах, моделей активности на потребительском рынке или всех случаев использования слова в текстах, хранящихся в базе данных. Все чаще компьютеры также могут учиться и адаптироваться в процессе работы.

Компьютеры также имеют ограничения, некоторые из которых являются теоретическими. Например, есть неразрешимые предложения, истинность которых не может быть определена в рамках данного набора правил, таких как логическая структура компьютера. Поскольку не может существовать универсального алгоритмического метода для идентификации таких предложений, компьютер, которого попросили получить истинность такого предложения, будет (если не прервать его принудительно) бесконечно долго - состояние, известное как «проблема остановки».( См. машина Тьюринга). Другие ограничения отражают современные технологии. Человеческий разум умеет распознавать пространственные модели - например, легко различать человеческие лица - но это сложная задача для компьютеров, которые должны обрабатывать информацию последовательно, а не улавливать детали в целом с первого взгляда. Еще одна проблемная область для компьютеров - это взаимодействие на естественном языке. Поскольку в обычном человеческом общении предполагается так много общих знаний и контекстной информации, исследователям еще предстоит решить проблему предоставления соответствующей информации универсальным программам на естественном языке.

Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня

Аналоговые компьютеры используют непрерывные физические величины для представления количественной информации. Сначала они представляли величины с механическими компонентами ( см. дифференциальный анализатор и интегратор), но после Второй мировой войны использовались напряжения; к 1960-м годам их в значительной степени заменили цифровые компьютеры. Тем не менее аналоговые компьютеры и некоторые гибридные аналогово-цифровые системы продолжали использоваться в течение 1960-х годов в таких задачах, как моделирование самолетов и космических полетов.

Одним из преимуществ аналоговых вычислений является то, что можно относительно просто спроектировать и построить аналоговый компьютер для решения единственной проблемы. Еще одно преимущество состоит в том, что аналоговые компьютеры часто могут представлять и решать проблему «в реальном времени»; то есть вычисления происходят с той же скоростью, что и моделируемая им система. Их основные недостатки заключаются в том, что аналоговые представления ограничены по точности - обычно несколько десятичных знаков, но меньше в сложных механизмах, - а устройства общего назначения дороги и их нелегко запрограммировать.

В отличие от аналоговых компьютеров цифровые компьютеры представляют информацию в дискретной форме, как правило, в виде последовательностей нулей и единиц (двоичных цифр или битов). Современная эра цифровых компьютеров началась в конце 1930-х - начале 1940-х годов в США, Великобритании и Германии. В первых устройствах использовались переключатели, работающие от электромагнитов (реле). Их программы хранились на перфоленте или картах, и у них было ограниченное внутреннее хранилище данных. Исторические разработки, см. В в разделе «Изобретение современного компьютера».

В 1950-х и 60-х годах Unisys (производитель компьютеров UNIVAC), International Business Machines Corporation (IBM) и другие компании производили большие и дорогие компьютеры все большей мощности. Они использовались крупными корпорациями и правительственными исследовательскими лабораториями, как правило, как единственный компьютер в организации. В 1959 году компьютер IBM 1401 арендовали за 8000 долларов в месяц (первые машины IBM почти всегда сдавались в аренду, а не продавались), а в 1964 году самый большой компьютер IBM S / 360 стоил несколько миллионов долларов.

Эти компьютеры стали называть мэйнфреймами, хотя этот термин не стал общепринятым, пока не были построены компьютеры меньшего размера. Для мэйнфреймов были характерны (для своего времени) большие возможности хранения, быстрые компоненты и мощные вычислительные возможности. Они были очень надежными и, поскольку они часто удовлетворяли жизненно важные потребности в организации, иногда проектировались с резервными компонентами, которые позволяли им выдерживать частичные отказы. Поскольку это были сложные системы, ими управлял штат системных программистов, у которых только был доступ к компьютеру.Другие пользователи отправляли «пакетные задания» для выполнения по одному на мэйнфрейме.

Такие системы остаются важными и сегодня, хотя они больше не являются единственным или даже основным центральным вычислительным ресурсом организации, которая обычно имеет сотни или тысячи персональных компьютеров (ПК). В настоящее время мэйнфреймы обеспечивают хранение данных большой емкости для Интернет-серверов или, благодаря методам разделения времени, позволяют сотням или тысячам пользователей одновременно запускать программы. Из-за их текущих ролей эти компьютеры теперь называются серверами, а не мэйнфреймами.

.

Simple English Wikipedia, бесплатная энциклопедия

Компьютер - это машина, которая принимает данные в качестве входных данных, обрабатывает эти данные с помощью программ и выводит обработанные данные в качестве информации. Многие компьютеры могут хранить и извлекать информацию с помощью жестких дисков. Компьютеры могут быть соединены вместе в сети, что позволяет подключенным компьютерам общаться друг с другом.

Двумя основными характеристиками компьютера являются: он реагирует на конкретный набор инструкций четко определенным образом и может выполнять предварительно записанный список инструкций для вызова программы.В компьютере четыре основных этапа обработки: ввод, хранение, вывод и обработка.


Современные компьютеры могут выполнять миллиарды вычислений в секунду. Возможность выполнять вычисления много раз в секунду позволяет современным компьютерам выполнять несколько задач одновременно, что означает, что они могут выполнять множество различных задач одновременно. Компьютеры выполняют множество различных задач, где автоматизация полезна. Некоторые примеры - управление светофорами, транспортными средствами, системами безопасности, стиральными машинами и цифровыми телевизорами.

Компьютеры могут быть сконструированы так, чтобы делать с информацией практически все, что угодно. Компьютеры используются для управления большими и маленькими машинами, которые в прошлом управлялись людьми. Большинство людей использовали персональный компьютер дома или на работе. Они используются для таких вещей, как расчет, прослушивание музыки, чтение статьи, письмо и т. Д.

Современные компьютеры - это электронное компьютерное оборудование. Они очень быстро выполняют математическую арифметику, но компьютеры на самом деле не «думают». Они следуют только инструкциям своего программного обеспечения.Программное обеспечение использует оборудование, когда пользователь дает ему инструкции, и дает полезный результат.

