Самый мощный в мире телескоп


12 крупнейших телескопов в мире

Интерес человека к исследованию космоса приводит к разработке современных наземных телескопов, которые только усилились в конце 20-го века. Как вы, наверное, знаете, наземные телескопы имеют ограниченное применение, поскольку они могут наблюдать только небольшой участок электромагнитного спектра (оптический), и поэтому у нас есть космические телескопы.

Однако, в отличие от космических телескопов, наземные могут быть выполнены в огромных размерах. Например, главное зеркало крупнейшего космического телескопа (который в настоящее время находится в разработке), телескоп Джеймса Уэбба, составляет 6,5 метра, что составляет всего 60% от самых крупных работающих наземных телескопов.

Ниже мы составили список из 12 крупнейших телескопов в мире. Список включает в себя как действующие, так и планируемые телескопы, отсортированные по их эффективной апертуре (предел сбора света оптического прибора).

12. MMT


Диаметр: 6,5 м
Расположение: Маунт Хопкинс, Аризона, США

MMT (ранее Multi-Mirror Telescope) является частью обсерватории Фреда Лоуренса Уиппла, расположенной на горе Хопкинс, штат Аризона. Его первоначальное название, Multi-Mirror Telescope, было навеяно шестью небольшими зеркалами в виде сот, которые когда-то использовались для сбора света. Нынешнее моноблочное первичное зеркало было установлено в 1999 году.

Телескоп внес несколько принципиально новых изменений в области. Его система адаптивной оптики повлияла на революционный дизайн Большого Бинокулярного Телескопа. Помимо оптики, телескоп смог получить улучшенные результаты в инфракрасных исследованиях, удалив практически все возможные теплые поверхности со своего светового пути.

11. Обсерватория Джемини


Диаметр: 8,1 метра
Расположение: Мауна-Кеа, Гавайи и Серро-Пачон, Чили

Телескопы Джемини, принадлежащая и поддерживаемая пятью крупными исследовательскими организациями из разных стран, состоит из двух идентичных телескопов, которые расположены в двух разных местах. Оба телескопа могут работать в инфракрасном диапазоне с помощью технологии адаптивной оптики широкого поля.

Один из его инструментов, Gemini Planet Imager (GPI), в основном высококонтрастный спектрометр, позволяет телескопам получать изображения экзопланет, вращающихся вокруг чрезвычайно ярких звезд. GPI успешно обнаружил 51 Eridani b, который, как считается, в миллион раз слабее, чем его родитель 51 Eridani.

10. Very Large Telescope (Очень большой телескоп, сокр. ОБТ)


Диаметр: 8,2 метра
Расположение: пустыня Атакама, Чили

Очень Большой Телескоп (ОБТ для краткости), пожалуй, один из самых популярных телескопов в мире. ОБТ фактически состоит из четырех независимых телескопов, каждый из которых имеет одно основное 8,2-метровое зеркало. Их можно использовать отдельно или как единое целое для достижения более высокого углового разрешения.

Телескоп (ы) может работать как в визуальном, так и в инфракрасном диапазоне. Все четыре телескопа связаны с современными интерферометрическими приборами (VLTI), которые позволяют исследователям изучать яркие астрономические объекты, включая звезды и туманности, посредством интерферометрии.

После космического телескопа им. Хаббла, ОБТ, пожалуй, является наиболее продуктивным исследовательским центром (работающим на визуальной длине волны) с точки зрения общего количества рецензируемых статей, опубликованных до настоящего времени. В 2017 году более 600 опубликованных научных работ были основаны на данных, предоставленных ОБТ.

Он стал первым телескопом, который сделал прямое изображение экзопланеты (Beta Pictoris b). ОБТ - одна из немногих обсерваторий, отслеживающих звезды, вращающиеся вокруг сверхмассивной черной дыры в центре Млечного Пути.

9. Subaru Telescope


Диаметр: 8,4 метра
Расположение: Мауна-Кеа, Гавайи, США

Телескоп Subaru, расположенный в знаменитой обсерватории Мауна-Кеа, эксплуатируется и контролируется Национальной астрономической обсерваторией Японии. Он назван в честь популярного открытого звездного скопления «Плеяды».

Это единственный телескоп зеркального типа, почти идентичный телескопам Близнецов, которые немного больше. Ряд современных технологий, включая мультиобъектную инфракрасную камеру и спектрограф (MOIRCS) и охлаждаемую среднюю инфракрасную камеру и спектрометр (COMICS), позволяют астрономам исследовать сразу несколько целей, включая прохладную межзвездную пыль.

Subaru Coronagraphic Extreme Adaptive Optics (SCExAO), продвинутая высококонтрастная система визуализации, способна снимать прямые изображения экзопланет.

Телескоп Subaru - один из немногих действующих телескопов, которые использовались невооруженным глазом. Благодаря большому полю обзора и замечательной способности собирать свет, Subaru в основном используется для глубоких широкоугольных съемок. По тем же причинам Subaru также используется для поиска предсказанной девятой планеты в нашей солнечной системе.

8. Большой бинокулярный телескоп (англ. The Large Binocular Telescope)


Диаметр: 8,4 метра
Расположение: горы Пиналено, Аризона, США

Большой бинокулярный телескоп (LBT) - это уникальный оптический телескоп, который имеет два одинаковых основных зеркала шириной 8,4 м с комбинированной круглой апертурой 11,8 м.

Теоретически, это больше, чем у любого отдельного телескопа, работающего сегодня, но поскольку LBT собирает свет с гораздо более низким дифракционным пределом, его нельзя увидеть в том же отношении. Тем не менее в настоящее время это самый большой несегментированный телескоп в мире.

Довольно уникальный дизайн LBT в сочетании с адаптивной к свету оптикой позволяет снизить фазовые погрешности в атмосфере, имеет низкий тепловой фон, высокое угловое разрешение и высокую чувствительность для обнаружения слабых, удаленных объектов.

Еще в 2008 году LBT совместно с космическим телескопом успешно обнаружили отдаленный галактический кластер, обозначенный как 2XMM J083026 + 524133, расположенный на расстоянии около 6 миллиардов световых лет от Земли.

7. Большой южноафриканский телескоп


Диаметр: 9,2 метра
Расположение: Сазерленд, Южная Африка

Южноафриканский большой телескоп (SALT) на данный момент является крупнейшим оптическим телескопом в южном полушарии. Он имеет необычный зеркальный дизайн, который закреплен под углом 37 ° и основан на телескопе Хобби-Эберли (в обсерватории Макдональдс). Фиксированный зенитный угол позволяет телескопу получать доступ к большой части неба. Его основное зеркало состоит из 91 шестиугольных сегментов.

Его расположение позволяет исследователям проводить спектроскопический и поляриметрический анализ астрономических объектов, которые невозможно увидеть из северного полушария. В течение следующих нескольких лет SALT сосредоточится на далеких квазарах и слабых галактиках.

6. Кек 1 и 2


Диаметр: 10 метров
Расположение: Мауна Кеа, Гавайи, США

Знаменитый двойной телескоп обсерватории WM Keck, расположенный на Мауна-Кеа, является одним из самых совершенных телескопов в мире. Основные зеркала обоих телескопов имеют ширину 10 метров и состоят из 36 шестиугольных сегментов.

Они оснащены самыми современными инструментами, включая адаптивную оптику с лазерной направляющей звездой. Один из его инструментов, мультиобъектный спектрограф глубокой внегалактической визуализации (DEIMOS) может собирать свет от более чем 130 галактик за одну экспозицию.

Другой инструмент, ближняя инфракрасная камера (NIRC), настолько чувствителен, что технически может обнаружить крошечное пламя на поверхности Луны. Это позволяет телескопам Keck собирать данные из далеких галактик / протогалактик, квазаров, чтобы изучить их образование и эволюцию.

5. Телескоп Хобби - Эберли


Диаметр: 10 метров.
Расположение: Дэвис Маунтин, Техас, США.

Расположенный в известной обсерватории Макдональд в Техасе, телескоп Хобби-Эберли (HET) в настоящее время является вторым по величине оптическим телескопом в мире с полезной оптической апертурой 10 метров (его фактический диаметр составляет 11 м). Как и большинство других больших телескопов, основное зеркало Хобби-Эберли состоит из множества маленьких шестиугольных сегментов, точнее 91.

Хобби-Эберли в основном используется для обнаружения / изучения далеких галактик и различных звездных объектов с помощью спектроскопии. За прошедшие годы телескоп смог обнаружить ряд Солнечных планет и успешно рассчитать скорость вращения нескольких галактик.

В отличие от многих телескопов, основное зеркало Хобби-Эберли зафиксировано под углом 55 ° (может вращаться вокруг своего основания). Это позволяет телескопу иметь доступ к 70-81% ночного неба.

Объект назван в честь бывшего лейтенанта-губернатора Техаса Билла Хобби и выдающегося выпускника Университета штата Пенсильвания Роберта Эберли.

4. Большой Канарский телескоп


Диаметр: 10,4 метра
Местонахождение: Ла Пальма, Канарские острова, Испания

Gran Telescopio Canarias (GranTeCan), возможно, является крупнейшим сегментированным телескопом с первичным зеркалом в настоящее время. Весь проект GranTeCan поддерживается университетами и институтами из более чем одной страны и возглавляется испанским институтом астрофизических исследований IAC.

На начальном этапе испытаний телескоп был запущен всего с 12 шестигранными сегментами, но был увеличен до 36 сегментов, полностью оснащенных адаптивной системой управления.

Он имеет три основных инструмента визуализации; MEGARA, мультиволновой спектрограф, CanariCam, продвинутый средне-инфракрасный сканер с поляриметрическими возможностями, и OSIRIS, интегрированная спектроскопия низкого разрешения. Телескоп был полностью введен в эксплуатацию в 2009 году и стоил около 130 миллионов евро.

Телескопы в настоящее время в стадии строительства

3. Гигантский Магелланов Телескоп


Диаметр: 24,5 м
Расположение: Валленар, Чили
Предполагаемое завершение: 2025

На данный момент строится около десятка чрезвычайно больших телескопов, и одним из них является гигантский телескоп Магеллана.

В конечном итоге он будет иметь семь одинаковых сегментов шириной 8,4 м, образующих основное зеркало, однако начнется с четырех. Эти сегменты будут расположены симметрично с одним в центре.

Ожидается, что телескоп достигнет разрешающей способности изображения примерно в десять раз больше, чем у космического телескопа Хаббла. Ожидается, что весь проект будет стоить около 1 миллиарда долларов.

