Интернет оптика что это такое


что это такое и чем лучше витой пары?

Всем привет! Электричество – это всего лишь один из возможных носителей сигнала в компьютерных сетях. Распространяться сигнал может с помощью радиоволн и света. Чтобы передавать световой импульс, нужно использовать светопроводящую материю, которой стало оптическое волокно. Благодаря оптоволокну передача данных вышла на новый уровень в развитии сетевой инфраструктуры. В рамках статьи можно найти ответ на главный вопрос, что такое оптоволоконный интернет.

СОВЕТ! Если вам станет мало данной статьи, то у нас есть ещё два разбора от нашего Бородача – смотрим тут и тут.

Что такое оптоволокно

«Световод» или «оптоволокно» – типичная нитевидная структура, состоящая из стеклянных или пластиковых материалов, позволяющая передавать свет на огромные расстояния. Скорость света, по сравнению со скоростью электронов, проходимых через медь, почти что безгранична.

Собранный вкупе пучок световодов под одну оболочку именуют: «волоконно-оптическим кабелем». Сеть из таких кабелей именуют: «волоконно-оптическими линиями связи» (ВОЛС). На ВОЛС перешли магистральные и канальные провайдеры и переходят по сих пор многие провайдеры «последней мили». Последние монтируют и обслуживают сети по городам. После настроек кабелей и сетевого оборудования, вы можете воспользоваться услугами, а «интернет-оптоволокно» в разы улучшит связь и скорость интернета.

Из чего состоит

Стекловолокно имеет прозрачный сердечник (внутри которого проходит свет) и оболочку (демпфер), препятствующую затуханию импульса и транспортировки этого импульса до адресата.

Сердечник (или ядро) оптоволокна делают из кварцевого стекла и акриловой смолы. Характеристики данного материала после изготовления:

  • Прочный;
  • Гибкий;
  • Высокая светопроницаемость;
  • Слабая чувствительность к внешним излучениям и смене температур.

В некоторых случаях оболочкой может выступать стекло и пластик. Но с более детальной информацией: из чего сделан конкретный волоконный кабель, – лучше ознакомится во время приобретения самого провода для интернета.

Виды

Оптические волокна (и сооруженные из них кабели) различают по виду и назначению:

  1. Одномодовые – стекловолоконные нити пропускают один световой сигнал (1 моду). Сердечник равен 7-10 мкм. Чем уже, тем на выходе меньше затухание луча. А из этого следует возможность передачи данных на дальние расстояния, хотя с меньшей пропускной способностью, чем у многомодовом.
  2. Многомодовые – оптоволоконные нити пропускают множество сигналов одновременно. Сердечник с большим диаметром 50-62,5 мкм влияет на быстрое затухание импульса. Поэтому высокая пропускная способность нивелируется короткими дистанциями.

Одномодовые кабеля используются в магистралях и каналах: внутригородского, меж городского, межгосударственного и межконтинентального назначения.  Благодаря дальности передачи сигнала (до 100 км без потери сигнала), и достаточной пропускной способности, их используют там, где важна надежность линии и непрерывность сигнала.

Многомодовые реализуют для схем связки устройств внутри помещений, на разных этажах, между корпусами (если расстояние не превышает 550 метров). Такое оптоволокно – частый гость в линиях связи центров по обработке данных.

Классификация

Для построения интернет сетей используются волоконно-оптические кабеля, классифицируемые:

  1. OS1 – одномодовый (сечение 9 мкм).
  2. OS2 – одномодовый широкополосный (сечение 9 мкм).
  3. OM1 – многомодовый (сечение 62,5 мкм).
  4. OM2 – многомодовый (сечение 50 мкм).
  5. OM3 – многомодовый высокоскоростной (сечение 50 мкм).
  6. OM4 – многомодовый оптимизированный (сечение 50 мкм).

Многоэтажные дома подключают к оптоволоконному интернету чаще всего проводами класса OM3 и OM4.

Сравнение оптоволокна и витой пары

Ethernet-кабель, который повсеместно используется для разведения проводной локальной сети состоит из медных проводков. Полностью перейти на оптоволокно провайдеры перейти не могут – по сравнению с LAN-кабелем, оптоволоконный боится изгибов. Поэтому обычный медный патч-корд до сих пор успешно применяется в сетевой инфраструктуре (особенно в домашних и офисных решениях).

Советую ещё более детально почитать про витую пару. Ну и конечно же про Wi-Fi.

Но, а что касается характеристик самого кабеля вот наглядная таблица.

ХарактеристикиОптический кабельВитая пара (медь)
Достижимая скорость связи (теория, без помех), Гбит/сOS1 – 40

OS2 – 100

OM3/OM4 – 100

Cat 5e – До 1

Cat 6/7 – До 10

Длинна линии без повторителей (теория), кмOS1 – 100

OS2 – 40

OM3 – 0,3

OM4 – 0,125

Любой кабель до 0,1
Физические свойстваХрупкий (боится изгибов), тонкийГибкий (можно делать изгиб в углах), толстый
Оборудование (совместимость)Нужны специальные адаптеры (PON-порт)Работает с любым оборудованием, где есть LAN-порт
ОбслуживаниеНужна подготовка и спецоборудованиеМожно обслуживать в «домашних условиях»
ЦенаКусаетсяТерпимая

Что касается внешних воздействий, то подключенное оптоволокно не боится:

  • Силовых наводок;
  • Огня;
  • Влаги;
  • Температурных перепадов;
  • Кислотной и щелочной среды;
  • «Прослушивания линии» из-за игнорирования индукционных воздействий.

Преимущества

То, что ВОЛС, это сети нового поколения спорить никто не станет. Витая пара все еще нужна и используется по назначению в некоторых участках сети. Но то, что она уходит на второй план – это очевидный факт. И вот тому подтверждение:

  1. Линия оптоволокна быстрее в 10 раз на одинаково-короткое расстояние и в четыре раза быстрее на расстояние в 100 км.
  2. Внешняя агрессивная среда не помеха сигналам, проходящим в кабеле.
  3. Кабель защищен от прослушки путем наведения электромагнитных импульсов.

К сожалению, оптика – не идеальный продукт, и вот ее отрицательные стороны:

  1. Волокна состоят из гибкого стекла. А любое стекло не любит грубых перегибов и может раскрошиться при таком взаимодействии с ним. Для «лечения» понадобится знания и специальный сварочный аппарат, помогающий восстановить волокна. Иногда, повреждение кабеля может спровоцировать полную его замену на участке.
  2. Для соединения с оптоволоконной парой нужно специальное оборудование. Если оптоволокно заводится в дом, понадобится: специальная розетка, модем, ONT-терминал, различные сетевые адаптеры.

Увидеть, как в компьютер заводят оптоволокно можно, но это большая редкость. Для этого понадобится специальная материнская плата с PON-портом. К сожалению, данное решение не целесообразно, потому как кроме конечной машины нельзя подключить к интернету остальную технику.

Практичный способ завода оптоволокна в квартиру – гибридный. От провайдера заводится оптоволоконный кабель в дом, через специальную розетку, модем и роутер предоставляется последнему доступ в интернет. А домашний роутер раздает для всех устройств в локальной сети интернет через Wi-Fi и кабели витой пары.