Люди управляют компьютерами с помощью пользовательских интерфейсов. К устройствам ввода относятся клавиатуры, компьютерные мыши, кнопки и сенсорные экраны. Некоторыми компьютерами также можно управлять с помощью голосовых команд, жестов рук или даже сигналов мозга через электроды, имплантированные в мозг или вдоль нервов.

Компьютерные программы разрабатываются или пишутся компьютерными программистами. Некоторые программисты пишут программы на собственном языке компьютера, называемом машинным кодом.Большинство программ написано с использованием таких языков программирования, как C, C ++, Java. Эти языки программирования больше похожи на язык, на котором говорят и пишут каждый день. Компилятор переводит инструкции пользователя в двоичный код (машинный код), который компьютер поймет и сделает то, что необходимо.

Автоматизация [изменить | изменить источник]

У большинства людей проблемы с математикой. Чтобы показать это, попробуйте набрать в голове 584 × 3220. Все шаги запомнить сложно! Люди создали инструменты, которые помогали им вспомнить, где они находились в математической задаче.Другая проблема, с которой сталкиваются люди, заключается в том, что им приходится решать одну и ту же проблему снова и снова. Кассирша должна была каждый день вносить сдачу в уме или с помощью бумажки. Это заняло много времени и допустило ошибки. Итак, люди создали калькуляторы, которые делали одно и то же снова и снова. Эта часть компьютерной истории называется «историей автоматизированных вычислений», что является причудливым выражением для «истории машин», благодаря которым мне легко решать одну и ту же математическую задачу снова и снова, не делая ошибок."

Счеты, логарифмическая линейка, астролябия и антикиферский механизм (датируемый примерно 150–100 гг. До н.э.) являются примерами автоматических вычислительных машин.

Программирование [изменить | изменить источник]

Людям не нужна машина, которая будет делать одно и то же снова и снова. Например, музыкальная шкатулка - это устройство, которое воспроизводит одну и ту же музыку снова и снова. Некоторые люди хотели научить свою машину делать разные вещи. Например, они хотели сказать музыкальной шкатулке, чтобы она каждый раз играла разную музыку.Они хотели иметь возможность программировать музыкальную шкатулку, чтобы музыкальная шкатулка воспроизводила разную музыку. Эта часть компьютерной истории называется «историей программируемых машин», что является причудливым выражением для «истории машин, которым я могу приказать делать разные вещи, если я знаю, как говорить на их языке».

Один из первых таких примеров был построен героем Александрии (ок. 10–70 нашей эры). Он построил механический театр, который разыгрывал пьесу продолжительностью 10 минут и управлялся сложной системой веревок и барабанов.Эти веревки и барабаны были языком машины - они рассказывали, что машина делает и когда. Некоторые утверждают, что это первая программируемая машина. [1]

Историки расходятся во мнениях относительно того, какие ранние машины были «компьютерами». Многие говорят, что «замковые часы», астрономические часы, изобретенные Аль-Джазари в 1206 году, являются первым известным программируемым аналоговым компьютером. [2] [3] Продолжительность дня и ночи можно регулировать каждый день, чтобы учесть изменение продолжительности дня и ночи в течение года. [4] Некоторые считают эту ежедневную настройку компьютерным программированием.

Другие говорят, что первый компьютер создал Чарльз Бэббидж. [4] Ада Лавлейс считается первым программистом. [5] [6] [7]

Эра вычислительной техники [изменить | изменить источник]

В конце средневековья люди начали думать, что математика и инженерия были важнее. В 1623 году Вильгельм Шикард создал механический калькулятор. Другие европейцы сделали больше калькуляторов после него.Это не были современные компьютеры, потому что они могли только складывать, вычитать и умножать - нельзя было изменить то, что они делали, чтобы заставить их делать что-то вроде игры в тетрис. Из-за этого мы говорим, что они не были программируемыми. Теперь инженеры используют компьютеры для проектирования и планирования.

В 1801 году Жозеф Мари Жаккард использовал перфокарты, чтобы указать своему текстильному ткацкому станку, какой узор ткать. Он мог использовать перфокарты, чтобы указывать ткацкому станку, что ему делать, и он мог менять перфокарты, что означало, что он мог запрограммировать ткацкий станок на плетение нужного узора.Это означает, что ткацкий станок можно было программировать.

Чарльз Бэббидж хотел создать аналогичную машину, которая могла бы производить вычисления. Он назвал это «Аналитическая машина». [8] Поскольку у Бэббиджа не было достаточно денег, и он всегда менял свой проект, когда у него появлялась идея получше, он так и не построил свою аналитическую машину.

Со временем компьютеры стали использоваться все чаще. Людям быстро становится скучно повторять одно и то же снова и снова. Представьте, что вы тратите свою жизнь на то, чтобы записывать вещи на учетных карточках, хранить их, а затем снова искать их.В Бюро переписи населения США в 1890 году этим занимались сотни людей. Это было дорого, и отчеты требовали много времени. Затем инженер придумал, как заставить машины выполнять большую часть работы. Герман Холлерит изобрел машину для подсчета результатов, которая автоматически суммирует информацию, собранную бюро переписи населения. Его машины производила компания Computing Tabulating Recording Corporation (которая позже стала IBM). Они арендовали машины вместо того, чтобы продавать их. Производители машин уже давно помогают своим пользователям разбираться в них и ремонтировать их, и техническая поддержка CTR была особенно хорошей.

Благодаря машинам, подобным этой, были изобретены новые способы общения с этими машинами, и были изобретены новые типы машин, и, в конце концов, родился компьютер, каким мы его знаем.

Аналоговые и цифровые вычислительные машины [изменить | изменить источник]

В первой половине 20-го века ученые начали использовать компьютеры, в основном потому, что ученым приходилось разбираться в математике, и они хотели тратить больше времени на размышления о научных вопросах вместо того, чтобы часами складывать числа.Например, если им нужно было запустить ракету, им нужно было проделать много математических расчетов, чтобы убедиться, что ракета работает правильно. Итак, они собрали компьютеры. В этих аналоговых компьютерах использовались аналоговые схемы, что затрудняло их программирование. В 1930-х они изобрели цифровые компьютеры и вскоре упростили их программирование. Однако это не так, поскольку было предпринято много последовательных попыток довести арифметическую логику до 13. Аналоговые компьютеры - это механические или электронные устройства, которые решают проблемы.Некоторые также используются для управления машинами.