2. Тридцатиметровый телескоп


Диаметр: 30 метров
Расположение: Мауна-Кеа, Гавайи
Предполагаемое завершение: 2027

Тридцатиметровый телескоп (TMT) - это очень амбициозный проект астрономического телескопа, включающий сегментированное первичное зеркало шириной 30 метров и два меньших, последующих зеркала, чтобы увеличить его общую емкость. После завершения, он, возможно, станет вторым по величине телескопом в мире.

Телескоп предназначен для работы в диапазоне длин волн от ближнего ультрафиолетового до среднего инфракрасного диапазона и будет оснащен системой многоконъюгатной адаптивной оптики, которая позволит исследователям наблюдать астрономические объекты без большинства атмосферных помех.

Проект осуществляется рядом международных частных и государственных исследовательских институтов, в том числе Caltech и Национальной астрономической обсерваторией Японии.

Местоположение проекта вызвало серьезные общественно-политические волнения на всей территории Гавайев. В настоящее время в Мауна-Кеа находится 13 различных обсерваторий, занимающих более 500 акров охраняемых земель (которые имеют культурное значение среди местных жителей).

1. Европейский чрезвычайно большой телескоп


Диаметр: 39,3 метра
Расположение: Серро Армазонес, Чили
Предполагаемое завершение: 2024

Если все пойдет по плану, к 2024 году Европейский экстремально большой телескоп (ELT) станет самым большим телескопом в мире. Он сможет собирать в 13 раз больше света, чем любой другой оптический телескоп, существующий сегодня, и полученные изображения будут в 16 раз острее, чем те, которые были захвачены космическим телескопом Хаббла.

Помимо гигантского 39-метрового основного зеркала (состоящего из 798 шестиугольных сегментов), телескоп будет использовать четыре дополнительных зеркала для улучшения качества изображения и адаптивной оптики. ELT будет искать отдаленные внесолнечные планеты, анализировать сверхмассивные черные дыры, самые ранние галактики во вселенной с большей глубиной и точностью.

Его продвинутый набор инструментов позволит астрономам обнаруживать органические молекулы и воду вблизи молодых звезд, что поможет им больше узнать об эволюции планет. Первая фаза телескопа, вероятно, будет стоить около 1 миллиарда евро.

рейтинг топ-10 по версии КП

Первое, чем заманивает покупателей этот телескоп для наблюдения — рюкзаком. Сумка качественно сшита и весь набор прекрасно помещается внутри. Множество отделений, всевозможных кармашков для мелочей. Хвалят покупатели и местную инструкцию, написанную популярным языком. Поэтому если решили приобрести эту модель для ребенка, то школьник среднего возраста прекрасно сам со всем разберется. Фокусное расстояние здесь, по меркам телескопов, короткое — 400 мм. Часть деталей здесь пластиковые — поэтому цена меньше, да и вес невелик — менее трех кг. В комплекте идет классический фотоштатив — посредственного качества. Если не раскладывать его и стоять согнувшись в три погибели, то с ним все ОК. Но стоит вытянуть вверх, он тут же теряет устойчивость. Резюмируя заметим, что этот телескоп годится исключительно для наблюдения новичкам. Для профи он покажется слишком простым. Кстати, с помощью переходника к нему можно прицепить камеру — в Сети множество гайдов на этот счет. Поэтому прибор вполне может рассматриваться как недорогой вариант длиннофокусного объектива для любителей астрофото.

Характеристики

Диаметр объектива 70 мм, фокусное расстояние 400 мм, макс. полезное увеличение 165x, монтировка азимутальная, искатель оптический.

+ Низкий вес, компактность

- Плохое качество изображения с 10 мм окуляром

Телескоп «Джеймс Уэбб» – самый мощный телескоп в мире (28 фото) | Екабу.ру

Телескоп «Джеймс Уэбб» — это орбитальная инфракрасная обсерватория, которая должна заменить тот самый знаменитый космический телескоп «Хаббл».

Это очень сложный механизм. Работа над его идет около 20 лет! «Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре и стоить около 6.8 млрд долларов. Для сравнения, диаметр зеркала «Хаббла» — «всего» 2.4 метра.

Посмотрим?

1. Телескоп «Джеймс Уэбб» должен быть размещен на гало-орбите в точке Лагранжа L2 системы Солнце — Земля. А в космосе холодно. Здесь показаны испытания, проводимые 30 марта 2012, направленные на изучение возможности противостоять холодным температурам пространства. (Фото Chris Gunn | NASA):

2. «Джеймс Уэбб» будет обладать составным зеркалом 6.5 метров в диаметре с площадью собирающей поверхности 25 м². Много это, или мало? (Фото Chris Gunn):

3. Сравним с «Хабблом». Зеркало «Хаббла» (слева) и «Уэбба» (справа) в одном масштабе:

4. Полномасштабная модель космического телескопа Джеймса Уэбба в Остине, штат Техас, 8 марта 2013. (Фото Chris Gunn):


Полномасштабная модель космического телескопа Джеймса Уэбба в Остине

5. Проект телескопа представляет собой международное сотрудничество 17 стран, во главе которых стоит NASA, со значительным вкладом Европейского и Канадского космических агентств. (Фото Chris Gunn):


Полномасштабная модель космического телескопа Джеймса Уэбба в Остине

6. Изначально запуск намечался на 2007 год, в дальнейшем переносился на 2014 и на 2015 год. Однако первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года.(Фото Chris Gunn):

7. Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6.5 метра, чтобы измерить свет от самых далёких галактик.

Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл», но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл» на единицу площади. (Фото Chris Gunn):

8. Не только у нас всё дорожает от начальной сметы. Так, стоимость телескопа «Джеймс Уэбб» превысила изначальные расчёты по меньшей мере в 4 раза. Планировалось, что телескоп обойдётся в 1,6 млрд долл. и будет запущен в 2011 году, однако по новым оценкам стоимость может составить 6.8 млрд, при этом запуск состоится не ранее 2018 года. (Фото Chris Gunn):

9. Это спектрограф ближнего инфракрасного диапазона. Он будет анализировать спектр источников, что позволит получать информацию как о физических свойствах исследуемых объектов (например, температуре и массе), так и об их химическом составе. (Фото Chris Gunn):

10. Испытания солнцезащитного экрана, 10 июля 2014. (Фото Chris Gunn):


Испытания солнцезащитного экрана

Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря «Джеймсу Уэббу» ожидается настоящий прорыв в экзопланетологии — возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет.

11. Инженеры тестируют в камере. систему подъема телескопа, 9 сентября 2014. (Фото Chris Gunn):

12. Исследование зеркал, 29 сентября 2014. Шестиугольная форма сегментов была выбрана не случайно. Она обладает высоким коэффициентом заполнения и имеет симметрию шестого порядка. Высокий коэффициент заполнения означает, что сегменты подходят друг к другу без зазоров. Благодаря симметрии 18 сегментов зеркала можно разделить на три группы, в каждой из которых настройки сегментов идентичны. Наконец, желательно, чтобы зеркало имело форму, близкую к круговой — для максимально компактного фокусирования света на детекторах. Овальное зеркало, например, дало бы вытянутое изображение, а квадратное послало бы много света из центральной области. (Фото Chris Gunn):


Исследование зеркал

13. Очистка зеркала сухим льдом из двуокиси углерода. Тряпками здесь никто не трет. (Фото Chris Gunn):


Очистка зеркала сухим льдом из двуокиси углерода

14. Камера A — это гигантская испытательная камера с вакуумом, которая будет моделировать космическое пространства при испытаниях телескопа «Джеймса Уэбба», 20 мая 2015. (Фото Chris Gunn):

15. 31 декабря 2015 года. Установлено 11 зеркал. (Фото Chris Gunn):

16. А 2 марта 2016 года установленных зеркал было уже 18. (Фото Chris Gunn):

17. Размер каждого из 18 шестигранных сегментов зеркала составляет 1.32 метра от ребра до ребра. (Фото Chris Gunn):

18. Масса непосредственно самого́ зеркала в каждом сегменте — 20 кг, а масса всего сегмента в сборе — 40 кг. (Фото Chris Gunn):

19. Для зеркала телескопа «Джеймса Уэбба» используется особый тип бериллия. Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1.3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента. (Фото Chris Gunn):

20. Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку. (Фото Chris Gunn):

21. По завершению обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6—29 мкм, и готовый сегмент проходит повторные испытания при криогенных температурах. (Фото Chris Gunn):

22. Работа над телескопом в ноябре 2016 года. (Фото Chris Gunn):

23. НАСА завершило сборку космического телескопа «Джеймс Уэбб» в 2016 году и приступило к его испытаниям. Это снимок от 5 марта 2017 года. На длинной выдержке техники выглядят призраками. (Фото Chris Gunn):

24. Транспортировка телескопа в Хьюстон, 7 мая 2017 (Фото Chris Gunn):


Транспортировка телескопа в Хьюстон

25. Начинаются новые испытания, 20 мая 2017. (Фото Chris Gunn):

26. Дверь в ту самую камеру А с 14-й фотографии, в которой моделируется космическое пространство. (Фото Chris Gunn):

27. Телескоп «Джеймс Уэбб» внутри камеры А, 19 ноября 2017 . (Фото Chris Gunn):


Телескоп «Джеймс Уэбб» внутри камеры А

28. Текущие планы предусматривают, что телескоп будет запущен с помощью ракеты «Ариан-5» весной 2019 года. Отвечая на вопрос о том, что ученые ожидают узнать с помощью нового телескопа, ведущий научный сотрудник проекта Джон Мэтер сказал: «Надеюсь, мы найдем что-то, о чем никто ничего не знает». (Фото Chris Gunn):

Самый большой в мире телескоп заработал в Китае — Российская газета

Стоимость крупнейшего в мире радиотелескопа диаметром 500 метров около 170 миллионов долларов. После трехлетних испытаний он официально введен в эксплуатацию. Его площадь как у 30 футбольных полей, а периметр составляет 1,6 километра.

Одна из его главных задач - помочь раскрыть тайны о "детстве" и эволюции Вселенной. Дело в том, что единственный способ изучать Вселенную в самом начале ее развития - по радиоизлучению, поскольку звезд тогда еще не было, а значит, оптического излучения тоже. Зато было электромагнитное излучение, в том числе и в радиодиапазоне. Радиоволны от космических объектов слабо поглощаются и почти беспрепятственно добираются до Земли. И вот здесь поле работы для мощных радиотелескопов.

За два года испытаний китайский телескоп уже выявил 102 новых пульсара, что больше, чем за тот же период обнаружили все научные группы в Европе и США. Пульсары - вращающиеся с высокой скоростью нейтронные звезды, которые испускают строго периодические импульсы электромагнитного излучения.