Оптико-волоконная связь: особенности, плюсы и минусы

Волоконная оптика уже много лет считается одним из центральных направлений развития в области коммуникационных технологий. Специалисты изначально возлагали на эту концепцию большие надежды, которые по сей день только подтверждаются периодическими успехами в деле прокладки сетей связи разного масштаба. В частности, оптико-волоконная связь уже продемонстрировала свою эффективность на примере тихоокеанских коммуникационных линий, а в будущем эту основу планируется использовать в лазерных и сенсорных системах.

Что такое оптоволокно?

Связь на основе оптико-волоконных сетей формируется по принципу электромагнитного излучения, за счет которого передается сигнал. Физическим носителем выступают световоды, характеризующиеся стойкостью к помехам и высокой пропускной способностью. Итак, что такое световод и какое отношение он имеет к передаче данных? Это волокно, выполненное на основе стекла с некоторыми добавками, благодаря которым изготовитель может варьировать отдельные оптические характеристики. Как минимум, требуется нанесение полимерного покрытия, защищающего световод от внешних повреждений. Собственно, и это волокно неоднородно в своей структуре. Оно состоит из сердцевины диаметром порядка 8-10 мкм, а также окружающей оболочки, образующей цилиндр толщиной порядка 100-125 мкм. Принцип работы оптико-волоконного канала связи заключается в способности световода обеспечивать внутреннее отражение электромагнитных волн с определенными показателями преломления. Условный луч света в процессе движения внутри оптоволокна отражается от оболочки изнутри, не покидая контур. Таким образом выполняется доставка сигнала с разными величинами потерь.

Эксплуатационные характеристики оптико-волоконных сетей

Основные положительные аспекты эксплуатации оптоволоконных линий связаны с высокой скоростью доставки информации. До недавнего времени данная величина выражалась в виде рекордного показателя 1 Терабит в секунду. Однако уже сейчас и эти данные считаются неактуальными с точки зрения рекордных показателей. Так, новые технологии систем волнового мультиплексирования позволили оптическим волокнам обеспечивать скорость обслуживания сигнала на уровне 15 Тбит/с. Крупные телекоммуникационные корпорации практикуют использование многоканальной оптико-волоконной связи на расстояния до 10 000 км с поддержкой скорости в 100 Гбит/с. К слову, одна трасса может содержать до 150-200 каналов, что обуславливается малым диаметром волокон. Одна магистральная линия без внешней защитной оболочки имеет толщину не более 1 см. Что касается величины затухания, которая влияет не только на скорость, но и на общее качество передачи сигнала, то этот показатель в случае с оптоволокном составляет 5 дБ/км. Это крайне хороший показатель по сравнению с традиционными электрическими сетями, что дает возможность прокладывать линии на 100 км и более без промежуточных пунктов преобразования сигнала.

Плюсы технологии

Наряду с высокой скоростью трансляции данных и низким эффектом затухания в числе преимуществ оптиковолокна отмечаются следующие:

  • Долговечность эксплуатации линий.
  • Технологическая надежность.
  • Защищенность от внешних электромагнитных воздействий.
  • Высокий уровень кодирования сигнала, практически исключающий возможность перехвата данных.
  • Широкополосность.
  • Небольшой вес и скромные размеры.

Насколько раскроются вышеперечисленные преимуществ в конкретной линии оптико-волоконной связи, зависит от методов ее прокладки и качества материала. Так, например, одним из важнейших препятствий на пути к массовому переходу на данный способ организации связи в России является низкий уровень специалистов этой области и неудовлетворительное качество расходных материалов.

Минусы технологии

Существуют и характерные недостатки оптоволоконных сетей, которые могут проявляться даже независимо от качества технической реализации коммуникационных каналов. В их числе отмечается:

  • Высокая стоимость. Как на этапе организации технической инфраструктуры, так и в процессе ее содержания затраты пока еще превосходят расходы на устройство и эксплуатацию более привычных линий связи.
  • Хрупкость структуры. Один из самых чувствительных недостатков оптического волокна заключается в ограничениях при их укладке. Обеспечить долговечность эксплуатации оптико-волоконной связи высокого уровня можно только при условии прямой прокладки линий. Впрочем, и эта проблема постепенно решается именно за счет внесения специальных добавок в структуру сердцевины волокон.
  • Высокие требования к телекоммуникационной инфраструктуре. Опять же, рассчитывать на высокие эксплуатационные показатели при использовании линий оптоволокна можно только при условии, что система организуется на современном сетевом оборудовании.

Применение оптико-волоконной связи в России

Как и в других странах с передовым технологическим развитием, в России оптоволокно в первую очередь находит свое место в отрасли телекоммуникационной связи. Однако это не единственная сфера, осваивающая данную технологию. Оптические волокна используются в измерительном оборудовании, в рентгеновских аппаратах (в том числе МРТ), гироскопах и охранно-сигнализационных комплексах. При этом методики технической интеграции зачастую носят схожий характер, что подтверждает и спектр требующихся работников для организации подобных систем. В частности, вакансии для оптико-волоконной связи включают места для специалистов по сварочным работам, монтажников и проектировщиков инжиниринговых систем То же самое касается сферы технического обслуживания оптико-волоконной инфраструктуры.

Проблемы реализации оптико-волоконной связи

Ряд крупных российских провайдеров, работающих в сфере телекоммуникационного обеспечения, испытывает финансовые сложности с переходом на новые технологии организации сетевого обеспечения. Отчасти это обусловлено высокими затратами на техническое обновление сетей с полной заменой как носителей сигналов, так и эксплуатационного оборудования. Столичная компания МГТС оптико-волоконную связь рассматривает как одно из ключевых направлений развития на сегодняшний день, но в то же время ее представители отмечают и трудности, связанные с нежеланием самих абонентов переходить на новые технологические средства. Многих пользователей удовлетворяет традиционная сеть на медных проводниках, которая обеспечивает достаточные потребительские характеристики передачи данных. Они не хотят переплачивать за нововведения, что заставляет и оператора нести издержки при обслуживании телекоммуникационных сетей двух типов.

Перспективы развития оптоволоконной связи

Если массовый рынок потребления пока еще сдержанно настроен к эволюционному процессу перехода на оптоволокно, то передовые мировые корпорации уже заглядывают в будущее, которое открывают технологии оптико-волоконной связи в самых разных сферах. На текущий момент наиболее перспективными направлениями можно назвать распределенные сенсорные системы и волоконные оптические лазеры. Первая технология позволит осуществлять неразрушающий контроль строительных и инженерных сооружений с широким комплексом выходных данных анализа – в частности, с точными показателями температуры, давления и деформационных процессов объекта. Что касается оптико-волоконных лазеров, то их свойства и характеристики излучаемой волны могут обеспечить беспрецедентные возможности при физической обработке твердотельных материалов.