Крупногабаритные компьютеры [изменить | изменить источник]

Ученые придумали, как создавать и использовать цифровые компьютеры в 1930-1940-х годах. Ученые создали множество цифровых компьютеров, и, когда они это сделали, они выяснили, как задавать им правильные вопросы, чтобы получить от них максимальную отдачу. Вот несколько компьютеров, которые они построили:

EDSAC был одним из первых компьютеров, которые запоминали то, что вы ему сказали, даже после того, как выключили питание.Это называется (фон Нейман) архитектурой.
  • Электромеханические "станки Z" Конрада Цузе. Z3 (1941) была первой рабочей машиной, которая использовала двоичную арифметику. Двоичная арифметика означает использование «Да» и «Нет». складывать числа. Вы также можете запрограммировать это. В 1998 году было доказано, что Z3 завершен по Тьюрингу. Завершение по Тьюрингу означает, что этому конкретному компьютеру можно сказать все, что математически возможно сказать компьютеру. Это первый в мире современный компьютер.
  • Непрограммируемый компьютер Атанасова – Берри (1941), который использовал электронные лампы для хранения ответов «да» и «нет», а также регенеративную конденсаторную память.
  • The Harvard Mark I (1944), большой компьютер, на котором можно было программировать.
  • Лаборатория баллистических исследований армии США ENIAC (1946), которая могла складывать числа, как это делают люди (с использованием чисел от 0 до 9), и иногда ее называют первым электронным компьютером общего назначения (так как Z3 Конрада Цузе 1941 года использовал электромагниты вместо электроники ).Однако сначала единственным способом перепрограммировать ENIAC было его перепрограммирование.

Несколько разработчиков ENIAC видели его проблемы. Они изобрели способ, позволяющий компьютеру запоминать то, что он ему сказал, и способ изменить то, что он запомнил. Это известно как «архитектура хранимых программ» или архитектура фон Неймана. Джон фон Нейман рассказал об этой конструкции в статье «Первый проект отчета по EDVAC », распространенной в 1945 году. Примерно в это же время стартовал ряд проектов по разработке компьютеров на основе архитектуры хранимых программ.Первый из них был завершен в Великобритании. Первой, где была продемонстрирована работа, была Manchester Small-Scale Experimental Machine (SSEM или «ребенок»), в то время как EDSAC, завершенный через год после SSEM, был первым действительно полезным компьютером, который использовал сохраненный проект программы. Вскоре после этого машина, первоначально описанная в статье фон Неймана - EDVAC - была завершена, но не была готова в течение двух лет.

Практически все современные компьютеры используют архитектуру хранимых программ. Это стало основным понятием, определяющим современный компьютер.Технологии, используемые для создания компьютеров, изменились с 1940-х годов, но многие современные компьютеры по-прежнему используют архитектуру фон Неймана.

В 1950-х годах компьютеры были построены в основном из электронных ламп. Транзисторы заменили электронные лампы в 1960-х, потому что они были меньше и дешевле. Им также требуется меньше энергии и они не ломаются так сильно, как электронные лампы. В 1970-х годах технологии были основаны на интегральных схемах. Микропроцессоры, такие как Intel 4004, сделали компьютеры меньше, дешевле, быстрее и надежнее.К 1980-м годам микроконтроллеры стали достаточно маленькими и дешевыми, чтобы заменить механические элементы управления в таких вещах, как стиральные машины. В 80-е годы также были домашние компьютеры и персональные компьютеры. С развитием Интернета персональные компьютеры становятся таким же обычным явлением в домашнем хозяйстве, как телевизор и телефон.

В 2005 году Nokia начала называть некоторые из своих мобильных телефонов (серии N) «мультимедийными компьютерами», а после выпуска Apple iPhone в 2007 году многие теперь начали добавлять категорию смартфонов к «настоящим» компьютерам.В 2008 году, если смартфоны включены в число компьютеров в мире, крупнейшим производителем компьютеров по количеству проданных единиц уже была не Hewlett-Packard, а Nokia. [9]

Есть много типов компьютеров. Некоторые включают:

  1. персональный компьютер
  2. рабочая станция
  3. базовый блок
  4. сервер
  5. миникомпьютер
  6. суперкомпьютер
  7. встроенная система
  8. планшетный компьютер

«Настольный компьютер» - это небольшой компьютер с экраном (который не является частью компьютера).Большинство людей хранят их на столе, поэтому их называют «настольными компьютерами». «Портативные компьютеры» - это компьютеры, достаточно маленькие, чтобы поместиться у вас на коленях. Это позволяет легко носить их с собой. И ноутбуки, и настольные компьютеры называются персональными компьютерами, потому что один человек одновременно использует их для таких вещей, как воспроизведение музыки, просмотр веб-страниц или видеоигры.

Есть компьютеры большего размера, которыми могут пользоваться одновременно многие люди. Они называются «мэйнфреймы», и эти компьютеры делают все, что заставляет работать такие вещи, как Интернет.Вы можете думать о персональном компьютере так: персональный компьютер подобен вашей коже: вы можете видеть его, другие люди могут видеть его, а через вашу кожу вы чувствуете ветер, воду, воздух и остальной мир. Мэйнфрейм больше похож на ваши внутренние органы: вы их никогда не видите и даже не думаете о них, но если они вдруг пропадут, у вас возникнут очень большие проблемы.

Встроенный компьютер, также называемый встроенной системой, - это компьютер, который делает одно и только одно, и обычно делает это очень хорошо.Например, будильник - это встроенный компьютер: он показывает время. В отличие от вашего персонального компьютера, вы не можете использовать свои часы для игры в тетрис. Из-за этого мы говорим, что встроенные компьютеры нельзя программировать, потому что вы не можете установить больше программ на свои часы. Некоторые мобильные телефоны, банкоматы, микроволновые печи, проигрыватели компакт-дисков и автомобили работают со встроенными компьютерами.

ПК "все в одном" [изменить | изменить источник]

Универсальные компьютеры - это настольные компьютеры, в которых все внутренние механизмы компьютера находятся в том же корпусе, что и монитор.Apple создала несколько популярных примеров компьютеров «все в одном», таких как оригинальный Macintosh середины 1980-х годов и iMac конца 1990-х и 2000-х годов.