На создание гигантского телескопа ушло пять лет. Почти десять тысяч человек в провинции Гуйчжоу были вынуждены покинуть свои дома, чтобы этот проект был реализован.

Казалось бы, на китайском монстре наука уже могла бы и успокоиться. Но ученые уже смотрят дальше. На очереди самый большой в мире радиотелескоп SKA, который будет состоять из двух "половинок". Одну построят в Австралии, вторую - в ЮАР. Как такое возможно? Дело в том, что повышать разрешение радиотелескопа можно, как в Китае, увеличивая диаметр зеркала, а можно объединить несколько антенн. Именно второй вариант и выбран для SKA. В ЮАР построят сто тридцать три 15-метровые тарелки, объединенные с радиоинтерферометром, в Австралии - 512 станций по 256 антенн каждая. Координация работы такой армады антенн, управление ими - сложнейшие задачи. Однако ученые уверены, что она вполне решаема.

Этот телескоп будет искать новые космические объекты, в частности новые экзопланеты, а также ловить сигналы от внеземных цивилизаций.

Начало строительства намечено на 2021 год. Стоимость оценивается в 940 миллионов долларов.

Самые большие и мощные телескопы в мире.

Это страница о самых больших телескопах, о самых первых и о самых мощных телескопах в мире.. Как смотреть "невооружённым" взглядом мы все знаем, а вот что значит "вооружённым" - всегда любопытно. Интересно же узнать, какими мощностями обладает человечество для проникновения в безну Вселенной.
Между тем, вопрос какой же телескоп самый мощный, большой и зоркий - не такой простой...
Самые большие оптические телескопы
Самые большие радиотелескопы
Самый мощный телескоп
Самый лучший телескоп
Самые первые телескопы

Самые большие оптические телескопы

Cамый большой телескоп, точнее их даже три. Первые два - это телескопы KECK I и KECK II в обсерватории Mauna Kea на Гавайях, США. Построены в 1994 и 1996 гг. Диаметр их зеркал - 10 м. Это самые большие телескопы в мире в оптическом и инфракрасном диапазонах. KECK I и KECK II могут работать в паре, в режиме интерферометра, давая итоговое угловое разрешение, как у 85-метрового телескопа!
Именно за счёт режима интерферометра эта пара телескопов занимает первое место в мире по многим оптическим параметрам, которые нужны астрономам.

И ещё один такой же испанский телескоп GTC построен в 2002 г. на Канарских островах. Большой Канарский телескоп (Gran Telescopio CANARIAS (GTC)). Он расположен в обсерватории Ла-Пальма, на высоте 2400м. над уровнем моря, на вершине вулкана Мучачос. Диаметр его зеркал - 10,4м., то есть чуть больше, чем у KECK-ов. Похоже, что самый большой одиночный телескоп всё-же именно он.

В 1998 г. несколько европейских стран построили в горах Чили "Очень Большой Телескоп" - Very Large Telescope (VLT). Это четыре телескопа с зеркалами по 8,2 м. Если все четыре телескопа работают в режиме одного целого, то яркость получаемого изображения - как у 16-метрового телескопа. Снимок ESO.

Так же нужно упомянуть Большой Южноафриканский Телескоп SALT с зеркалом 11х9,8м.
Это самый большой телескоп в Южном полушарии.
Координаты: 32°22′33″ ю. ш. 20°48′38″ в. д.
Этот мощный телескоп расположен на высоте 1783 метров над уровнем моря, в 370 километрах к северо-востоку от Кейптауна, возле маленького городка Сутерланд.
Его действительно полезная зеркальная поверхность меньше диаметра в 10м.
(данных о полезной площади KECK-ов и GTC у меня нет).

Самый большой телескоп в России - Большой Телескоп Альт-Азимутальный (БТА).
Расположен он в Карачаево-Черкесии.
Диаметр его зеркала БТА - 6 м. Построен в 1976 г. С 1975 по 1993 гг. являлся самым большим телескопом в мире.
Сейчас он входит лишь во вторую десятку самых мощных телескопов мира.
Телескоп интересен тем, что обладает самым большим монолитным зеркалом. После него все зеркала для гигантских телескопов стали изготовлять сборными, то есть состоящими из отдельных элементов.

То есть, за звание самого большого телескопа в мире могут бороться несколько упомянутых установок. В зависимости от того, что же считать самым важным при определении самого большого и мощного телескопа: диаметр одиночного зеркала, угловое разрешение, яркость изображения или количество зеркал.

Самые большие радиотелескопы

Не надо забывать и о радиотелескопах. Они гораздо больше оптических телескопов и дают изображение объектов в радиодиапазоне, причём с угловым разрешением, которое оптическим телескопам и не снилось. (одна беда - мягко говоря, далеко не все объекты испускают радиоволны...)

Радиотелескоп FAST, диаметром 500 метров, расположен в китайской провинции Гуйчжоу. Запущен в сентябре 2016 года. Как и радиотелескоп в Аресибо, он расположен в горной котловине. Высота - 1000м над уровнем моря, в отдалённой местности. Это самый большой телескоп в мире с заполненной апертурой (со сплошным зеркалом), превосходящий телескоп в Аресибо как по скорости сканирования, так и по "чувствительности". Каждый элемент зеркала может поворачиваться, что позволяет сканировать небо с отклонением ±40° от зенита.

Телескоп в обсерватории Аресибо в Пуэрто-Рико имеет сферическую чашу диаметром 304,8 м. Работает с длинами волн от 3 см. до 1м. Построен в 1963 году. Он был самым большим телескопом с одиночным зеркалом с 1963 по 2016 г.

Летом 2011 года Россия наконец смогла запустить космический аппарат "Спектр-Р", космическую составляющую проекта "Радиоастрон".
Этот космический радиотелескоп способен работать в связке с наземными телескопами в режиме интерферометра. Угловое разрешение телескопа (и его полезное увеличение) зависит от двух самых удалённых точек его зеркала или линзы.
В проекте Радиоастрон одной из этих точек являются наземные телескопы. А вторая точка - вращающися по вытянутой орбите вокруг Земли космический аппарат "Спектр-Р" с радиоантеной. За счёт того, что в апогее он удаляется от Земли на расстояние 350000 км., его угловое разрешение может достигать всего лишь миллионных долей угловой секунды - в 30 раз лучше наземных систем!
Среди радиотелескопов, это самый лучший телескоп по угловому разрешению.

Самый мощный телескоп

Так какой же телескоп самый мощный? Ответить невозможно, поскольку в одних случаях важнее угловое разрешение, в других - световая мощность... а есть ещё инфракрасный, радио-, ультрафиолетовый, рентгеновский диапазоны...

Если ограничиться одним лишь видимым диапазоном, то одним из самых мощных телескопов будет знаменитый космический телескоп имени Хаббла. За счёт почти полного отсутствия влияния атмосферы, при диаметре всего 2,4 м., его разрешающая способность в 7-10 раз выше, чем была бы у него же, будь он размещён на Земле.

А теперь представьте себе, какое изображение давали бы самые большие и мощные оптические телескопы Земли KECK I и II или VLT, если бы были размещены например на Луне, где нет даже следов земной атмосферы! Поэтому астрономы и грезят о космических обсерваториях, расположенных на спутниках планет...

В 2018 году на смену "Хабблу" должен прийти ещё более мощный телескоп "Джеймс Уэбб" - JWST. Это совместный проект США, Канады и Европейского космического агентства.
Зеркало телескопа "Джеймс Уэбб" должно состоять из нескольких частей и иметь диаметр около 6,5 м. при фокусном расстоянии 131,4 м.
Этот следующий самый мощный космический телескоп планируется разместить в постоянной тени Земли, в точке Лагранжа L2 системы Солнце-Земля.
Срок работы Телескопа Джеймс Уэбб первоначально определён в 5-10 лет. Запуск много раз откладывался. Сейчас ожидается, что телескоп будет запущен в марте 2021 года.

Самый лучший телескоп

Какой же телескоп будет самым лучшим?
У каждого стационароного телескопа угол обзора неба ограничен широтой, на которой он расположен. Поэтому, когда речь заходит не просто о самом большом и мощном телескопе в мире, а о прицельном рассматривании какой-то отдельной галактики, нужно определить, в какой телескоп можно получить самое лучшее изображение. Ведь в этом случае нам нужен не просто самый большой телескоп в мире, а тот, который сможет дать самую лучшую "картинку" данного объекта.
Самым лучшим телескопом в мире в данном случае будет тот, в чьё поле зрения этот объект не только попадает, но для которого этот объект будет расположен как можно выше по отношению к горизонту для уменьшения искажений, вызванных земной атмосферой и пылью. Естественно, что должна учитываться возможная засветка от городов и чистота самой отмосферы. Поэтому при выборе расположения телескопов выбирают высокогорные районы с чистым воздухом, выше слоя облаков.
Например, если нужно рассмотреть какой-то объект около Южного полюса небесной сферы, то может получиться так, что мощнейшая пара телескопов KECK I и II его либо не увидит (объекты расположены слишком низко над горизонтом), либо выдаст довольно "средненькое" по качеству изображение.
VLT, который расположен южнее и даст уже гораздо лучшую "картинку".

Кстати, самым лучшим телескопом в данном случае неожиданно может оказаться гораздо более скоромный телескоп, расположенный на полярной станции в Антарктиде. Теоретически он может выдать пусть не такое же хорошее, но вполне сравнимое по качеству изображение - просто потому, что для него объект будет расположен довольно высоко над горизонтом.
Конечно, с 16-метровым суммарным зеркалом VLT тягаться тяжело. Но, если учесть гораздо меньшие искажения из-за более тонкого слоя атмосферы и в сотни раз меньшую цену оборудования, то...

Самые первые телескопы

Самый первый телескоп в мире был построен Галилео Галилеем в 1609 г. Это линзовый телескоп - рефрактор.
Хотя, если быть совсем точным, то это была скорее подзорная труба, которую изобрели за год до этого. А Галилей был первым, кто решил посмотреть в эту трубу на Луну и планеты, и у кого хватило образованности оценить увиденное.
В качестве объектива, у самого первого телескопа была одна собирающая линза, а окуляром служила одна рассеивающая.
Телескоп Галилея имел малый угол зрения, сильный хроматизм и всего лишь трёхкратное увеличение (потом Галилей довёл его до 32 крат).
В силу конструкции и технологий того времени, апертура у первого телескопа была совсем маленькая. Соответственно, в целях астрономии и наблюдать можно было только что-то достаточно яркое - Луну например.