Заключение

Связь на базе оптоволоконной технологии при всех негативных факторах применения расширяет спектр своего охвата. В немалой степени этому способствовал технологический формат сети GPON, представляющей собой оптимизированную концепцию магистральных линий оптико-волоконной связи. «Ростелеком», как одна из крупнейших телекоммуникационных компаний в России, сделала большой шаг в технологическом освоении данного формата. На сегодняшний день она выполняет прокладку линий без промежуточных усилительных узлов на расстояния от 20 до 60 км с поддержкой скорости до 1,25 Гб/с. И это лишь один из возможных форматов использования оптоволокна в сфере телекоммуникаций на сегодняшний день.

что это такое? – Коммерсантъ Нижний Новгород

Как обеспечить доступ в интернет в самых отдаленных уголках планеты? Илон Маск отправляет в космос 4425 спутников, Google хочет использовать для передачи сигнала воздушные шары, а в Facebook считают, что с этой задачей справятся дроны-беспилотники. Пока компании-гиганты соревнуются в покорении планеты, главным проводником в мир скоростного интернета в мегаполисах остается оптоволокно. О том, из чего состоит оптоволоконный кабель, почему пластик проигрывает стеклу и как оптика помогает следить за дельфинами и нефтью, мы поговорили с экспертом Дом.ru, руководителем службы эксплуатации сети Николаем Джулаем.


Половина абонентов «Дом.ru» имеет дома три и более устройства, а каждый пользователь в среднем потребляет в месяц 50 Гб на скорости до 100 мб/с. Они смотрят видео в HD, играют в «танки», ведут онлайн-трансляции и выходят в сеть с разных гаджетов. Обеспечивать людей интернетом на максимальной скорости позволяют оптоволоконные кабели. Первые оптические интернет-сети в России начала строить компания «ЭР-Телеком» ещё в начале 2000-х. Благодаря этой технологии мы стали самым быстрым интернет-провайдером страны по версии Speedtest в 2017 году.

Как устроен оптоволоконный кабель

Оптоволокно — это тонкие нити из кварцевого стекла, в которых информация передаётся с помощью света. Толщина каждой нити составляет всего 125 микрон, это чуть больше человеческого волоса. В кабеле находится до 96 таких нитей, каждая из которых «плавает» в жидкости — гидрофобном геле. Чтобы обеспечить сохранность, их покрывают полиэтиленовой и пластиковой оболочкой, стальной проволокой или металлической броней.

Оптику закапывают в землю, прокладывают в канализации и даже на дне моря. Кабель, который используется под землей или водой, способен выдержать нагрузку до 8 тонн. Для сравнения, слон весит 5-6 тонн. Стекло, из которого сделана оптика, не проводит электрический ток. Даже если рядом с кабелем ударит молния, сигнал не прервется и скорость интернета не упадет. При этом такая сеть не производит никакого излучения и безопасна для человека.

Тем не менее, оптика уязвима. Её могут повредить частые изгибы, из-за которых образуются трещины. При их появлении свет вырывается наружу и происходит разрыв интернет-соединения.

Ремонт с хирургической точностью

В июне прошлого года по Омску прошел смерч. Ветер срывал крыши домов, валил деревья, обрывал линии электропередач. Пострадали и оптоволоконные сети — появились провисы и обрывы кабелей.

— Аварии устраняют бригады техников, работа которых напоминает хирургическую. У них есть свои скальпели, держатели, кусачки и обезжиривающие составы — все, чтобы добраться до тонких нитей оптоволокна через оборванные защитные оболочки, — рассказывает Николай Джулай. — Кабель сваривают как металлический прут, нагревая до 2000°C. Кварц начинает течь, а на месте разорванного участка образуется небольшой шов.

Чаще всего причиной повреждений становится вандализм: ввернутый в кабель саморез, забитые гвозди или обычная иголка. Чтобы обнаружить проблемное место, используется специальное оборудование — рефлектометр. По оптоволокну «стреляют» из лазера. Световой поток летит по стеклянным

Fiber to the x — Википедия

Fiber To The X или FTTx (англ. fiber to the x — оптическое волокно до точки X) — это общий термин для любой широкополосной телекоммуникационной сети передачи данных, использующей в своей архитектуре волоконно-оптический кабель в качестве последней мили для обеспечения всей или части абонентской линии. Термин является собирательным для нескольких конфигураций развёртывания оптоволокна — начиная от FTTN (до узла) и заканчивая FTTD (до рабочего стола).

В строгом определении FTTx является только физическим уровнем передачи данных, однако фактически понятием охватывается большое число технологий канального и сетевого уровня. С широкой полосой систем FTTx неразрывно связана возможность предоставления большого числа новых услуг[1].

Схема, иллюстрирующая различия архитектур FTTx.

В зависимости от условий использования телекоммуникационная отрасль различает несколько отдельных конфигураций FTTX:

  • FTTN (Fiber to the Node) — волокно до сетевого узла. Оптоволокно оканчивается в уличном коммуникационном шкафу, возможно за 1-2 км от конечного потребителя, с дальнейшей прокладкой меди — это может быть xDSL или гибридные волоконно-коаксиальные линии.[2] FTTN зачастую является промежуточным шагом к полному FTTB и, как правило, используется для доставки расширенного пакета Triple Play телекоммуникационных услуг.
  • FTTC / FTTK (Fiber to the Curb / Fiber to the kerb) — волокно до микрорайона, квартала или группы домов. Вариант весьма похож на FTTN, но уличный шкаф или столб ближе к помещениям клиента и находится, как правило, в пределах 300 метров — расстояния для широкополосных медных кабелей, подобных проводному Ethernet или связи по ЛЭП IEEE 1901 или беспроводной технологии Wi-Fi. Иногда FTTC неоднозначно называют FTTP (fiber-to-the-pole, оптика до столба), что вызывает путаницу с «Fiber to the premises system» (оптика до системы помещений).
  • FTTDP (Fiber To The Distribution Point) — волокно до точки распределения. Это также похоже на FTTC / FTTN, но ещё на один шаг ближе. Оптоволокно оканчивается в нескольких метрах от границы конечного потребителя и последнее соединение кабелей происходит в распределительной коробке, называемой точкой распределения, что позволяет предоставлять абонентам скорость близкую к 1-гигабиту.[3]
  • FTTP (Fiber to the premises) — волокно до помещения. Это сокращение обобщает термины FTTH и FTTB или используется в тех случаях, когда оптоволокно подведено туда, где одновременно есть дома и малые предприятия.
    • FTTB (Fiber to the Building) — волокно доходит до границы здания, такой как фундамент многоквартирного дома, подвальное помещение или технический этаж с окончательным подключением каждого жилого помещения при помощи иных способов как в конфигурациях FTTN или FTTP.
    • FTTH (Fiber to the Home) — волокно до квартиры или частного дома. Кабель доводится до границы жилой площади, например, коммуникационной коробки на стене жилья. Далее услуги оператора предоставляются абоненту посредством технологии PON и PPPoE посредством FTTH-сетей.[4][5]
  • FTTD / FTTS (Fiber to the desktop, Fiber to the Subscriber) — оптическое соединение приходит в основную компьютерную комнату в терминал или в медиаконвертер близ рабочего стола клиента.
  • FTTE / FTTZ (Fiber to the telecom enclosure, fiber to the zone) — вид кабельной системы, обычно используемой в локальной сети предприятий, когда оптическое соединение используется от серверного помещения до рабочего места. Эти виды не входят в группу технологий FTTX, несмотря на схожесть в наименованиях.[6]

Для обеспечения согласованности, особенно при сравнении между странами уровня проникновения FTTH, три совета по FTTH — Европы, Северной Америки и Азиатско-Тихоокеанского региона в 2006 году согласовали[7] между собой определения FTTH и FTTB, а также уточняли их в 2009[8], 2011 году[9] и в феврале 2015 года.[10] Совет FTTH не устанавливал формальных определений для FTTC и FTTN.