  • Обработка текста
  • Таблицы
  • Презентации
  • Редактирование фотографий
  • Электронная почта
  • Монтаж / рендеринг / кодирование видео
  • Аудиозапись
  • Управление системой
  • Разработка веб-сайтов
  • Разработка программного обеспечения

Компьютеры хранят данные и инструкции в виде чисел, потому что компьютеры могут очень быстро обрабатывать числа.Эти данные хранятся в виде двоичных символов (1 и 0). Символ 1 или 0, хранящийся в компьютере, называется битом, который происходит от двоичной цифры слова. Компьютеры могут использовать вместе множество битов для представления инструкций и данных, которые используются этими инструкциями. Список инструкций называется программой и хранится на жестком диске компьютера. Компьютеры работают с программой, используя центральный процессор, и они используют быструю память, называемую ОЗУ, также известную как (память с произвольным доступом), в качестве пространства для хранения инструкций и данных, пока они это делают.Когда компьютер хочет сохранить результаты программы на потом, он использует жесткий диск, потому что вещи, хранящиеся на жестком диске, все еще можно запомнить после выключения компьютера.

Операционная система сообщает компьютеру, как понимать, какие задания он должен выполнять, как выполнять эти задания и как сообщать людям результаты. Миллионы компьютеров могут использовать одну и ту же операционную систему, в то время как каждый компьютер может иметь свои собственные прикладные программы, которые делают то, что нужно его пользователю. Использование одних и тех же операционных систем позволяет легко научиться использовать компьютеры для новых целей.Пользователь, которому нужно использовать компьютер для чего-то другого, может узнать, как использовать новую прикладную программу. Некоторые операционные системы могут иметь простые командные строки или полностью удобный графический интерфейс.

Одна из самых важных задач, которые компьютеры выполняют для людей, - это помощь в общении. Коммуникация - это то, как люди делятся информацией. Компьютеры помогли людям продвинуться вперед в науке, медицине, бизнесе и обучении, потому что они позволяют экспертам из любой точки мира работать друг с другом и обмениваться информацией.Они также позволяют другим людям общаться друг с другом, выполнять свою работу практически где угодно, узнавать практически обо всем или делиться друг с другом своим мнением. Интернет - это то, что позволяет людям общаться между своими компьютерами.

Компьютер теперь почти всегда является электронным устройством. Обычно он содержит материалы, которые при утилизации превращаются в электронные отходы. Когда в некоторых местах покупается новый компьютер, законы требуют, чтобы стоимость утилизации его отходов также оплачивалась.Это называется управлением продуктом.

Компьютеры могут быстро устареть, в зависимости от того, какие программы использует пользователь. Очень часто их выбрасывают в течение двух-трех лет, потому что для некоторых новых программ требуется более мощный компьютер. Это усугубляет проблему, поэтому утилизация компьютеров происходит часто. Многие проекты пытаются отправить работающие компьютеры в развивающиеся страны, чтобы их можно было использовать повторно и не тратить так быстро, поскольку большинству людей не нужно запускать новые программы. Некоторые компоненты компьютера, например жесткие диски, могут легко сломаться.Когда эти части попадают на свалку, они могут попадать в грунтовые воды ядовитые химические вещества, такие как свинец. Жесткие диски также могут содержать секретную информацию, например, номера кредитных карт. Если жесткий диск не стереть перед тем, как выбросить, злоумышленник может получить информацию с жесткого диска, даже если диск не работает, и использовать его для кражи денег с банковского счета предыдущего владельца.

Компьютеры бывают разных форм, но большинство из них имеют общий дизайн.

  • Все компьютеры имеют центральный процессор.
  • Все компьютеры имеют своего рода шину данных, которая позволяет им получать или выводить данные в среду.
  • Все компьютеры имеют тот или иной вид памяти. Обычно это микросхемы (интегральные схемы), которые могут хранить информацию.
  • Многие компьютеры имеют какие-то датчики, которые позволяют им получать данные из окружающей среды.
  • Многие компьютеры имеют какое-либо устройство отображения, которое позволяет им отображать выходные данные. К ним также могут быть подключены другие периферийные устройства.

Компьютер состоит из нескольких основных частей.При сравнении компьютера с человеческим телом центральный процессор похож на мозг. Он делает большую часть мышления и сообщает остальному компьютеру, как работать. Процессор находится на материнской плате, которая похожа на скелет. Он обеспечивает основу для других частей и несет нервы, соединяющие их друг с другом и с ЦП. Материнская плата подключена к источнику питания, который обеспечивает электричеством весь компьютер. Различные приводы (привод компакт-дисков, дисковод для гибких дисков и на многих новых компьютерах USB-накопитель) действуют как глаза, уши и пальцы и позволяют компьютеру читать различные типы хранилищ точно так же, как человек может читать разные виды книг.Жесткий диск похож на человеческую память и отслеживает все данные, хранящиеся на компьютере. У большинства компьютеров есть звуковая карта или другой метод воспроизведения звука, который похож на голосовые связки или голосовой ящик. К звуковой карте подключены динамики, похожие на рот, из которых выходит звук. Компьютеры также могут иметь графическую карту, которая помогает компьютеру создавать визуальные эффекты, такие как трехмерное окружение или более реалистичные цвета, а более мощные графические карты могут создавать более реалистичные или более сложные изображения, как это может сделать хорошо обученный художник. .