Кепплер расширил угол зрения, заменив в окуляре рассеивающую линзу на собирающую. Но, хроматизм остался. Поэтому в первых телескопах-рефракторах с ним боролись довольно простым способом - уменьшали относительное отверстие, то есть увеличивали фокусное расстояние.

Например самый большой телескоп Яна Гевелия имел в длину 50 метров! Он подвешивался на столбе и управлялся канатами. Один из первых самых больших телескопов - знаменитый телескоп "Левиафан" ("the Leviathan of Parsonstown"). Он был построен в 1845 году, в замке лорда Оксмантоуна (Уильяма Парсонса, графа Росса) в Ирландии. 72-дюймовое зеркало расположено в трубе длиной 60 футов. Труба перемещалась почти только в вертикальной плоскости, но ведь небосвод вращается в течение суток ;-). Впрочем, небольшой запас хода по азимуту был - можно было вести объект в течение одного часа.
Зеркало было изготовлено из бронзы (медь и олово) и весило 4 тонны, с оправой - 7 тонн. Разгрузка такой махины делалась на 27 точек. Было изготовлено 2 зеркала - одно сменяло другое по мере возникновения нужды в переполировке, поскольку бронза быстро темнеет в Ирландском сыром климате.
Самый большой телескоп того времени приводился в движение паровой машиной через сложную систему рычагов и передач, что требовало трёх человек для контроля перемещений.
Он проработал вплоть до 1908 г., будучи самым большим телескопом в мире. К 1998 г. потомки Росса построили копию "Левиафана" на старом месте, которая доступна для посетителей. Впрочем, зеркало копии алюминиевое, а привод управляется гидравликой и электричеством...
   или расскажите друзьям:  

Самые большие и мощные телескопы в мире

Вопрос о том, есть ли в мире самый большой и мощный телескоп, задают и взрослые, и дети, интересующиеся астрономией. Любому человеку может прийти в голову мысль о том, что чем больше и мощнее инструмент, тем «круче» и шире его возможности. Но так ли это на самом деле?

Существует ли самый мощный телескоп в мире?

Сама постановка вопроса в данном случае не совсем корректна. Сразу хотелось бы сказать, что не стоит разочаровываться по этому поводу. В мире существует много разных телескопов (как любительских, так и профессиональных), каждый из которых предназначен для выполнения определённых задач и функций.

Любительские оптические инструменты работают в видимом диапазоне света, в то время как сложнейшая профессиональная техника может наблюдать объекты в невидимых спектрах:

  • рентгеновском;
  • инфракрасном;
  • ультрафиолетовом.

Хороший компактный любительский телескоп, изготовленный по схеме Д.Д. Максутова, прекрасно покажет наблюдателю Луну и другие планеты Солнечной системы. Более тяжёлый и сложный в плане юстировки и применения зеркальный рефлектор Ньютона позволит увидеть удалённые объекты.

Если говорить о профессиональных моделях, в качестве примера можно привести знаменитый космический телескоп «Хаббл».

Это зеркальный инструмент с диаметром объектива 2,4 м и высокой разрешающей способностью, что позволяет ему наблюдать звёздные скопления и туманности, расположенные очень далеко от Земли и фотографировать их без атмосферных и тепловых помех. «Хаббл», как и другие космические телескопы, работает за пределами земной атмосферы. Пожалуй, это до сих пор один из лучших космических телескопов в мире - кстати, не очень большой по размерам.

Следует также делать различия между задачами наблюдений с Земли и космическими исследованиями. Более того, понятия «мощность» в оптике не существует. Корректно будет говорить о таких параметрах:

  • светосиле;
  • кратности;
  • проницающей способности.

Итак, у каждого телескопа свои задачи. Если инструмент успешно их выполняет, его можно считать одним из лучших в своём роде, но никак не «самым мощным в мире».

В Пулковской обсерватории в Санкт-Петербурге до сих пор прекрасно работает большой оптический телескоп-рефрактор с уникальной цейссовской оптикой.

Диаметр его объектива составляет 26 дюймов (около 65 см). Это полностью автоматизированный телескоп, которым астрономы управляют с помощью компьютера. Его можно считать одним из лучших телескопов в своём роде. Например, с его помощью пулковские астрономы отслеживают динамику движения визуально двойных звёзд. Большой рефрактор вместе с научными сотрудниками, которые работают на нём, активно участвует в международных наблюдательных программах и вносит огромный вклад в мировую астрономическую науку.

А самый большой телескоп в мире существует?

Любители огромных телескопов могут радоваться и ликовать: да, он, действительно, существует, более того: его сконструировали совсем недавно, в 2016 году. Речь идёт о радиотелескопе, площадь которого составляет около 30 футбольных полей, а апертура — целых 500 м! Он был построен в Китае и считается самым большим радиотелескопом в мире.

Выглядит такая конструкция в виде огромной чаши, сделанной из элементов, последовательно соединённых между собой. Чаша радиотелескопа изготовлена из металла или зеркала. Её задача- отражать радиоволны и направлять их к облучателю, настроенному на ту или иную длину волны. Говорят, что одной из его задач будет поиск сигналов с других планет.

Конечно, внешний вид радиотелескопа не имеет ничего общего с классической подзорной трубой, но именно такая конструкция позволяет строить воистину огромные, уникальные и полезные технические новинки.

 

Лучшие телескопы 2020 года: лучший выбор для начинающих, наблюдающих за планетами, астрофотографии и универсалов

Покупка лучшего телескопа, отвечающего вашим потребностям, не оказывающего негативного влияния на ваши финансы, - это баланс.

Вы можете выбрать наиболее эффективный и недорогой телескоп, но это может оказаться слишком сложным для новичка. Конечно, другая крайность заключается в том, что вы тратите на телескоп так мало, что в итоге получаете бесполезную игрушку.

Хорошая отправная точка - это знать, сколько вы хотите потратить и что вам больше всего нравится в наблюдении за небом: наблюдение за планетами вблизи, вглядывание в глубокий космос на галактики и туманности, увлечение астрофотографией или все остальное? Также стоит подумать, останется ли у вас интерес к наблюдению или фотографии надолго - если вы не уверены, бинокль может стать для вас отличным выбором.

Мы выбрали самые лучшие телескопы для начинающих, наблюдающих за планетами, астрофотографии и универсальных телескопов для различных бюджетов и от ведущих производителей, таких как Celestron, Sky-Watcher, Meade Instruments и Orion.

Лучшие телескопы для начинающих

(Изображение предоставлено Orion)

Orion SkyScanner 100 Reflector

Оптическая конструкция: Reflector | Тип крепления: Dobsonian (настольная версия) | Диафрагма: 3,94 дюйма (100 мм) | Фокусное расстояние: 15.75 дюймов (400 мм) | Максимальное полезное увеличение: 200x | Наименьшее полезное увеличение: 14x | Поставляемые окуляры: 10 мм, 20 мм | Вес: 6,17 фунта (2,8 кг) (настольная версия)

Компактный и простой в использовании

Яркие, четкие изображения

В собранном виде

Настольный, не во всех версиях есть штатив

Приличный размер диафрагмы и хорошее качество оптики по цене, Orion SkyScanner 100 настроен- до, чтобы облегчить астрономию для новичка.Вы сможете получить очень хороший вид на планеты, луну, туманности и более яркие галактики, а фокусное отношение f / 4 гарантирует яркие изображения целей, которые вы выбираете для наблюдения.

Также в коробке находится программное обеспечение Starry Night, которое поможет вам выбрать цели и определить их местоположение в ночном небе. Два окуляра - 20 мм и 10 мм - поставляются в комплекте с телескопом, обеспечивая увеличение 20x и 40x.

Для начинающего телескопа прицелы были захватывающими и отличались четкостью и контрастностью.Особо выделяются поверхность Луны и кольца Сатурна, хотя из-за широкого поля зрения стоит помнить, что цели через окуляр будут маленькими. То же самое можно сказать о «слабых нечетких точках», таких как Галактика Андромеды (Мессье 31), которые выглядят как яркие пятна даже при некоторой степени светового загрязнения.

В Orion SkyScanner 100 используется прочное настольное крепление, которое качается по осям высоты и азимута, поэтому наблюдателям необходимо убедиться, что они используют прочный стол для стабильных наблюдений за ночным небом.Поворот - очень плавный процесс с этим телескопом, некоторые модели SkyScanner 100 оснащены штативом.

Компания Orion предоставила четкое руководство, в котором объясняется, как использовать отражатель, а также прикреплять и откалибровать искатель с красной точкой EZ Finder II. Однако, учитывая, что телескоп поставляется в собранном виде прямо из коробки, маловероятно, что наблюдателю будет сложно его собрать и использовать.


(Изображение предоставлено Celestron)

Celestron StarSense Explorer LT 114AZ

Тип: Отражатель | Тип крепления: Альт-азимутальный | Диафрагма: 4.49 дюймов (114 мм) | Фокусное расстояние: 39,37 дюйма (1000 мм) | Максимальное полезное увеличение: 269x | Наименьшее полезное увеличение: 16x | Поставляемые окуляры: 10 мм, 25 мм | Вес: 10,41 фунта. (4,72 кг)

Простота установки и юстировки

Хорошее введение в астрофотографию

Предлагает цели для наблюдения

Отсутствует компьютеризированная монтировка

Celestron StarSense Explorer LT 114 является отличным телескопом для новичков, но может понравиться любителям неба среднего уровня. тоже - особенно те, кто хочет тратить меньше времени на настройку и больше на наблюдение.Сборка занимает менее 20 минут.

В этот отражатель встроена технология StarSense компании Celestron, которая обеспечивает простой вариант юстировки телескопа и позволяет встроенной системе GoTo определять, в каком направлении указывает инструмент. Чтобы использовать эту технологию, все, что нужно сделать наблюдателю за небом, - это загрузить приложение StarSense и сделать снимок смартфона через окуляр, и приложение определит, какие звезды находятся в поле зрения телескопа, чтобы рассчитать ориентацию астронома.

Двигаясь к Юпитеру, мы использовали окуляр 10 мм, чтобы рассмотреть газового гиганта. Виды четкие, но вам понадобятся несколько окуляров и фильтров, чтобы различать окраску атмосферных полос. Самые большие луны планеты видны как четкие, острые светящиеся точки. Вид на Луну, Венеру и скопление улей (Мессье 44) также радует с хорошей четкостью.

Прелесть серии Celestron StarSense заключается в том, что вы можете читать литературу, предлагаемую приложением для каждой наблюдаемой цели.Перемещаясь от одной цели к другой, мы обнаружили, что StarSense Explorer LT 114 - это прочный комплект, работающий без сбоев. Одним из незначительных недостатков является то, что наблюдателям необходимо вручную толкать телескоп, так как моторизованная монтировка в комплект не входит.