FTTN[править | править код]

В этом варианте оптоволоконный кабель подводится к сетевому узлу и в связи с этим иногда могут путать с подключением FTTC, когда оптика доводится до уличного распределительного шкафа или столба, несущего кабель, с дальнейшей разводкой по микрорайону или близлежащим домам.[11] К конечным потребителям, как правило, далее от такого шкафа идут отдельные подключения по коаксиальному кабелю или витой паре. Территория, обслуживаемая из одного уличного распределительного шкафа, обычно находится в радиусе менее 1,5 км и может включать в себя несколько сотен абонентов телематических услуг. Если от распределительного шкафа обслуживается территория с радиусом менее 300 метров, то такое подключение будет относиться к FTTC/FTTK.[12]

FTTN позволяет предоставлять широкополосные услуги связи, такие как высокоскоростной доступ в интернет. На участке от конца оптоволокна до потребителя услуг используются высокоскоростные протоколы передачи данных подобные тем, что применяются при работе по широкополосным кабелям связи (обычно DOCSIS) или некоторые виды xDSL. Скорость передачи данных варьируется в зависимости от используемого протокола и от того, насколько близко абонент от распределительного шкафа.

В отличие от FTTP, в инфраструктуре FTTN зачастую для обеспечения последней мили используется коаксильный кабель или витая пара, что делает такой вариант менее дорогостоящим для развёртывания. Однако, в долгосрочной перспективе потенциальная пропускная способность при этом варианте будет сильно ограничена относительно варианта с окончанием оптоволокна ближе к абоненту.

Технической разновидностью этого варианта является гибридная оптико-коаксильная система связи, используемая операторами кабельного телевидения. Такое подключение ещё иногда называют аббревиатурой FTTLA (Fiber to the last amplifier, оптика до последнего усилителя), при замене таким подключением последнего усилителя перед абонентом (или группой абонентов).

FTTC[править | править код]

Внутренности оптического коммутационного шкафа. Слева подключен оптоволоконный кабель, а справа — медь для xDSL.

Волокно до микрорайона, квартала или группы домов является системой связи, суть которой состоит в запуске платформы на основе оптоволоконных линий связи, обслуживающей нескольких абонентов. Каждый из этих абонентов соединён с платформой коаксиальным кабелем или витой парой. Это может быть устанавливаемое выносное устройство или коммуникационный шкаф или же навес. Обычно системы связи, в которых оптоволокно оканчивается менее чем за 300 м от устанавливаемой в помещении пользователя аппаратуры, относят к варианту FTTC.

В этом варианте от окончания волокна до абонента также как и в FTTN используется DOCSIS либо xDSL.

Когда возможно, при прокладке нового кабеля проводят сразу оптический и медный ethernet кабели. Последний соединяет районный узел связи с абонентом на скоростях 100 Мбит/с или 1 Гбит/с.

Развёртывание связи по ЛЭП также относят к FTTC. Использование протокола IEEE 1901 (или его предшественника — HomePlug AV) позволяет по существующим электросетям на скорости до 1 Гбит/с передавать данные от выносного районного коммутационного шкафа до любой розетки переменного тока в доме — покрытие сетью равноценно Wi-Fi с дополнительным преимуществом в виде одного кабеля для электропитания и передачи данных.

Тонким, но основным отличием FTTC от FTTN или FTTP будет место размещения коммутационного шкафа. В варианте подключения FTTC коммутация идёт, например, от несущего кабель столба на обочине дороги у дома клиента, тогда как при FTTN коммутационный шкаф вдали от абонента, а при варианте FTTP коммутация непосредственно в зоне обслуживания клиентов.

В отличие от FTTP, в варианте FTTC для создания последней мили могут использоваться имеющиеся коаксильные кабели, витая пара или связь по ЛЭП. Попыткой объединить такие существующие кабели под единым управляющим протоколом стали разработки стандартов G.hn и IEEE P1905.

Уходя от прокладки нового кабели и связанных с этим расходов, стоимость развёртывания FTTC меньше. Тем не менее этот вариант сети исторически имеет более низкий потенциал полосы пропускания, чем FTTP. На практике, относительное преимущество использования оптоволокна зависит от полосы пропускания, доступной для транспортной сети связи, от биллинговых ограничений, предотвращающих полную загрузку пропускной способности последней мили, от абонентского оборудования, от ограничений обслуживания и стоимости эксплуатации оптоволокна. Все эти параметры могут широко варьироваться исходя из географического положения и типа строения.

FTTB (fiber to the building) — оптическое волокно до здания. В этой архитектуре волокно доходит до коммутационного оборудования оператора, размещаемого преимущественно на границе территории, включающей в себя дома или предприятия. С оборудованием устанавливается единый терминал, а от него до помещения либо проводят медный кабель, либо используют беспроводное соединение, — в самом помещении в основном находится только один кабель, который подключается к компьютеру.[13] Архитектура FTTB получила наибольшее распространение[где?], так как при строительстве сетей FTTx на базе Ethernet, зачастую, это единственная технически возможная схема. Кроме того, в структуре затрат на создание сети FTTx разница между вариантами FTTC и FTTB относительно небольшая, при этом операционные расходы на эксплуатацию сети FTTB ниже, а пропускная способность выше. Архитектура FTTB преобладает во вновь возводимых домах и у крупных операторов связи, тогда как FTTH будет востребована только в новом малоэтажном строительстве. В первую очередь это связано с существенно более высокой стоимостью её реализации по сравнению со стоимостью сети FTTC/FTTB.

FTTH (fiber to the home) — оптическое волокно до жилища. В жилище устанавливается терминал, а от терминала кабель до компьютера. Данное определение исключает те архитектуры сети, в которых оптическое волокно заканчивается до достижения жилых помещений или офисного пространства и линия продолжается иной физической средой, нежели оптической.[13]

Однозначно в пользу решений FTTH выступали эксперты компании Motorola.[1] Они сравнивают продолжительность жизненного цикла инвестиций в любую технологию доступа и коррелированный рост требований к пропускной способности каналов доступа. Проведённый анализ показывает, что если технические решения, которые закладываются в основу сегмента доступа сети в 2005—2008 годах, окажутся неспособными обеспечить скорость 100 Мбит/с в 2013—2015 годах, то моральное устаревание оборудования произойдёт до окончания инвестиционного цикла. Оператор должен обязательно учитывать эти данные, иначе он рискует оказаться уязвимым перед лицом конкурентов по мере стремления пользователей к получению услуг всё более высокого класса.