Название компании Продажи
(млрд долларов США)
Яблоко 220 000
Samsung 212 680
Foxconn 132 070
л.с. (Hewlett-Packard) 112 300
IBM 99,750
Hitachi 87 510
Microsoft 86830
Амазонка 74,450
Sony 72,340
Panasonic 70 830
Google 59 820
Dell 56 940
Toshiba 56 200
LG 54,750
Intel 52,700
  1. «Цапля Александрийская».Проверено 15 января 2008.
  2. ↑ Говард Р. Тернер (1997), Наука в средневековом исламе: иллюстрированное введение , стр. 184, Техасский университет Press, ISBN 0-292-78149-0
  3. ↑ Дональд Рутледж Хилл, "Машиностроение на Средневековом Ближнем Востоке", Scientific American , май 1991 г., стр. 64-9 (сравните Дональд Рутледж Хилл, Машиностроение)
  4. 4,0 4,1 Ancient Discoveries, Episode 11: Ancient Robots , History Channel, получено 6 сентября 2008 г.
  5. ↑ Fuegi & Francis 2003, стр.16–26.
  6. Филлипс, Ана Лена (2011). «Краудсорсинг гендерного равенства: День Ады Лавлейс и его сопутствующий веб-сайт направлен на повышение роли женщин в науке и технологиях». Американский ученый . 99 (6): 463.
  7. «Ада Лавлейс удостоена чести Google Doodle», The Guardian , 10 декабря 2012 г., получено 10 декабря 2012 г. .
  8. ↑ Не путайте аналитическую машину с разностной машиной Бэббиджа, которая была непрограммируемым механическим калькулятором.
  9. Миллер, Мэтью. «В 2008 году Nokia была крупнейшим производителем компьютеров в мире». ZDNet . Проверено 18 июля 2020.

Примечания [изменение | изменить источник]

  • a Кемпф, Кар (1961). " Историческая монография: Электронные компьютеры в артиллерийском корпусе ". Абердинский испытательный полигон (Армия США).
  • a Филлипс, Тони (2000). «Антикиферский механизм I».Американское математическое общество. Проверено 5 апреля 2006.
  • a Шеннон, Клод Элвуд (1940). « Символьный анализ цепей реле и коммутации ». Массачусетский Технологический Институт.
  • a Digital Equipment Corporation (1972). Руководство по процессору PDP-11/40 (PDF). Мейнард, Массачусетс: Корпорация цифрового оборудования.
  • a Verma, G .; Мильке, Н.(1988). « Показатели надежности флэш-памяти на основе ETOX ». Международный симпозиум IEEE по физике надежности.
  • a Меуэр, Ханс (13 ноября 2006 г.). «Архитектуры делятся во времени». Штромайер, Эрих; Саймон, Хорст; Донгарра, Джек. ТОП500. Проверено 27 ноября 2006.
  • Стокс, Джон (2007). Внутри машины: иллюстрированное введение в микропроцессоры и компьютерную архитектуру . Сан-Франциско: Пресса без крахмала.ISBN 978-1-59327-104-6 .
.

Типы компьютеров

Типы компьютеров варьируются от гибридных до аналоговых. Компьютеры, с которыми вы сталкиваетесь в повседневной жизни, варьируются от ноутбуков, карманных компьютеров и вышек до настольных компьютеров и многих других. Но само слово «компьютеры» напоминает один из настольных компьютеров, используемых в офисе или дома. Различные категории компьютеров были разработаны в соответствии с нашими разнообразными потребностями.
Типы компьютеров: Аналоговые и гибридные (классификация по принципу работы)
  • Аналоговые компьютеры: Аналоговые компьютеры в наши дни почти вымерли.Он отличается от цифрового компьютера тем, что может одновременно выполнять множество математических операций. Он также уникален с точки зрения работы, поскольку использует непрерывные переменные для целей математических вычислений. Он использует механическую, гидравлическую или электрическую энергию или работу.
  • Гибридные компьютеры: Эти типы компьютеров, как следует из названия, представляют собой комбинацию аналоговых и цифровых компьютеров.
Цифровые компьютеры, которые работают по принципу двоичной системы цифр «0» и «1», могут давать очень точные результаты.Но проблема в том, что они слишком медленные и неспособны выполнять крупномасштабные математические операции. В гибридных типах компьютеров цифровые аналоги преобразуют аналоговые сигналы для выполнения робототехники и управления процессами.

Помимо этого, компьютеры также классифицируются на основе физических структур и целей их использования. В зависимости от емкости, скорости и надежности их можно разделить на три категории компьютеров:

  1. Главный компьютер: Это компьютеры, используемые крупными организациями, такими как метеорологические службы и статистические институты, для выполнения массовых математических вычислений.Это базовые компьютеры, на которых одновременно работают более ста человек.
  2. Микрокомпьютер: Это наиболее часто используемые компьютеры, более известные под названием «Персональные компьютеры». Это тип компьютера, предназначенный для общественного пользования. Помимо настольного компьютера, выбор варьируется следующим образом:
    • Персональный цифровой компьютер
    • Планшетный компьютер
    • Башни
    • Рабочие места
    • Ноутбуки
    • Ручной компьютер

  3. Мини-компьютер: Мини-компьютеры, такие как мэйнфреймы, используются бизнес-организациями.Разница в том, что он может поддерживать одновременную работу до 100 пользователей и обычно поддерживается в бизнес-организациях для ведения счетов и финансов.
Еще одна категория компьютеров - это суперкомпьютеры. Он чем-то похож на мэйнфрейм-компьютеры и используется в экономических прогнозах и инженерном проектировании.

Сегодня жизнь без компьютеров немыслима. Использование различных типов компьютеров сделало жизнь гладкой и стремительной.

Аналоговые компьютеры:
Аналоговые компьютеры и цифровые компьютеры - это два типа компьютеров, сочетание которых привело к изобретению современных гибридных компьютеров.

Аналоговые системы выполняют арифметические и логические операции, манипулируя и обрабатывая вводимые вами данные, такие как вес, температура, напряжение, плотность мощности и т. Д. Но в отличие от цифрового компьютера, который меняет все входные данные на двоичные цифры «1» и «0», аналоговый компьютер не изменяет введенные данные на любой такой язык жестов.

Аналоговый компьютер в наши дни вышел из употребления. Он отличается от цифрового компьютера тем, что может одновременно выполнять множество математических операций.Однако цифровые компьютеры не могли выполнять более сложные операции. Аналоговая система также уникальна с точки зрения работы, поскольку в ней используются непрерывные переменные для математических вычислений. Он использует механическую, гидравлическую или электрическую энергию или работу.