Благодаря большой апертуре и качественной оптике, типичной для продуктов Celestron, вам будет сложно найти такой же хороший и простой в использовании телескоп для начинающих по той же цене.


(Изображение предоставлено: Meade Instruments)

Meade ETX90 Observer

Оптическая конструкция: Максутов-Кассегрен | Тип крепления: Вилочное крепление с электроприводом | Диафрагма: 3.54 дюйма (90 мм) | Фокусное расстояние: 49,21 дюйма (1250 мм) | Максимальное полезное увеличение: 180x | Поставляемые окуляры: 9,7 мм, 26 мм | Вес: 18,96 фунта. (8,60 кг)

Простота сборки

Хорошая оптика

GoTo с хорошей базой данных

Небольшое снижение яркости оптики

Справедливости ради стоит сказать, что если вы новичок, вы не хотите тратить драгоценное Пора собирать телескоп, когда можно было бы использовать эти моменты для наблюдений.Телескоп для отличного новичка - это тот, который быстро и легко построить и откалибровать - конечно же, ETX90 Observer от Meade Instruments.

Оптика ETX90 Observer обеспечивает четкое и четкое изображение хорошего выбора целей благодаря покрытию со сверхвысоким светопропусканием. Яркие виды Луны и колец Сатурна могут быть получены с захватывающими дух деталями и контрастом, в то время как ледяные гиганты Уран и Нептун также могут быть выделены 3,5-дюймовым объективом как зелено-голубая и ледяная голубая звезда.

Новичкам будет приятно узнать, что ETX90 Observer также может с легкостью обнаруживать яркие объекты дальнего космоса. Звездные скопления, избранные туманности и галактики находятся в пределах досягаемости, и мы, в частности, поражены видами Галактики Андромеды (Мессье 31) через телескоп. В углу поля зрения присутствует некоторая степень виньетирования, из-за которой яркость некоторых целей немного снижается, но это не умаляет предлагаемых потрясающих прицелов.

Телескоп устанавливается на прочное двухплечевое вилочное крепление, которое в сочетании с портативным компьютерным контроллером GoTo AudioStar (содержащим базу данных из более чем 30 000 астрономических объектов) позволит вам быстро начать работу и смотреть на ночное небо. .Вам потребуется дополнить Meade ETX90 Observer дополнительными принадлежностями, чтобы увидеть большинство целей, предлагаемых базой данных.

Небольшая критика в настройке заключается в том, что с ручного контроллера трудно читать при слабом освещении - убедитесь, что вы используете красный фонарик, чтобы защитить свое зрение, адаптированное к темноте. Мы также рекомендуем приобрести силовой бак на 9-12 В, чтобы прибор постоянно работал во время наблюдений (и вместо батарей).

В целом сборка крепкая, пара окуляров - 9.7 мм и 26 мм - поставляются вместе с искателем красной точки, жестким футляром для переноски, мягкой сумкой для штатива и программным обеспечением планетария. Окуляр 9,7 мм, обеспечивающий 129-кратное увеличение, позволяет оптической системе выйти за пределы максимального полезного увеличения, поэтому наблюдателям следует разумно использовать аксессуары Meade ETX90 Observer.

Связанный: Лучшие телескопы для начинающих 2020 и Лучшие телескопы для детей 2020

Лучшие универсальные телескопы

(Изображение предоставлено Celestron)

Celestron PowerSeeker 127 EQ

Оптический дизайн: Отражатель | Тип крепления: Экваториальное | Диафрагма: 5 дюймов (127 мм) | Фокусное расстояние: 39.37 дюймов (1000 мм) | Максимальное полезное увеличение: 300x | Минимальное полезное увеличение: 18x | Поставляемые окуляры: 4 мм, 20 мм, 3x Barlow | Вес: 22 фунта (9,98 кг)

Пакет с отличным соотношением цены и качества

Приличная оптика, с коллимацией

Очень хорошая общая конструкция

Аксессуары не самого лучшего качества

Этот отличный пакет от Celestron включает телескоп с пятидюймовым (127 мм) телескопом с апертурой по конкурентоспособной цене, что делает его идеальным для тех, кто поиск инструмента, который позволяет наблюдателю за небом заниматься наблюдением за Солнечной системой и целями дальнего космоса, не вкладывая при этом больших денег.

Celestron PowerSeeker 127 EQ поставляется с двумя окулярами: 20 мм и 4 мм, которые работают с оптической системой и обеспечивают увеличение в 50 и 250 раз. Также есть 3-кратная линза Барлоу для утроения увеличения окуляров, хотя, по правде говоря, в этом нет необходимости - максимальное увеличение, которое может достичь телескоп, составляет 300x, поэтому, например, используйте Барлоу с окуляром 4 мм. , делает изображения размытыми.

Для большинства бюджетных телескопов эти аксессуары не самого высокого качества, поэтому рекомендуется заменить все их окулярами и линзами Барлоу на ваш выбор, не забывая при этом об оптических ограничениях PowerSeeker 127 EQ.

Skywatcher должны быть комфортно использовать экваториальную монтировку, элементы управления замедленным движением и обладать ноу-хау полярной настройки, прежде чем рассматривать PowerSeeker 127 EQ. Когда они есть, этот отражатель служит надежным инструментом для наблюдения - и тем более, если наблюдатель регулярно коллимирует зеркала. Как только это будет достигнуто, оптическая система будет предлагать впечатляющие небесные объекты.

Ручная экваториальная монтировка проста и справляется со своей задачей, но алюминиевый штатив немного шатается, поэтому во время наблюдений мы рекомендуем ставить инструмент в устойчивое положение.Однако с точки зрения денег недостатки этого отражателя незначительны, учитывая низкую цену.


(Изображение предоставлено: Orion)

Orion Starseeker IV 130

Оптическая конструкция: Отражатель | Тип крепления: Компьютеризированная альфа-азимутальная вилка | Диафрагма: 5,12 дюйма (130 мм) | Фокусное расстояние: 25,59 дюйма (650 мм) | Максимальное полезное увеличение: 154x | Наименьшее полезное увеличение: 19x | Поставляемые окуляры: 10 мм, 23 мм | Вес: 21.50 фунтов. (9,75 кг)

Использование и сборка интуитивно понятны

Хорошая общая конструкция

Четкие, высококонтрастные изображения

Невозможно наблюдать за всеми целями в базе данных

Все больше и больше телескопов используют технологию WiFi для суеты. бесплатный тур по вселенной, и Starseeker IV компании Orion - одна из таких комбинаций телескопа и монтировки. Сборка 5,12-дюймовых (130 мм) предложений этой серии интуитивно понятна, как и их выравнивание.

Загрузив приложение SynScan Pro на свой смартфон, которое затем настраивает сеть Wi-Fi с креплением GoTo, вы можете управлять телескопом и получать доступ к данным для более чем 42 000 небесных объектов.Если вы не хотите загружать приложение, в комплекте есть ручной контроллер, который выполняет ту же работу.

SynScan прост в использовании, и вы будете выбирать объекты, будь то планеты, звезды или объекты глубокого космоса, в кратчайшие сроки. Кольца Сатурна, атмосферные полосы Юпитера, тонкие туманности и яркие галактики, такие как Вертушка (Мессье 101) в Большой Медведице, находятся в пределах оптической досягаемости 5,12-дюймовой апертуры. Виды всех целей очень хорошего качества, без значительных оптических искажений или дефектов и исключительно резкие.

Тем не менее, наблюдатели должны учитывать, что Orion Starseeker IV 130 не может выделить каждую цель с той же четкостью и контрастностью, которая указана в базе данных GoTo. Мы рекомендуем поэкспериментировать с выбором окуляров и фильтров, чтобы максимально использовать его оптическую систему.


(Изображение предоставлено: Celestron)

Celestron NexStar Evolution 9.25

Оптическая конструкция: Schmidt-Cassegrain | Тип крепления: Компьютеризированная альфа-азимутальная вилка | Диафрагма: 9.25 дюймов (235 мм) | Фокусное расстояние: 92,52 дюйма (2350 мм) | Максимальное полезное увеличение: 555x | Наименьшее полезное увеличение: 34x | Поставляемые окуляры: 13 мм, 40 мм | Вес: 62,60 фунта. (28,39 кг)

Четкие изображения без дефектов

Простота настройки

Высококачественный дизайн

Не очень портативный

Оптическая система Celestron NexStar Evolution 9.25 считается одной из лучших, что у нас когда-либо имел удовольствие наблюдать за ночным небом.Благодаря отсутствию интерференции или оптических дефектов в поле зрения этот высококачественный прибор предлагает широкий выбор астрономических целей с впечатляющей четкостью и контрастом.

В комплект поставки входят искатель с красной точкой, два окуляра - 13 мм и 40 мм - и международный адаптер переменного тока, съемная камера и ручное управление для беспрепятственного процесса AutoAlign.

Одинарная вилка NexStar Evolution 9.25 - гордость инструмента, позволяющая наблюдателю перемещаться от одной цели к другой одним нажатием кнопки и питаемая от перезаряжаемой литий-ионной батареи в течение примерно 10 часов непрерывной работы. наблюдение на хорошем ходу.

В монтировку встроена собственная сеть Wi-Fi телескопа, которая позволяет подключать инструмент и управлять им через приложение Celestron SkyPortal (которое можно бесплатно загрузить на iOS и Android). Будучи моторизованным, монтировка способна отслеживать объекты, когда они движутся по небу, что делает NexStar Evolution 9.25 незаменимым помощником для астрофотографии.

Если вы ищете полный тур по вселенной в высоком разрешении, то мы полностью рекомендуем этот GoTo опытным наблюдателям за небом с приличным бюджетом.Единственным недостатком является то, что NexStar Evolution 9.25 сложно транспортировать из-за его веса, а это означает, что наблюдатели учтут это, прежде чем планировать какие-либо поездки за пределы заднего двора - небольшой компромисс, учитывая надежную и высококачественную конструкцию телескопа.