Эксперты компании Alcatel-Lucent перечисляют следующие преимущества архитектуры FTTH:

  • из всех вариантов FTTx она обеспечивает наибольшую полосу пропускания;
  • это полностью стандартизированный и наиболее перспективный вариант;
  • решения FTTH обеспечивают массовое обслуживание абонентов на расстоянии до 20 км от узла связи;
  • они позволяют существенно сократить эксплуатационные расходы — за счет уменьшения площади технических помещений (необходимых для размещения оборудования), снижения энергопотребления и собственно затрат на техническую поддержку.[1]

Аппаратная архитектура и типы подключений[править | править код]

Простейшей архитектурой оптической сети является прямое волокно. При таком способе каждое волокно в кабеле от помещений оператора связи идёт к одному клиенту. Подобные сети могут обеспечить великолепную скорость передачи данных, но они существенно дороже по причине нерационального использования волокон и оборудования, обслуживающего линию связи.[14]

Прямые волокна как правило предоставляются крупным корпоративным клиентам или государственным структурам. Преимуществом является возможность использования 2-го уровня сетевых технологий независимо от того, будь то активная, пассивная или гибридная оптическая сеть.

В прочих же случаях (массовых подключениях абонентов) каждое волокно, идущее от оператора связи, обслуживает множество клиентов. Оно носит название «общее волокно» (англ. shared fiber). При этом оптика доводится максимально близко до клиента, после чего оно соединяется с индивидуальным, идущим до конечного потребителя волокном. В таком соединении применяются как активные, так и пассивные оптические сети.

В зависимости от способа построения оптические сети делятся[15] на:

  • активные оптические сети — с работающим активным сетевым оборудованием для усиления и передачи сигнала;
  • пассивные оптические сети — с разветвителями оптических сигналов;
  • гибридные оптические сети — использующие активные и пассивные компоненты одновременно.

Активная оптическая сеть[править | править код]

Основана на передаче оптического сигнала сетевым электрооборудованием, принимающим, усиливающим и передающим эти сигналы. Это может быть коммутатор, маршрутизатор, медиаконвертер — как правило, оптические сигналы в активной оптической сети преобразуются в электрические и обратно. Каждый оптический сигнал от централизованного оборудования оператора связи идёт только к тому конечному пользователю, для которого он предназначен.

Входящие со стороны абонентов сигналы избегают коллизий в едином волокне, так как электрооборудование обеспечивает буферизацию. В качестве первой мили от оборудования оператора связи используется оборудование активный ETTH, включающее в себя оптические сетевые коммутаторы с оптикой, и служащее для распространения сигнала к абонентам.

Подобные сети идентичны компьютерным ethernet сетям, используемым в офисах и образовательных учреждениях с тем лишь исключением, что они предназначены для подключения домов и строений к центральному зданию оператора связи, а не для подключения компьютеров и принтеров в ограниченном пространстве. Каждый распределительный шкаф может обслуживать до 1000 абонентов, хотя обычно ограничиваются подключением 400—500 человек.

Такое узловое оборудование обеспечивает коммутацию второго и третьего уровней, а также маршрутизацию, разгружая тем самым магистральный маршрутизатор оператора связи и обеспечивая передачу данных в его серверное помещение. Стандарт IEEE 802.3ah позволяет провайдерам услуг интернета предоставлять скорости до 100 Мбит/с и полным дуплексом по одномодовому оптоволоконному кабелю (англ. Single-mode optical fiber), подключенному по схеме FTTH. Коммерчески доступными также становятся скорости в 1 Гбит/с.

Пассивная оптическая сеть[править | править код]

Основная статья: PON

Пассивная оптическая сеть — это архитектура сети FTTP с подключением по принципу точка-многоточка на основе энергонезависимых оптических разветвителей (сплиттеров), позволяющих по одному оптическому волокну обслуживать до 128 абонентов. По сравнению с подключением по прямому волокну, PON уменьшает требования к оптическому кабелю и обслуживающему его оборудованию провайдера. Нисходящий по волокну сигнал транслируется от оборудования оператора связи ко всем абонентам, совместно использующим линию связи. Для предотвращения перехвата трафика используется шифрование. Восходящие сигналы от абонентов объединяются в один поток с применением протокола множественного доступа, как правило, с временны́м разделением доступа.

Электрооборудование[править | править код]

Когда линия связи уже вошла в помещение клиента, то окончательное расстояние до клиентского оборудования сигнал, как правило, уже проходит в электрическом формате.

Это может быть как медиаконвертер, так и оптический сетевой терминал (ONT, термин ITU-T) или оптический сетевой модуль (ONU, аналогичный термин IEEE), преобразующие оптический сигнал в электрический, с использованием технологии тонкоплёночного фильтра. Эти устройства для своей работы требуют наличия электроэнергии, потому их стараются подключать к резервным источникам питания для обеспечения бесперебойной работы в экстренных случаях и при перебоях с подачей электроэнергии. Терминация оптической линии оптическими терминалами или модулями «направляет» линии связи для выделения им тайм-слота протокола TDMA и обеспечения восходящего потока связи (в направлении от абонента к провайдеру).

Для варианта FTTH и некоторых видов FTTB общим для всех подключаемых зданий является обеспечение телефонизации, LAN и систем кабельного телевидения, которые подключаются к оптическому сетевому терминалу или модулю. Все эти три системы передачи данных не могут напрямую подключаться к оптическому модулю, но возможно объединить их сигналы и передавать в единой среде. В зависимости от того, что ближе к пользователю, — маршрутизатор, модем или сетевая плата, — то устройство может разделить сигнал и преобразовать его в подходящий протокол.

Например, при использовании технологии VDSL, комбинированный сигнал передаётся в здание по существующему проводному соединению и входит в жилое помещение, где VDSL-модем преобразует данные и видеосигнал (услуги телевидения) в протокол ethernet, который доставляется до оконечного оборудования по витой паре. Далее модуль сетевого интерфейса преобразует видеосигнал в радиочастотный, передаваемый оконечному оборудованию по коаксиальному кабелю. Комбинированный сигнал также может доходить до телефонного аппарата, подключенного через ADSL-сплиттер для отделения голосового сигнала от остальных, или же до IP-телефона, который может включаться в локальную сеть.