Математические принципы, применяемые для обработки данных в аналоговых компьютерах:

  • Логарифм
  • Суммирование
  • Возведение в степень
  • Исчисление
  • Умножение и деление
  • инверсия

Аналоговый компьютер, который представляет собой сложную машину, представляет собой объединение различных механических частей, которые имеют трубы, клапаны, рычаги, шестерни и несколько ключевых частей, которые могут быть названы следующим образом:
  • Генераторы фиксированных функций
  • Операционные усилители
  • Потенциометры
  • Интеграторы

Преимущества и недостатки аналоговых компьютеров:

Преимущество аналогового компьютера состоит в том, что он может одновременно находить решения нескольких математических задач, и при этом он также является точным, в отличие от цифрового компьютера.Но он не лишен недостатков. В отличие от цифрового компьютера ему не хватает скорости расчета. Есть и другие функциональные проблемы, снижающие эффективность аналоговых систем. Из них основными проблемами являются, так сказать, проблемы нелинейностей, температурного коэффициента, паразитных эффектов и минимального уровня шума.

Цифровые компьютеры:
Цифровые компьютеры - это вычислительные машины, работающие по принципу двоичной математики. Цифровые вычислительные машины, объединенные с аналоговыми компьютерами, производят гибридные компьютеры.Цифровые системы работают по принципу двоичной математики. В двоичной математике все вычисления представлены через «0» и «1».

Вы часто слышали о словах «Байт», «Мегабайт», «Кило-байт». Но что такое байт? Один байт - это группа из 8 чисел или битов, представленных посредством кодовой серии, состоящей из «0» и «1». Комбинация цифрового сигнала может решить ряд математических операций. Интересно отметить, что основные прикладные основы математики - это сложение, вычитание, умножение и деление.Но главная проблема в том, что, хотя он может решать математические задачи с огромной скоростью, он не может выполнять массовые операции одновременно. Для этого цифровые системы сами по себе не могут дать очень точных результатов. Следовательно, для большей эффективности цифровые системы не находят большого применения.

Обработка данных в цифровых компьютерах:
Цифровые компьютеры работают с помощью логических схем. Надежный генератор помогает правильно синхронизировать различные логические схемы, отвечающие за обработку данных в цифровых компьютерах.В компьютерах более высокого качества частота колебаний может составлять даже миллиард циклов в секунду. Работая с такой высокой скоростью, он может обрабатывать более миллиардов логических и арифметических задач.

Главный компьютер:
Мэйнфреймы - это компьютеры, которые являются наиболее громоздкими типами, и с развитием технологий они почти вымерли. Компьютеры бывают трех типов - мэйнфреймы, мини-компьютеры и микрокомпьютеры. Компьютерные системы мэйнфреймов можно назвать предшественниками серверов, потому что они действительно могли поддерживать нескольких пользователей, хотя и с такой же эффективностью, как и серверы.Обычно основная рама занимала всю комнату и могла стоить более миллиона долларов.

Используемые в целях исследований, инженерных работ, метеорологических расчетов, графики и т.п., мэйнфреймы сегодня представляют собой Unix, Linux и IBM z / OS, OS / 390, MVS, VM и VSE. Системы мэйнфреймов широко производились в течение 1950-х годов и продавались IBM, Control Data, General Electric, NCR, UNIVAC, Honeywell, RC и Burroughs.

Три важных характеристики компьютеров с базовым блоком:

  • Мэйнфреймы обеспечивают максимальное количество подключений ввода-вывода, поскольку они вмещают огромные фермы дисков.
  • Мэйнфреймы
  • отличаются максимальной шириной полосы ввода-вывода. Интересно, что, несмотря на то, что к системе мэйнфрейма подключены все накопители, никакая блокировка данных никогда не снижает ее эффективности.
  • Системы
  • мэйнфреймов также обеспечивают очень хорошие однопоточные операции.

Мини-компьютеры - это менее громоздкая версия мэйнфреймов. Миникомпьютеры используются бизнес-организациями. Разница в том, что он может поддерживать одновременную работу до 100 пользователей и обычно поддерживается в бизнес-организациях для ведения счетов и финансов.Кроме того, есть персональные компьютеры или микрокомпьютеры. К микрокомпьютерам относятся настольные ПК, ноутбуки, карманные компьютеры, планшетные ПК, рабочие станции, карманные компьютеры и т. Д. Это наиболее часто используемые компьютеры.

Миникомпьютеры:
Миникомпьютеры, что это такое? Если суперкомпьютеры и мэйнфреймы считаются лучшими с точки зрения математических операций, то на их место приходят миникомпьютерные системы. Ранее считалось, что миникомпьютеры превосходят персональные системы.Но в наши дни прогрессивные технологии сделали миникомпьютеры практически устаревшими, поскольку современные ПК являются высокоразвитыми.

Миникомпьютеры были впервые построены в 1960-х годах и сразу же стали пользоваться огромным успехом, так как сразу же было продано 40 000 миникомпьютерных систем, что сделало компьютеры широко доступными для широкой публики. Имея такую ​​возможность на рынке, многие компании вышли на рынок мини-компьютеров. Самой успешной среди этих двухсот компаний была DEC, выпустившая модели миникомпьютеров PDP-11 и VAX 11/780.

Некоторые важные аспекты и исторические факты о мини-компьютерной системе можно резюмировать следующим образом:

  • Они намного меньше по размеру, чем компьютерные системы мэйнфреймов. Таким образом, они не занимают всю комнату, а обычно занимают пространство, аналогичное размеру стандартного холодильника.
  • Они намного дешевле мэйнфреймов.
  • Их изобретение стало возможным из-за изобретения технологий оперативной памяти и транзисторов.
  • Миникомпьютеры могут предоставить параллельный доступ до 100 пользователям. Следовательно, они использовались в таких местах, как коммерческие организации, для ведения счетов и финансов.
  • Одними из первых производителей миникомпьютерных систем были Hewlett Packard, DEC и Data General.

Вот несколько моделей мини-компьютеров, пользующихся успехом на протяжении многих лет:
  • DEC VAX и PDP
  • Hewlett Packard HP3000 серии
  • SDS, SDS-92
  • Prime Computers, Prime 50 Series
  • Norsk Data, Nord-1, Nord-10, Nord-100
  • Компьютеры среднего класса IBM
  • Control Data Corporation CDC 160A, CDC-1700
  • Data General Nova
  • Honeywell-Bull Level 6 / DPS Level6 / DPS 6000 series

Со временем миникомпьютеры превратились в микрокомпьютеры.С запуском микрокомпьютеров у населения появился больший доступ к преимуществам включения компьютеров в повседневную жизнь.