Связано: Наш полный обзор телескопа Celestron NexStar Evolution 8

Лучшие компьютеризированные или GoTo телескопы

(Изображение предоставлено Meade Instruments)

Meade StarNavigator NG 114

Оптический дизайн: Ньютоновский рефлектор | Тип крепления: Высокоазимутальный моторизованный | Диафрагма: 4.5 дюймов (114 мм) | Фокусное расстояние: 39,37 дюйма (1000 мм) | Поставляемые окуляры: 9 мм, 26 мм | Вес: 14,7 фунта. (6,7 кг)

Включает компьютерный контроллер AudioStar

Простое высотно-азимутальное крепление

Очень хорошая четкость и контрастность

Штатив немного шаткий

Meade StarNavigator NG 114 представляет собой введение в мир наблюдения за небом GoTo необходимая вещь для наблюдателей за небом с ограниченным бюджетом. Ручной контроллер AudioStar предлагает информацию о более чем 30 000 астрономических объектов, а также четырехчасовые аудиотуры для 500 самых ярких объектов ночного неба - планет, крупных туманностей и галактик.

Сборка прибора проста, учитывая вес 14,7 фунта. (6,7 кг) StarNavigator NG 114 достаточно легок, чтобы без особых усилий переносить его по заднему двору. У Skywatcher есть выбор: питать сервопривод 12 В от 8 батареек AA или от внешнего источника - поскольку батареи имеют тенденцию быстро разряжаться в холодных условиях, мы рекомендуем инвестировать в последнее для непрерывных наблюдений с помощью StarNavigator.

Что касается оптического мастерства, у нас нет никаких претензий - особенно с учетом того, что предлагается в упаковке телескопа.Мы можем поместить в поле зрения растущую луну и, настроив фокусер, сфокусировать ее кратеры и лунную кобылу. Лунный фильтр предлагал еще лучшие прицелы. Поворачиваясь к области звездообразования, туманность Ориона (Мессье 42) также легко выделяется с помощью диафрагмы 4,5 дюйма (114 мм) - она ​​выглядит как пыльное пятно света со звездами, входящими в скопление Трапеции, ослепляющими ярким светом. ясность в сердце туманности.

Незначительным недостатком является шаткий алюминиевый штатив, поэтому мы рекомендуем поддерживать установку вручную во время поворота и в ветреную погоду.


(Изображение предоставлено: Celestron)

Celestron NexStar 6SE

Оптическая конструкция: Schmidt-Cassegrain | Тип крепления: Компьютеризированный альт-азимутальный одинарный вилочный рычаг | Диафрагма: 5,91 дюйма (150 мм) | Фокусное расстояние: 59 дюймов (1500 мм) | Максимальное полезное увеличение: 354x | Наименьшее полезное увеличение: 21x | Поставляемые окуляры: 25 мм | Вес: 30 фунтов. (9,5 кг)

Оптика StarBright XLT с многослойным покрытием

Высококачественная сборка

Простота установки и юстировки

Ограниченные окуляры

Линейка телескопов NexStar от Celestron имеет заслуженную репутацию благодаря отличной оптике и удобству в использовании сборка и множество функций, и NexStar 6SE является примером всего этого.

Апертура 5,91 дюйма (150 мм) - это шаг вперед по сравнению с Meade StarNavigator NG 114 с точки зрения способности собирать свет, а более 40000 астрономических объектов в базе данных ручного контроллера NexStar + означают, что у вас никогда не закончится новые цели для поиска. Тем не менее, наблюдатели должны помнить, что для их захвата потребуется добавить дополнительные окуляры, и даже в этом случае диафрагма не будет отображать все цели, перечисленные в базе данных, с большим количеством деталей.

NexStar 6SE предлагает режим тура, в котором телескоп направит вас к тщательно выбранным целям, будь то в определенном созвездии или по небу - фантастическая функция, если вы не можете решить, какие объекты наблюдать или хотите исследовать ночью. сокровища неба, которые вы никогда раньше не видели.

Технология SkyAlign, которую легко использовать, быстро направляет вас в правильном направлении, в то время как моторизованная монтировка имеет девять скоростей поворота, а также скорости звездного, солнечного и лунного слежения. Однако будьте осторожны: благодаря такой впечатляющей технологии NexStar 6SE быстро разряжает батареи, поэтому мы рекомендуем запитать установку от внешнего источника питания.

Устройства формирования изображений могут сначала быть недовольны его медленным фокусным расстоянием f / 10, ограничивающим NexStar 6SE в лучшем случае планетарным или лунным формирователем изображений, но есть возможность для более продвинутых пользователей отключить вторичное зеркало для своей камеры, с помощью меньший световой путь увеличивает фокусное отношение до удобной для астрофотографии f / 2.

Связано: Наш полный обзор Celestron NexStar 6SE


(Изображение предоставлено Sky-Watcher)

Sky-Watcher Flextube 300 SynScan Dobsonian

Оптическая конструкция: Parabolic Newtonian | Тип крепления: Dobsonian | Диафрагма: 12,01 дюйма (305 мм) | Фокусное расстояние: 59,01 дюйма (1500 мм) | Максимальное полезное увеличение: 600x | Наименьшее полезное увеличение: 43x | Поставляемые окуляры: 10 мм, 25 мм | Вес: 72 фунта.(32,66 кг)

Хорошо для слабых целей

Складной для легкой транспортировки

Долговечность

Тяжелая

Чем больше апертура вашего телескопа, тем больше света он будет собирать, что позволит вам разрешить более мелкие детали в астрономических координатах. объекты и заглянуть глубже во Вселенную. Этот складной Dobsonian от Sky-Watcher с 12-дюймовым (305 мм) объективом соответствует ярлыку «легкое ведро».

Dobsonian созданы из-за своей простоты, а благодаря возможности GoTo и моторизованной качающейся альто-азимутальной установке, управляемой ручным контроллером SynScan, получение великолепных видов ночного неба и калибровка телескопа никогда не были такими простыми.

В базе данных предлагается более 40 000 целей, и мы должны сказать, что поиск слабых нечетких объектов был нашей первой задачей при использовании Sky-Watcher Flextube 300 SynScan. Галактика Андромеды (Мессье 31) - невероятное зрелище, с видимыми полосами пыли и ярко светящейся выпуклостью. Его галактики-спутники также видны в поле зрения в виде точек света.

С соотношением фокусных расстояний f / 4,9 этот Добсон достаточно быстр, чтобы формирователи изображений могли использовать все фотоны, которые он соберет.Приложив немного навыков, вы сможете делать потрясающие снимки с помощью этого телескопа.

Несмотря на то, что Sky-Watcher Flextube 300 SynScan тяжелый, его складная конструкция позволяет легко поместиться в багажник автомобиля, когда возникает необходимость поискать парки с темным небом или посетить звездные вечеринки.

У него внушительная цена, но, учитывая апертуру, качество изображения и возможности GoTo Sky-Watcher Flextube 300 SynScan, его необходимо покупать любителям.

Лучшие телескопы для наблюдения за планетами

(Изображение предоставлено: Orion)

Orion Observer II 70 Refractor

Оптическая конструкция: Refractor | Тип крепления: Альт-азимутальный | Диафрагма: 2.76 дюймов (70 мм) | Фокусное расстояние: 27,56 дюйма (700 мм) | Максимальное полезное увеличение: 140x | Наименьшее полезное увеличение: 10x | Окуляры в комплекте: 10 мм, 25 мм | Вес: 11,0 фунтов. (4,99 кг)

Хорошее соотношение цены и качества

Легкая конструкция

Четкие виды солнечной системы

Легкие искажения цвета в оптике

Штатив мог бы быть лучше

Орион описывает Observer II 70 как «планетарный источник энергии» , а по цене и апертуре этот рефрактор проходит проверку.Поставляемый с аксессуарами, простым альт-азимутальным креплением и штативом, инструмент поставляется со всем необходимым для хорошего обзора ночного неба. Штатив не самого высокого качества, но по цене он, безусловно, справляется со своей задачей.

Виды Юпитера с его поясами и лунами, Сатурна и его колец, а также с помощью правильных окуляров даже крошечных сине-бирюзовых дисков далеких Урана и Нептуна - все это бросается в глаза. Orion Observer II 70 также показывает основные особенности поверхности Марса, когда Красная планета находится в оппозиции и наиболее удобна для наблюдений, а также Меркурий и фазы Венеры.Видно небольшое количество ложных цветов, но ожидается от телескопа этой ценовой категории - этот оптический дефект не портит наши обзоры.

Естественно, луна также захватывает дух через оптическую систему с кратерами Коперник и Тихо в фазе первой четверти, которые являются яркими моментами: виды четкие с большим контрастом. Несмотря на то, что AstroView 90 объявлен планетарным исполнителем, он также может обнаруживать некоторые из более ярких объектов дальнего космоса. Увеличенные виды звездного скопления Плеяды (Мессье 45) в Тельце захватывают дух и являются обязательными для наблюдателей, наблюдающих через этот инструмент.

Поставляемые окуляры приемлемого качества, хотя, как и в случае со всеми бюджетными телескопами, вы можете приобрести отдельные высококачественные аксессуары, чтобы еще лучше рассмотреть влияние Луны - мы также рекомендуем 2-кратную линзу Барлоу, чтобы удвоить увеличение, помня об оптических ограничениях Observer II 70.


(Изображение предоставлено Celestron)

Celestron Omni XLT 120

Оптическая конструкция: Рефрактор | Тип крепления: CG-4 экваториальное | Диафрагма: 4.02 "(102 мм) | Фокусное расстояние: 39,37" (1000 мм) | Максимальное полезное увеличение: 283x | Поставляемые окуляры: 25 мм | Вес: 43 фунта. (19,50 кг)

.

11 самых мощных телескопов, когда-либо построенных на этой планете

Только после изобретения телескопа мы смогли так близко исследовать невероятно удивительный и всегда захватывающий космос. Телескоп позволяет вблизи рассмотреть бесчисленные звезды и галактики, загадочные планеты и спутники, а также все, что окружает нашу завораживающую планету Земля и за ее пределами на огромных просторах Вселенной.

С тех пор, как Ганс Липперши изобрел первый телескоп в 1608 году, телескопы претерпели огромную эволюцию и по сей день.Национальные и международные космические агентства прошли долгий путь от рентгеновских телескопов до космического телескопа Хаббла в обход атмосферы и космического телескопа Джеймса Уэбба. В связи с тем, что мир астрономии претерпевает огромные потрясения по всему миру, теперь в телескопах используются огромные зеркала, адаптивная оптика и другие приемы, позволяющие заглянуть глубоко в космос и вернуться назад во времени.

Давайте посмотрим на самые мощные телескопы, которые когда-либо были построены, и те, которые мы увидим в ближайшем будущем.

1.Космический телескоп Джеймса Уэбба

Источник = Spacenews

Построенный НАСА при поддержке Европейского космического агентства и Канадского космического агентства, космический телескоп Джеймса Уэбба является инфракрасным телескопом и, как известно, в 100 раз мощнее знаменитого Хаббла. Его называют самым мощным телескопом из когда-либо созданных.