  1. 1 2 3 FTTx: Где оптимальное место для «x» Архивировано 13 ноября 2009 года. // Журнал «Сети и системы связи» № 9, сентябрь 2008.
  2. ↑ Общая информация о FTTx на сайте интегратора НТЦ Энергия
  3. ↑ Could ultrafast broadband over copper speed the rollout of gigabit internet?, TechRepublic (September 26, 2014).
  4. ↑ Tim Poulus, «FTTH networking: Active Ethernet versus Passive Optical Networking and point-to-point vs. point-to-multipoint», Telecompaper, 17 November 2010. Retrieved 12 July 2013.
  5. ↑ Ed Gubbins, «Active Ethernet grows in PON’s shadow» Архивировано 1 октября 2011 года., NXTcomm Daily News, Penton Media, 13 May 2008. Retrieved 12 July 2013.
  6. ↑ Robert Reid, «All multimode fiber is not created equal» (недоступная ссылка), Cabling Installation & Maintenance, PennWell Corporation, February 2007, retrieved 12 July 2013.
  7. ↑ FTTH Council – Definition of Terms (неопр.) (pdf). FTTH Council (11 августа 2006). Архивировано 23 ноября 2012 года. (черновик пресс-релиза)  (Проверено 22 июня 2015)
  8. ↑ FTTH Council – Definition of Terms (неопр.) (pdf). FTTH Council (9 января 2009). Архивировано 3 июня 2015 года.  (Проверено 22 июня 2015)
  9. ↑ FTTH Council – Definition of Terms (неопр.). FTTH Council (сентябрь 2011). Архивировано 8 октября 2013 года.  (Проверено 22 июня 2015)
  10. ↑ FTTH Council — Definition of Terms. Version 4 — February 2015 Архивная копия от 22 июня 2015 на Wayback Machine (PDF)  (Проверено 22 июня 2015)
  11. ↑ da Silva, Henrique (March, 2005), «Optical Access Networks» Архивная копия от 4 марта 2016 на Wayback Machine, Instituto de Telecomunicações, 9 March 2005, slide 10. Retrieved on 2007-03-25.
  12. ↑ McCullough, Don (August 2005), «Flexibility is key to successful fiber to the premises deployments» Архивная копия от 9 октября 2011 на Wayback Machine, Lightwave 22 (8). Retrieved on 2010-01-27.
  13. 1 2 Ken Wieland. The FTTx Mini-Guide (англ.). www.telecommagazine.com, www.nexans.com (февраль 2007). Дата обращения 18 сентября 2015.
  14. ↑ Dieter Elixmann, et al., «The Economics of Next Generation Access-Final Report: Study for the European Competitive Telecommunication Association (ECTA)», WIK-Consult GmbH, 10 September 2008. Retrieved 12 July 2012.
  15. ↑ «Журнал сетевых решений/LAN», № 05, 2005

Что такое оптоволокно, виды оптических кабелей.

Несмотря на то, что многие слышали о существовании оптических волокон и использовании их для скоростной передачи информации, очень мало людей знают, что они собой представляют и каким образом передают данные.

Даже самый простой оптический кабель имеет достаточно сложную структуру. В середине его расположен пучок тонких оптических волокон изолированных друг от друга, при этом каждое оптическое волокно находится в оболочке и имеет специальное изолирующее покрытие. Все волокна протянуты внутри стальной защитной трубки. Поверх трубки идет оплетка из медных токоведущих жил, закрытая слоем медной фольги. Следующий слой – диэлектрическая изоляция, выполненная чаще всего из полиэтилена. Самый верхний слой бронирующий, для обеспечения защиты оптоволоконного кабеля от механических повреждений.

Устройство оптоволоконного кабеля

Само по себе оптическое волокно это пластиковая или стеклянная нить, способная проводить световые импульсы, а изменяемая длина волны и показатель преломления светового луча обеспечивает передачу необходимой информации.

Типы оптических волокон

Классификация оптических волокон производится в зависимости от количества мод или лучей, распространяющихся по волокну. Различают:

  • волокно одномодовое диаметром 7-9 мкм;
  • волокно многомодовое диаметром 50 или 62,5 мкм.

Кроме этого оптические волокна подразделяются на проводники с градиентным показателем преломления луча и со ступенчатым профилем распределения показателей преломления.

Оптическое волокно

Преимущества оптоволоконной связи

Главное преимущество оптоволоконного кабеля это высокий уровень пропускной способности в сравнении с коаксиальным кабелем. Большая скорость передачи данных на большие расстояния сопровождается высоким уровнем защиты от внешних помех и шумоподавления. При этом использование оптоволокна обеспечивает надежную защиту данных от несанкционированного доступа. Подключение оптоволоконного кабеля позволяет обеспечить одновременную работу сразу нескольких систем, например:

  • компьютерных сетей ,
  • кабельного телевидения,
  • системы видеонаблюдения
  • охранных устройств.
  • и т.д и т.п

Использование оптиковолоконных кабелей это лучший способ быстрого приема и передачи данных.

Характеристика оптоволоконного кабеля

Оптический кабель

Все виды оптических кабелей можно охарактеризовать по способу их использования. По данной характеристике они распределяются на следующие группы:

  • Магистральный. Данное изделие применяется при прокладке линий связи на большие расстояния с множественным числом каналов. Для этих целей применяется одномодовый оптический кабель, благодаря чему магистральные сети могут в кратчайшее время передавать множественные информационные потоки.
  • Зондовый оптический кабель используется для осуществления передачи данных районировано на расстояние до 250 километров.
  • Городские. Используются для распространения информации на маленькие расстояния (до 10 километров) и с множеством выходных каналов. Обычно применяются в пределах одного населенного пункта.
  • Подводный оптический кабель, прокладка его осуществляется по дну различных водоемов. По данной причине такой тип кабеля должен иметь повышенную механическую прочность для чего он дополнительно экранируется лентой из алюминиевого сплава.
  • Объектовый оптический кабель применяется для прокладки коммуникационной сети внутри определенного здания и распределения информации на пользователей. Подключение к нему устройств приема данных производится обычно через оптический патч корд.
  • Монтажный оптический кабель применяется для проведения монтажных работ внутри аппаратуры, его подключение к различным блокам устройства производится оптическим кроссом.

Прокладка коммуникационных сетей может осуществляться подземным или воздушным способом. В случае если прокладывается воздушная сеть, то кабель должен быть самонесущим, то есть выдерживать большие физические нагрузки.

Устройство оптического кабеля

По типу волокон, оптоволокно подразделяется на одномодовые, многомодовые оптические кабеля, а так же комбинированные.

В качестве основных достоинств оптоволоконного кабеля можно выделить:

  • Высокая скорость передачи данных;
  • Защита от неправомерного использования телекоммуникаций;
  • Высокая степень механической прочности;
  • Большой срок эксплуатации;
  • Незначительные размеры уменьшают расходы на монтаж дополнительных несущих конструкций.

Оптоволокно - это... Что такое Оптоволокно?

Связка оптоволокна. Теоретически, использование передовых технологий, таких как DWDM, со скромным количеством волокон, которое представлено здесь, может дать достаточную пропускную способность, с помощью которой легко было бы передать всю необходимую информацию, в которой нуждается вся планета (около 100 терабит в секунду в одном оптоволокне. )

Оптоволокно — это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения. Волоконная оптика — раздел прикладной науки и машиностроения, описывающий такие волокна. Оптоволокна используются в оптоволоконной связи, которая позволяет передавать цифровую информацию на большие расстояния и с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков.

Простой принцип действия позволяет использовать различные методы, дающие возможность создавать самые разнообразные оптоволокна:

  • Одномодовые оптоволокна
  • Многомодовые оптоволокна
  • Оптоволокна с градиентным показателем преломления
  • Оптоволокна со ступенчатым профилем распределения показателей преломления.

Из-за физических свойств оптоволокна необходимы специальные методы для их соединения с оборудованием. Оптоволокна являются базой для различных типов кабелей, в зависимости от того, где они будут использоваться.