Суперкомпьютеры:
Суперкомпьютеры - это один из многих типов современных вычислительных машин, которые способны производить очень быстрые вычисления. Благодаря своей высокой скорости обработки суперкомпьютерные системы используются в таких работах, как анимационная графика, прогнозирование погоды, ядерные исследования, нефтяные исследования, анализ крипт, молекулярное моделирование и тому подобное.Тогда вы, должно быть, задаетесь вопросом, в чем разница между суперкомпьютером и мэйнфреймом? В то время как мэйнфреймы в основном используются для ряда целей, суперкомпьютеры сконструированы таким образом, чтобы служить единственной цели.

Краткий график развития суперкомпьютеров был дан следующим образом:

  • 1960-е: Seymour Cray of Control Data Corporation (CDC) запускает суперкомпьютерные системы.
  • 1970-е: Cray Research была основана Сеймуром Креем после того, как он покинул Control Data Corporation (CDC).Большинство суперкомпьютеров были предназначены для работы с векторным процессором.
  • 1985–1990: Модель суперкомпьютера Cray захватывает рынок.
  • Сегодня суперкомпьютеров разрабатываются такими компаниями, как HP, IBM и, конечно же, Cray Inc. Суперкомпьютерные системы становятся почти такими же, как портативные компьютеры и настольные системы.

До 1970-х годов суперкомпьютеры в основном работали по принципу скалярных процессов. Но для повышения его эффективности был разработан ряд новых технологий, таких как:
  • Liquid Cooling
  • Диски с чередованием (RAID)
  • Параллельные файловые системы
  • Неравномерный доступ к памяти (NUMA)
  • Векторная обработка

Когда аппаратное обеспечение суперкомпьютеров готово к выполнению специальной математической операции, они называются специальными суперкомпьютерами.В настоящее время существует множество таких типов суперкомпьютеров, как GRAPE для молекулярной динамики и астрофизики, Deep Crack для взлома шифра DES, Deep Blue для игры в шахматы и т. Д.

Последнее обновление: 18 мая 2016 г.

.

Поколений компьютеров и их периоды времени

Компьютеры:

Компьютер - это электронное устройство, которое выполняет несколько операций, обрабатывая информацию. Например, сложение, вычитание или любые другие арифметические операции. Сегодняшние компьютеры способны выполнять миллионы операций за секунды и давать точные результаты. Компьютеры играют главную роль в жизни человека, решая проблемы за секунды. Как все это произошло? С чего это началось? Разработка компьютеров разделилась на многие поколения.Итак, вам необходимо знать о поколениях компьютеров , а также о том, когда он был запущен и его особенностях.

С увеличением количества новых технологий компьютеры становятся дешевле, меньше, что увеличивает покупательскую активность пользователей. В начале 80-х невозможно найти дом, в котором был компьютер. Этот сценарий кардинально изменился до такой степени, что невозможно найти компьютер без дома, выполняющего задачи.

Поколения компьютеров:

Компьютеры поколения классифицируются на основе его операций и устройств, используемых в нем.Также учитывайте архитектуру, язык, технологию и режимы работы. Что ж, в компьютерах поколения используются различные устройства и языки, изменяя время. Спустя время мы увидели множество новейших технологий улучшений в аппаратном и программном обеспечении. В каждом поколении компьютеров появляются новые достижения. Начнем с первого поколения компьютеров .

Поколения компьютеров и их периоды времени:

  • Первое поколение компьютеров (1946-1959)
  • Второе поколение компьютеров (1959-1965)
  • Третье поколение компьютеров (1965-1972)
  • Четвертое поколение компьютеров (1972-1980)
  • Пятое поколение компьютеров (1982 - настоящее время)

Первое поколение компьютеров:

Компьютер первого поколения представлен в 1946 году.В то время как первое поколение использовало электронные лампы в качестве процессора и магнитный барабан для хранения данных. Размер компьютера в этом поколении больше размера комнаты и ограничен базовыми функциями.

Он использует машинный язык для ввода данных, известный как 1GL или язык первого поколения . Кроме того, компьютер первого поколения использует перфокарты, магнитную ленту, бумажную ленту для ввода ввода и хранения вывода и данных. Примерами компьютеров первого поколения являются ENIAC, UNIVAC, EDSAC и EDVAC.

Второе поколение компьютеров:

Компьютеры второго поколения используют транзистор вместо электронных ламп. Транзистор был разработан в Bell Labs в 1947 году, но внедрен в компьютеры в 1950-х годах. При этом он надежнее, быстрее, дешевле и меньше по размеру, чем компьютеры первого поколения. Ну, он использует высокоуровневый из компьютерных языков , принимая ввод, такой как COBOL, FORTRAN и т. Д.

Компьютеры второго поколения используют магнитную ленту и магнитный сердечник в качестве основного хранилища, а во вторичном хранилище используются магнитные диски.Примером компьютера этого поколения является IBM 1620, IBM 7094, CDC 1604, CDC 3600, UNIVAC 1108. В этом поколении компьютеров емкость памяти и использование компьютера увеличились на пользователей.

Третье поколение компьютеров:

Во втором поколении компьютеров вместо электронных ламп используются транзисторы. Но транзистор выделяет большое количество тепла, которое повреждает чувствительные части компьютеров. Чтобы устранить эту проблему, третье поколение компьютеров представило в 1965 году.Принимая во внимание, что эти компьютеры отличаются от компьютеров первого поколения и они используют IC (Integrated Circut). ИС - это небольшая схема, которая содержит тысячи транзисторов, резисторов, из которых состоит компьютер. Изобретая микросхемы третьего поколения, стало возможным разместить тысячи элементов на небольшой площади для создания компьютера. Кроме того, он уменьшает размер компьютера в небольшом размере.

Кроме того, компьютеры третьего поколения используют COBOL, от FORTRAN-II до FORTRAN-IV, PASCAL, ALGOL-68, BASIC, принимая входные данные.Используя эти языки, он может выполнять сложные операции и давать точные результаты. Третье поколение компьютеров - это серии IBM-360, PDP (Personal Data Processor), серии Honeywell-6000 и IBM-370/168.