Source = "Космический телескоп Джеймса Уэбба (JWST)"

Его гигантское покрытое золотом зеркало шириной 21 фут на самом деле состоит из 18 зеркал меньшего размера, соединенных вместе.Его запуск запланирован на 2019 год. (14.1)

2. Космический телескоп Хаббла

Источник = Astronomynow

Названный в честь астронома Эдвина Хаббла, космический телескоп Хаббл был запущен 24 апреля 1990 года и с тех пор провел более 1,3 миллиарда наблюдений.

Source = "Space Videos"

Этот космический телескоп с зеркалом 7,9 футов является одним из самых больших и наиболее универсальных и производительных телескопов.Получая одни из самых подробных изображений в видимом свете, он позволил глубоко рассмотреть пространство и время. Несколько наблюдений Хаббла привели к открытиям в астрофизике, включая точный расчет скорости расширения Вселенной.

3. Космический телескоп Spitzer

Источник = НАСА

Космический телескоп Спитцера - это инфракрасный космический телескоп, который был запущен в 2003 году. Он использовался для проведения нескольких наблюдений, включая галактику Андромеды с триллионами звезд, что вдвое больше, чем у Млечного Пути.

4. Европейский сверхбольшой телескоп (E-ELT)

Источник = Eso

Европейский сверхбольшой телескоп был построен к 19 июня 2014 года. Его первый осветительный прибор запланирован на 2024 год. Полностью адаптивный и ограниченный дифракцией, он будет обеспечивать в 16 раз более четкие изображения, чем те, что получаются с телескопа Хаббла. Это поможет в детальном изучении планет вокруг других звезд, первых галактик Вселенной, огромных черных дыр и природы темного сектора Вселенной.

5.Космический телескоп Кеплера

Источник = Abcnews

Космический телескоп Кеплера, запущенный НАСА, - это охотник за экзопланетами, созданный для обнаружения планет размером с Землю, вращающихся вокруг других звезд. По состоянию на июнь 2017 года этот телескоп обнаружил 2335 подтвержденных планет и, добавив потенциальные планеты, его открытие экзомиров составляет 4034. Открытие Кеплером 10 планет, похожих на Землю, - одна из величайших и самых удивительных космических новостей 2017 года.

6. Сферический телескоп с пятисотметровой апертурой (FAST)

Источник = Interferencetechnology

Сферический телескоп с пятисотметровой апертурой - крупнейший в мире радиотелескоп, находящийся в эксплуатации.Расположенная во впадине Даводанг на юго-западе Китая, ее первый свет был достигнут в сентябре 2016 года. Ее задача - обнаруживать межзвездные молекулы, искать внеземной разум и проводить наблюдения пульсаров.

7. Гигантский Магелланов телескоп

Источник = Викимедиа

Giant Magellan Telescope - это чрезвычайно большой телескоп, который находится в стадии строительства и предназначен для наблюдения в инфракрасном и оптическом диапазоне. Когда в 2022 году произойдет первый свет, это будет крупнейшая в мире оптическая обсерватория.Предполагается, что его телескоп будет иметь разрешающую способность в 10 раз больше, чем телескоп Хаббла. (14.2)

8. Большой бинокулярный телескоп

Источник = Noao

Большой бинокулярный телескоп - это оптический телескоп, расположенный на горе Грэм в южной Аризоне. Один из самых совершенных и мощных оптических телескопов в мире, он имеет самый большой монолитный или несегментный

.

Лучший телескоп 2020 года | Астрономические телескопы для наблюдения за планетами

Это прекрасное время для жизни, если у вас есть интерес к небесным объектам. От межзвездных объектов, посещающих нашу Солнечную систему, до астрономов, получивших Нобелевскую премию за открытие экзопланет, история в астрономии творится на многих фронтах.

С относительно недорогим телескопом любой может заняться любительской астрономией, а с помощью нескольких простых дополнений можно также заняться астрофотографией.Прежде чем направить свой телескоп на спутники Юпитера или кольца Сатурна, вам нужно будет изучить основы покупки лучших телескопов для начинающих и узнать, как выбирать лучшие телескопы для наблюдения за планетами или для ваших конкретных интересов или целей астрофотографии.

Здесь мы предлагаем вам руководство о том, как купить лучшие любительские и профессиональные телескопы в 2019 году.

К счастью, когда речь идет о вариантах покупки телескопов для астрономов-любителей и энтузиастов астрофотографии, нет недостатка в вариантах.

Наш общий рейтинг №1

G Skyer AZ Астрономический рефракторный телескоп
  • Многослойная антибликовая синяя пленка
  • Твердый штатив из нержавеющей стали для стабильного обзора
  • Простота использования сборка и использование
  • Технология Sky align и система GoTo
  • Превосходная оптика и большая апертура
  • Идеально подходят для начинающих и профессиональных пользователей

Gskyer - одна из самых известных марок телескопов.Это немецкое производство, работающее в последние два десятилетия. Новички могут идеально использовать этот прицел до среднего и продвинутого уровня. С помощью этого прицела любой желающий может легко получить знания о звездах и планетах. Он очень прочен, поскольку его оптическая труба изготовлена ​​из алюминиевого сплава.

Он обеспечивает невероятную оптическую мощность и прямую призму изображения, так что вы можете легко использовать его. С помощью трубного кольца вы можете улучшить его крепление. Штатив из нержавеющей стали и альтазимутальное крепление упрощают использование, когда вам нужно улучшить фокусировку.Вы можете ясно видеть поверхность Луны, спутники Юпитера и кольца Сатурна.

.

Самый мощный телескоп в мире будет запущен в 2018 году

За прошедшие годы мы видели много больших и мощных телескопов, позволяющих нам исследовать другие галактики и за их пределами, но сейчас НАСА строит, как известно, самый мощный телескоп из когда-либо виденных. Этот новый телескоп даст ученым возможность стать свидетелями космических событий, которые произошли миллиарды лет назад, вероятно, до 13,5 миллиардов лет. Известный как космический телескоп Джеймса Уэбба (JWST), он будет в сто раз мощнее уже созданного космического телескопа Хаббла.Ожидается, что он будет запущен и достигнет максимальной функциональной мощности в течение следующих трех лет.

«На самом деле Уэбб будет смотреть на первые галактики Вселенной», - заявил на этой неделе журналистам в Центре космических полетов имени Годдарда НАСА в США ученый проекта Марк Клэмпин. «Мы также сможем с этими возможностями заглянуть в очень темные части Вселенной, где рождаются звезды».

Космический телескоп Джеймса Уэбба

Космический телескоп Джеймса Уэбба содержит примерно 6 зеркал.5 метров в диаметре. Это 6,5-метровое зеркало в три раза больше зеркала космического телескопа Хаббл, а также обладает примерно в семьдесят раз большей способностью собирать свет. JWST включает четыре спектрометра и камеры. Спектрометры используются для поглощения света и дальнейшего его разделения на спектральные составляющие. Он также может оцифровывать сигналы, которые являются функцией его длины волны, чтобы ученый мог легко их интерпретировать.

«У нас есть датчики на борту, оборудование на борту, которое позволит нам исследовать атмосферу экзопланет спектроскопически, так что мы сможем понять состав этих атмосфер», - сказал прессе Мэтт Гринхаус, ученый проекта JWST.«Мы можем добиться больших успехов в поисках жизни».

Ожидается, что этот телескоп будет запущен к октябрю 2018 года, то есть примерно через три года. Космический телескоп Джеймса Уэбба отличается от космического телескопа Хаббла тем, что Хаббл вращается вокруг Земли последние двадцать пять лет, но он собирается перейти к одной из точек Лагранжа, которая полностью выходит за пределы орбиты, по которой Хаббл вращается. Точка Лагранжа - это набор точек равновесия, пять из которых присутствуют в каждой системе Земля-Луна и равны 1.5 миллионов километров. Это позволяет ему находиться достаточно далеко от Солнца, чтобы оставаться прохладным и не слишком горячим. Он также защищает его от пропущенного излучения, а также «предотвращает ослепление его собственным инфракрасным светом», - сообщил Жан-Луи Сантини.

«Он будет следовать за Землей вокруг Солнца в течение года. Таким образом, он находится на центральной орбите Солнца, а не на орбите центра Земли», - сказал Гринхаус. «Так же, как Хаббл переписал все учебники, Уэбб перепишет [их] снова."

Для получения дополнительной информации посетите веб-сайт.

.

Самый мощный в мире радиотелескоп ОБЛАГАЕТСЯ в Пуэрто-Рико после десятилетий охоты на инопланетные сигналы из космоса (ФОТО) - RT USA News

Гигантский радиотелескоп в обсерватории Аресибо в Пуэрто-Рико рухнул, положив конец десятилетиям внеземных открытий. Телескоп ранее был поврежден и должен был закрываться.

820-тонная инструментальная платформа телескопа вырвалась из стальных тросов и врезалась в тарелку шириной 1000 футов (305 м) внизу в понедельник вечером, сообщил Национальный научный фонд (NSF) в твиттере во вторник.

Инструментальная платформа 305-метрового телескопа в обсерватории Аресибо в Пуэрто-Рико упала в одночасье. Сообщений о травмах не поступало. NSF работает с заинтересованными сторонами, чтобы оценить ситуацию. Наш главный приоритет - обеспечение безопасности. NSF опубликует более подробную информацию, когда они будут подтверждены. pic.twitter.com/Xjbb9hPUgD

- Национальный научный фонд (@NSF) 1 декабря 2020 г.

Обсерватория была закрыта с августа после того, как вспомогательный кабель оборвался и разорвал 100-футовую брешь в тарелке.После очередного обрыва кабеля в начале ноября NSF объявило, что его инженеры работают над выводом из эксплуатации гигантского телескопа.

До серии неудач финансирование телескопа в течение последнего десятилетия постоянно сокращалось, несмотря на протесты научного сообщества.

На фотографиях, сделанных сверху, тарелка была разложена и завалена обломками, а снимки с уровня земли показали, что опорные башни телескопа все еще стоят, но уже не поддерживают массивную платформу для инструментов.

Деннис Васкес через Facebook: Он сделал эти фотографии крушения обсерватории Аресибо. Вы можете увидеть обломки и остатки платформы и Григорианского купола. pic.twitter.com/xneOGSVFYi

- Уилберт Андрес Руперто (@ ruperto1023) 1 декабря 2020 г.