Принцип передачи света внутри оптоволокна был впервые продемонстрирован во времена королевы Виктории (1837—1901 гг.), но развитие современных оптоволокон началось в 1950-х годах. Они стали использоваться в связи несколько позже, в 1970-х; с этого момента технический прогресс значительно увеличил диапазон применения и скорость распространения оптоволокон, а также уменьшил стоимость систем оптоволоконной связи.

Применение

Оптоволоконная связь

Оптоволокно может быть использовано как средство для дальней связи и построения компьютерной сети, вследствие своей гибкости, позволяющей даже завязывать кабель в узел. Несмотря на то, что волокна могут быть сделаны из прозрачного пластичного оптоволокна или кварцевого волокна, волокна, использующиеся для передачи информации на большие расстояния, всегда сделаны из кварцевого стекла, из-за низкого оптического ослабления электромагнитного излучения. В связи используются многомодовые и одномодовые оптоволокна; многомодовое оптоволокно обычно используется на небольших расстояниях (до 500 м), а одномодовое оптоволокно — на длинных дистанциях. Из-за строгого допуска между одномодовым оптоволокном, передатчиком, приемником, усилителем и другими одномодовыми компонентами, их использование обычно дороже, чем применение мультимодовых компонентов.

Оптоволоконный датчик

Оптоволокно может быть использовано как датчик для измерения напряжения, температуры, давления и других параметров. Малый размер и фактическое отсутствие необходимости в электрической энергии, дает оптоволоконным датчикам преимущество перед традиционными электрическими в определенных областях.

Оптоволокно используется в гидрофонах в сейсмических или гидролокационных приборах. Созданы системы с гидрофонами, в которых на волоконный кабель приходится более 100 датчиков. Системы с гидрофоновым датчиком используются в нефтедобывающей промышленности, а также флотом некоторых стран. Немецкая компания лазерный микроскоп, работающий с лазером и оптоволокном[1].

Оптоволоконные датчики, измеряющие температуры и давления, разработаны для измерений в нефтяных скважинах. Оптоволоконные датчики хорошо подходят для такой среды, работая при температурах, слишком высоких для полупроводниковых датчиков (Оптоволоконное измерение температуры).

Разработаны устройства дуговой защиты с волоконно-оптическими датчиками, основными преимуществами которых перед традиционными устройствами дуговой защиты являются: высокое быстродействие, нечувствительность к электромагнитным помехам, гибкость и лёгкость монтажа, диэлектрические свойства.

Другое применение оптоволокна — в качестве датчика в лазерном гироскопе, который используется в Boeing 767 и в некоторых моделях машин (для навигации). Специальные оптические волокна используются в интерферометрических датчиках магнитного поля и электрического тока. Это волокна полученные при вращении заготовки с сильным встроеным двойным лучепреломлением.

Оптоволокно применяется в охранной сигнализации на особо важных объектах (например, ядерное оружие). Когда злоумышленик пытается переместить боеголовку, условия прохождения света через световод изменяются, и срабатывает сигнализация.

Другие применения оптоволокна

Диск фрисби, освещенный оптоволокном

Оптоволокна широко используются для освещения. Они используются как световоды в медицинских и других целях, где яркий свет необходимо доставить в труднодоступную зону. В некоторых зданиях оптоволокна используются для обозначения маршрута с крыши в какую-нибудь часть здания. Оптоволоконное освещение также используется в декоративных целях, включая коммерческую рекламу, искусство и искусственные ёлки.

Оптоволокно также используется для формирования изображения. Когерентный пучок, передаваемый оптоволокном, иногда используется совместно с линзами — например, в эндоскопе, который используется для просмотра объектов через маленькое отверстие.

Примечания

См. также

Литература

  • Gambling, W. A., «The Rise and Rise of Optical Fibers», IEEE Journal on Selected Topics in Quantum Electronics, Vol. 6, No. 6, pp. 1084–1093, Nov./Dec. 2000
  • Gowar, John, Optical Communication Systems, 2 ed., Prentice-Hall, Hempstead UK, 1993 (ISBN 0-13-638727-6)
  • Hecht, Jeff, City of Light, The Story of Fiber Optics, Oxford University Press, New York, 1999 (ISBN 0-19-510818-3)
  • Hecht, Jeff, Understanding Fiber Optics, 4th ed., Prentice-Hall, Upper Saddle River, NJ, USA 2002 (ISBN 0-13-027828-9)
  • Nagel S. R., MacChesney J. B., Walker K. L., «An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance», IEEE Journal of Quantum Mechanics, Vol. QE-18, No. 4, April 1982
  • Ramaswami, R., Sivarajan, K. N., Optical Networks: A Practical Perspective, Morgan Kaufmann Publishers, San Francisco, 1998 (ISBN 1-55860-445-6)

Ссылки

Wikimedia Foundation. 2010.

Подключить оптоволоконный интернет от OnLime в Москве

Широкополосный интернет – это общее название целой группы современных высокоскоростных технологий доступа во Всемирную паутину в постоянном режиме. Данные принимаются и передаются на одинаково высокой скорости – до сотен Мбит/с.

Благодаря широкополосному интернету пользователям стали доступны

    услуги цифрового ТВ;IP-телефония;возможность облачного хранения данныхи многое другое.

Провайдеры интернет услуг предлагают различные типы подключения широкополосного интернет доступа. Все имеющиеся разновидности можно условно разделить на две большие группы:

    фиксированные – на основе проводных соединений;оптоволоконные – по оптическим линиям связи;мобильные – по беспроводным каналам связи.

Широкополосный доступ по выделенной линии

Самые первые технологии ШПД основаны на доступе в интернет по цифровой выделенной линии связи (DSL). Современные методы цифровой обработки сигнала позволяют существенно увеличить пропускную способность телефонной линии, что сделало технологии семейства xDSL одними из самых распространенных во всем мире.

Символ «х» используется для обозначения всего семейства технологий доступа по выделенной абонентской линии, которые различаются по скорости передачи данных и методу уплотнения линии. Их обозначают отдельными аббревиатурами - ADSL, HDSL, RADSL, SHDSL, VDSL.

В целом, все технологии xDSL можно разделить на две категории:

    симметричные – с одинаковой скоростью приема и передачи данных; асимметричные – с более высокой скоростью получения данных из сети.

Симметричные технологии используются чаще всего в корпоративном секторе, асимметричные – для абонентского доступа.


Скоростные оптоволоконные каналы доступа в Сеть

Доступ в сеть интернет по оптической линии – наиболее распространенный и самый быстрый вариант ШПД, широко используемый в многоквартирных городских домах. Каждый подъезд дома связан через коммутатор по оптоволокну с провайдером, а к конечным абонентам протягивают витую пару для подключения в роутер или прямо в сетевую плату компьютера. В этом случае скорость доступа к глобальной сети не будет превышать 100 Мбит/с.

Самое высокоскоростное соединение достигается при подключении абонента также через оптоволоконный кабель, а не привычную медную витую пару. Доступ по оптоволокну позволяет предоставить скорость соединения до 1 Гбит/с, что позволяет подключить любые виды услуг – интернет, цифровое ТВ, IP-телефонию.