Четвертое поколение компьютеров:

Четвертое поколение компьютеров поставляется с СБИС (очень крупномасштабной технологией), которую мы также можем назвать микропроцессорами. Принимая во внимание, что Intel была первой компанией, представившей микропроцессор и первой разработавшей ПК или персональный компьютер в этом поколении от IBM.Что ж, схемы СБИС включают 500 транзисторов на одном кристалле, который выполняет высокоуровневые операции и вычисления.

Этим компьютерам поколения требуется ограниченная мощность для работы. Это поколение компьютеров позволяет пользователям использовать компьютер для обработки текста, электронных таблиц, управления файлами и графики. Компьютерные языки, такие как C, C ++ и DBase, используются в этом поколении для выполнения точных операций. Концепция сети и CD-ROM появилась в четвертом поколении. Примерами компьютеров этого поколения являются STAR 1000, CRAY-X-MP (суперкомпьютер), PDP 11, DEC 10 и CRAY-1.

Пятое поколение компьютеров:

Сейчас мы используем компьютеры пятого поколения , выпуск которых начался примерно в 1982 году. Эти компьютеры отличаются от предыдущих четырех поколений. Что ж, компьютеры этого поколения используют высокий уровень языков, таких как Perl, Python, C, JAVA и т. Д. Более того, технология Ultra Large Scale Integration была внедрена в компьютерах 5-го поколения, что привело к разработке микропроцессорного чипа с несколькими миллионами чипов. в теме.

Он представляет ноутбуки, ноутбуки, ПК, настольные компьютеры и многое другое за этот период. Кроме того, эти компьютеры основаны на искусственном интеллекте. Что ж, компьютеры пятого поколения выполняют параллельную обработку, которая дает быстрые результаты. В этом поколении компьютеров новые языки представлены как объектно-ориентированные языки, такие как C ++, JAVA и т. Д. Разработаны новые операционные системы MS Window, разработаны компоненты на базе Linux и Linux. Пример компьютеров пятого поколения : Ноутбук, Ноутбук, Настольный компьютер, Ультра-книга, Chrome-книга и многие другие.

Преимущества компьютеров пятого поколения:

  • Пятое поколение компьютеров намного быстрее, чем компьютеров четвертого поколения.
  • При этом эти компьютеры меньше по размеру и дают более быстрые результаты по сравнению с компьютерами других поколений.
  • Кроме того, эти компьютеры портативны, так что вы можете носить их с собой куда угодно и получить к ним доступ в любое время.С этими портативными устройствами легко обращаться.
  • С компьютерами этого поколения вы можете выполнять несколько операций одновременно без замедления.
  • В новой версии усовершенствованы технологии для устранения неисправностей компьютеров.
  • Компьютеры пятого поколения представляют собой усовершенствованную технологию полупроводников и искусственного интеллекта.
.

8 изобретений ХХ века, которые изменили мир

В 20 веке человечество пережило несколько впечатляющих инженерных моментов. Не поймите нас неправильно, в 21 веке появилось несколько удивительных изобретений, которые вы, вероятно, используете в своем доме и читаете эту статью.

Тем не менее, эти же самые современные изобретения заложили основу в 20 веке.

На самом деле, большинство будет утверждать, что прошедшее столетие - одно из самых выдающихся в истории человечества, принесшее множество технологических достижений, гаджетов и научных открытий.

От пылесоса до ядерной бомбы - эти инженерные достижения заложили основу для современной эпохи и будут оставаться в ней еще долгие годы.

СВЯЗАННЫЕ: 15 ИЗОБРЕТЕНИЙ, КОТОРЫЕ СДЕЛАЮТ ВАШ 2019 ГОД НАМНОГО ИНТЕРЕСНЫМ

Итак, как вы, наверное, поняли из названия, сегодня мы собираемся исследовать некоторые из лучших изобретений 20-го века, которые сформировали мир ваша повседневная жизнь, так что давайте начнем.

Самолет

Давайте начнем с чего-то более очевидного - самолета.Подумайте о том, насколько мир стал меньше, когда стали возможны коммерческие полеты. Однако вернемся на шаг вперед.

Изобретенные в 1903 году Уилбуром и Орвиллом Райтами, братья воплотили в жизнь концепцию, зарезервированную для мифологических историй.

Однако самолет не воспринимался всерьез до тех пор, пока Чарльз Линдберг не совершил одиночный перелет через Атлантический океан.

Она произвела революцию в бесчисленных отраслях, помимо транспорта. Воздействие самолета можно почувствовать в спутниковой связи, в сфере связи, бизнеса и коммерции, и это лишь некоторые из них.

Подумайте о жизни без возможности улететь в новое место.

Телевидение

Хотя ваши дедушка и бабушка могут не соглашаться, телевидение изменило мир к лучшему.

Созданный в 1926 году Джоном Логи Бэрдом, телевидение стало одним из первых изобретений, повлиявших на жизнь масс во всем мире, и по сей день остается самым популярным способом получения информации.

Передавая как новости, так и развлечения, телевидение создало совершенно новые отрасли, влияющие на культуру до такой степени, что оно повлияло на то, как люди думают о важных социальных проблемах, таких как раса, пол и класс.

Компьютер

Представьте себе жизнь без смартфона или ноутбука. Да, конечно, можно, но потеря будет ощутимой. В гораздо большем масштабе некоторые из величайших научных открытий и изобретений последних лет могут быть внесены в компьютер.

Сам компьютер родился в умах многих ученых, исследователей и математиков. Первый программируемый компьютер Z1 был создан в период с 1936 по 1938 год.

Компьютер помог человечеству создать множество технологий, которые по-прежнему играют неотъемлемую роль в нашей повседневной жизни - от доставки человека на Луну до изменения способа общения людей.

Радио

Радио, которое иногда недооценивали, было одним из первых крупных изобретений 20 века. Изобретенное совместно со многими разными учеными, в том числе Николя Тесла и Гульельмо Маркони, радио стало наиболее распространенной формой связи в мире.

Радио в начале 20-го века служило инструментом социальных связей, источником новостей и образовательным инструментом, а также для экстренного вещания, короче говоря, предоставляя людям совершенно новый способ общения и взаимодействия.

.

Смотрите также