Всю свою жизнь я знал волшебное сооружение в тропическом лесу Пуэрто-Рико под названием Аресибо, где ученые изучали Вселенную и искали сообщения . Мне так грустно, что его больше нет. Фотографии до и после трагического крушения телескопа сегодня утром, сделанные @DeborahTiempopic.twitter.com/99ZEwacYyI

- Дэвид Гринспун (@DrFunkySpoon) 1 декабря 2020 г.

Первоначально разработанный для отслеживания советских спутников и баллистических ракет в 1950-х годах, объект в Аресибо был построен в начале 1960-х и вместо этого обратил внимание на космос. Телескоп, финансируемый NSF и NASA, был на переднем крае астрономических открытий более пяти десятилетий. Он использовался для определения периода вращения планеты Меркурий, доказательства существования нейтронных звезд, получения первого прямого изображения астероида и отслеживания загадочных радиовсплесков из самых дальних уголков космоса.

Данные из Аресибо использовались для поиска внеземной жизни с 1970-х годов, а в 1974 году телескоп использовался для съемки «сообщения Аресибо» на 25 000 световых лет в космос. Сообщение, состоящее из единиц и нулей, включало числа, фигурки, химические формулы и грубое изображение самого телескопа.

Огромные размеры телескопа и его культовая конструкция позволили использовать его в финальной сцене погони в фильме о Джеймсе Бонде 1995 года «Золотой глаз».

Понравилась эта история? Поделись с другом!

.

10 крупнейших телескопов на Земле: насколько они равны

Десять огромных телескопов на Земле

ESO / L. Calçada

Наземные телескопы следующего поколения получили приоритетное обозначение в долгожданном докладе Национальной академии наук. Они присоединятся к множеству существующих наземных телескопов и меньших космических телескопов, уже наблюдающих за сверхновыми звездами, галактиками и другими далекими объектами в звездном небе.

Три планируемых оптических телескопа в диапазоне 98 футов (30 метров) будут содержать одни из самых больших зеркал для сбора света от далеких космических объектов.И предлагаемый радиотелескоп затмил бы предшественников, используя множество антенных станций, чтобы создать общую площадь сбора в квадратный километр или 0,4 квадратных мили.

Вот десять настоящих и будущих гигантов среди наземных телескопов, которые позволяют ученым заглянуть в прошлую Вселенную во времени и пространстве.

Связано: Руководство по лучшим телескопам

Большой синоптический обзорный телескоп (LSST)

LSST

Новая наземная обсерватория, которая будет сканировать все доступное небо каждые три ночи из Чили, может увидеть первый свет 2014 г.Большой синоптический обзорный телескоп стоимостью 465 миллионов долларов предоставит астрономам лучший обзор того, как миллиарды слабых объектов звездного неба меняются с течением времени. Он также может решать вопросы, касающиеся природы темной энергии, и, возможно, отслеживать космические камни, которые могут столкнуться с Землей в будущем.

Оптический телескоп будет отображать каждую область неба 1000 раз за 10 лет с апертурой почти 28 футов (8,4 метра). Он представлял собой главный приоритет среди наземных проектов, намеченных на следующие 10 лет в десятилетнем обзоре Astro2010 Национальной академии наук.

Южноафриканский большой телескоп (SALT)

Консорциум SALT / Южноафриканский большой телескоп

Этот 30-футовый (9,2-метровый) телескоп представляет собой крупнейший наземный оптический инструмент в южном полушарии и специализируется на спектроскопических съемках. Главное зеркало состоит из 91 гексагонального зеркала, которые соединяются вместе, образуя большую гексагональную первичную обмотку - в отличие от телескопа Хобби-Эберли (HET) в Форт-Дэвисе, штат Техас.

Как и HET, SALT также имеет конструкцию с фиксированным углом, которая усложнила наблюдения с момента начала эксплуатации в 2005 году.Но инструмент все еще может видеть около 70 процентов неба, наблюдаемого из Сазерленда, Южная Африка.

Телескопы Кек I и II

Двойные 33-футовые (10-метровые) телескопы в обсерватории У. М. Кека представляют собой второй по величине оптический телескоп на Земле, расположенный недалеко от вершины Мауна-Кеа на Гавайях. Главное зеркало каждого инструмента состоит из 36 шестиугольных сегментов, которые работают вместе.

Keck I был введен в эксплуатацию в 1993 году, а всего через несколько лет - Keck II в 1996 году.Объединенная обсерватория помогла астрономам изучить такие события, как прошлогоднее воздействие на Юпитер. Кроме того, в 2004 году на большом телескопе была установлена ​​первая система адаптивной оптики с лазерным гидом по звездам, которая создает искусственное звездное пятно в качестве ориентира для коррекции атмосферных искажений при просмотре неба.

Gran Telescopio Canarias (GTC)

Gran Telescopio CANARIAS (GTC)

34-футовый (10,4-метровый) телескоп, расположенный на острове Ла-Пальма на Канарских островах в Испании, занял первое место как самый большой в мире наземный оптический телескоп в мире. 2009 г.Главное зеркало, состоящее из 36 шестиугольных сегментов, имеет одни из самых гладких поверхностей из когда-либо созданных.

У телескопа также есть несколько вспомогательных инструментов, таких как CanariCam, камера, способная исследовать инфракрасный свет среднего диапазона, излучаемый звездами и планетами. CanariCam также обладает уникальной способностью определять направление поляризованного света и использовать коронографию, чтобы блокировать яркий звездный свет и делать более слабые планеты более заметными.

Обсерватория Аресибо

NAIC - Обсерватория Аресибо, объект NSF

. 1963 г.Радиотелескоп Аресибо по-прежнему представляет собой самый большой телескоп с одной апертурой, когда-либо построенный, со сферическим отражателем, состоящим из 40 000 алюминиевых панелей, каждая размером 3 на 6 футов.

Огромный рефлектор делает Аресибо невероятно чувствительным радиотелескопом, способным навести на слабый радиоисточник всего за несколько минут наблюдения. К таким радиоисточникам относятся далекие квазары и галактики, излучающие радиоволны, которые достигают Земли только 100 миллионов лет спустя.

Атакама, большой миллиметровый / субмиллиметровый массив (ALMA)

ALMA (ESO / NAOJ / NRAO) / W.Гарнье (ALMA)

Один из крупнейших наземных астрономических инструментов представлен в виде 39-футовых (12-метровых) радиоантенн, которых к 2012 году будет 66, которые составят основную решетку ALMA. Каждая антенна весит более 100 тонн и требует огромных гусеничных машин, чтобы переместить ее на чилийскую равнину Чаджнантор на высоте 3 мили. Это в конечном итоге поможет сделать ALMA самым большим и чувствительным радиотелескопом из когда-либо существовавших, по крайней мере, до тех пор, пока не появится новый претендент.

Антенная решетка также может иметь различные конфигурации путем перемещения отдельных антенн.В компактной конфигурации все антенны должны быть размещены на площади менее 1000 футов в поперечнике или в расширенной конфигурации с максимальным расстоянием между антеннами почти 10 миль. Это позволит массиву изучать все, от космических «темных веков» миллиардов лет назад до процессов образования звезд и планет.

Giant Magellan Telescope (GMT)

Giant Magellan Telescope Observatory

Один из следующих наземных оптических телескопов будет иметь форму телескопа стоимостью 1 доллар.Гигантский Магелланов телескоп размером 1 миллиард с главным зеркалом длиной 80 футов (24,5 метра), состоящим из семи сегментов. Один сегмент длиной 8,4 метра будет располагаться посередине, окруженный шестью другими сегментами, имеющими уникальную изогнутую форму, похожую на форму картофельных чипсов.

Большое главное зеркало затмило бы нынешнее поколение телескопов от 26 до 33 футов (от 8 до 10 метров) и давало бы изображения примерно в 10 раз резче, чем космический телескоп Хаббла. При полном финансировании телескоп может найти пристанище в обсерватории Лас-Кампанас в Ла-Серена, Чили, и начать полноценную работу к 2024 году.

Тридцатиметровый телескоп (TMT)

Тридцатиметровый телескоп

Еще одним претендентом на звание самого большого оптического телескопа на Земле следующего поколения является Тридцатиметровый телескоп. Апертура 98 футов (30 метров) телескопа стоимостью 1,4 миллиарда долларов обеспечит более чем в 9 раз большую площадь сбора, чем у крупнейших оптических телескопов, таких как телескопы Кека, и может обеспечить в 12 раз более высокое разрешение, чем космический телескоп Хаббла.

Но TMT и другие очень большие оптические телескопы не заменят космические телескопы.Преемник Хаббла, космический телескоп Джеймса Уэбба НАСА, найдет цели для наземных гигантов, таких как TMT, для более подробного изучения. Тридцатиметровый телескоп должен присоединиться к телескопам Кека и другим инструментам на Мауна-Кеа на Гавайях и начать полноценную работу к 2025-2030 гг.

Массив квадратных километров (SKA)

SPDO / TDP / DRAO / Swinburne Astronomy Productions.

Продолжение радиотелескопов, таких как ALMA, - телескоп, способный собирать данные на площади более одного квадратного километра.Удачно названный Square Kilometer Array станет бесспорным королем радиотелескопов, имея в 50 раз большую чувствительность, чем любой из когда-либо построенных радиотелескопов. Такая мощность могла бы исследовать сигналы из молодой вселенной 12 миллиардов лет назад.

Текущие планы предусматривают либо 30 станций с площадью сбора данных 656 футов (200 метров) каждая, либо 150 станций, каждая из которых эквивалентна 295-футовому (90-метровому) телескопу. Южная Африка и Австралия уже начали борьбу за размещение у себя гиганта стоимостью 2 миллиарда долларов, строительство которого запланировано на 2020 год.Он стал одним из самых приоритетных проектов Европейского астронетического десятилетнего обзора наряду с Европейским сверхбольшим телескопом.

Европейский сверхбольшой телескоп (E-ELT)

ESO

Ни один из претендентов на наземный оптический телескоп в настоящее время не может соответствовать проектному предложению Европейского сверхбольшого телескопа. Его 138-футовое (42-метровое) зеркало позволило бы легко выйти за пределы Тридцатиметрового телескопа и гигантского Магелланова телескопа, а его длина достигала бы почти половины футбольного поля.Пять зеркал, состоящих из почти 1000 гексагональных сегментов, составят главное зеркало и дадут астрономам, работающим на Земле, самый резкий вид космоса в спектре визуального света.

Cerro Armazones в Чили в будущем станет домом для крупнейшего в мире оптического телескопа. E-ELT стоимостью 1,3 миллиарда долларов увидит первый свет примерно в то же время, что и его меньшие собратья следующего поколения в 2018 году.

.

Смотрите также