Мобильный широкополосный доступ

Широкополосный доступ в интернет через мобильные сети операторов сотовой связи 3G и 4G – востребованная услуга в связи с большой зоной покрытия и взрывным распространением мобильных гаджетов.

Технология 3G на сегодня уже является устаревшей морально, однако применяется достаточно широко, поскольку доступна на значительной части покрытия ведущих операторов. На замену 3G активно внедряется технология 4G, позволяющая развить значительно более высокую скорость. В мегаполисах и крупных городах провайдеры также развивают предоставление интернет-соединения через WiMax, поскольку большинство гаджетов поставляется с уже интегрированным модулем WiFi.

Ответы Mail.ru: а что такое оптоволокно?

Оптоволокно — это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения. Волоконная оптика — раздел прикладной науки и машиностроения, описывающий такие волокна. Оптоволокна используются в оптоволоконной связи, которая позволяет передавать цифровую информацию на большие расстояния и с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков .

<a rel="nofollow" href="http://ru.wikipedia.org/wiki/Световод" target="_blank">http://ru.wikipedia.org/wiki/Световод</a>

эт кода волокно оптом ...

Опти&#769;ческое волокно&#769; — нить из оптически прозрачного материала (стекло, пластик) , используемая для переноса света внутри себя посредством полного внутреннего отражения. Волоконная оптика — раздел прикладной науки и машиностроения, описывающий такие волокна. Кабели на базе оптических волокон используются в волоконно-оптической связи, позволяющей передавать информацию на бо&#769;льшие расстояния с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков. Принцип передачи света, используемый в волоконной оптике, был впервые продемонстрирован во времена королевы Виктории (1837—1901 гг.) , но развитие современной волоконной технологии началось в 1950-х годах. Изобретение лазеров сделало возможным построение волоконно-оптических линий передачи, превосходящих по своим характеристикам традиционные проводные средства связи. Стеклянные оптические волокна делаются из кварцевого стекла, но для дальнего инфракрасного диапазона могут использоваться другие материалы, такие как флуоро-цирконат, флуоро-алюминат и халькогенидные стекла. Как и другие стекла, эти имеют показатель преломления около 1,5. В настоящее время развивается применение пластиковых оптических волокон. Оптическое волокно имеет круглое сечение и состоит из двух частей — сердцевины и оболочки. Для обеспечения полного внутреннего отражения абсолютный показатель преломления сердцевины несколько выше показателя преломления оболочки. Например, если показатель преломления оболочки равен 1,474, то показатель преломления сердцевины — 1,479. Луч света, направленный в сердцевину, будет распространяться по ней, испытывая многократные переотражения от границы раздела «сердцевина — оболочка» . Все оптические волокна, используемые в телекоммуникациях, имеют диаметр 125±1 микрон. Диаметр сердцевины может отличаться в зависимости от типа волокна и национальных стандартов. Оптические волокна могут быть одномодовыми и многомодовыми. Диаметр сердцевины одномодовых волокон составляет от 7 до 9 микрон. Благодаря малому диаметру достигается передача по волокну лишь одной моды электромагнитного излучения, за счёт чего исключается влияние дисперсионных искажений. В настоящее время практически все производимые волокна являются одномодовыми. [1] Существует три основных типа одномодовых волокон: 1. Одномодовое ступенчатое волокно с несмещённой дисперсией (стандартное) (англ. SMF — Step Index Single Mode Fiber), определяется рекомендацией ITU-T G.652 и применяется в большинстве оптических систем связи. 2. Одномодовое волокно со смещённой дисперсией (англ. DSF — Dispersion Shifted Single Mode Fiber), определяется рекомендацией ITU-T G.653. В волокнах DSF с помощью примесей область нулевой дисперсии смещена в третье окно прозрачности, в котором наблюдается минимальное затухание. 3. Одномодовое волокно с ненулевой смещённой дисперсией (англ. NZDSF — Non-Zero Dispersion Shifted Single Mode Fiber), определяется рекомендацией ITU-T G.655. Многомодовые волокна отличаются от одномодовых диаметром сердцевины, который составляет 50 микрон в европейском стандарте и 62,5 микрон в североамериканском и японском стандартах. Из-за большого диаметра сердцевины по многомодовому волокну распространяется несколько мод излучения — каждая под своим углом, из-за чего импульс света испытывает дисперсионные искажения и из прямоугольного превращается в колоколоподобный. Многомодовые волокна подразделяются на ступенчатые и градиентные. В ступенчатых волокнах показатель преломления от оболочки к сердцевине изменяется скачкообразно. В градиентных волокнах это изменение происходит иначе — показатель преломления сердцевины плавно возрастает от края к центру. Это приводит к явлению рефракции в сердцевине, благодаря чему снижается влияние дисперсии на искажение оптического импульса. Профиль показателя преломления градиентного волокна может быть параболическим, треугольным, ломаным и т. д.

Это волокно, продаваемое оптом.

оптоволокно - магазин по продаже ткани оптом.

Ответы Mail.ru: Что такое оптическое волокно?

Тоненькие стеклянные ниточки. Оказывается, стекло такой толщины не ломается, а гнётся, причём по этим ниточкам, даже гнутым, может передаваться свет (он отражается внутри от стенок ниточки и не может выйти наружу).

Кабель для передачи данных, где не медные жилы, а стеклянные. И по этому кабелю не токи-электричества протекают, а свет.

Оптическое волокно представляет собой диэлектрический волновод, изготовленный из кварцевого стекла. Он имеет световедущую сердцевину с показателем преломления света n1, окруженную оболочкой с показателем преломления n2, причем n1&gt;n2. Попадая в световедущую сердцевину, свет распространяется в ней за счет эффекта полного внутреннего отражения. Этот эффект имеет место при падении луча света на границу раздела двух сред из среды с большим показателем преломления n1 в среду с меньшим показателем n2, и наблюдается только до определенных значений угла падения qкр, Рис. 1. Угол полного внутреннего отражения и числовая апертура волокна величина которого определяется различиями n1 и n2 (см. рис. 1). Согласно законам оптики значение qкр определяет соотношение Лучи света, падающие на границу раздела n1/n2 под углами большими qкр будут распространяться в световедущей сердце вине с очень малыми потерями, а лучи не удовлетворяющие этому условию - выходить в оболочку и быстро затухать. Обычно свет вводится в оптоволокно через торец. Предельная величина угла падения луча света на торец оптоволокна связана с критическим углом соотношением sin am = n1 cos qкр = (n12 - n22)1/2 = (2n · Dn)1/2, где n = (n1 + n2)/2, а Dn = n1 - n2. Величина NA = sin am = (2n · Dn)1/2 называется числовой апертурой оптоволокна и определяет способность оптоволокна собирать и передавать свет. Луч света, введенный в оптоволокно под углом меньшим m, будет распространяться по всей длине оптоволокна. Такой луч называется ведомой модой или просто модой. Как новая физическая среда для передачи информации оптическое волокно имеет ряд существенных преимуществ, по сравнению с другими, среди которых: Широкая полоса частот (до 1014 Гц) и низкое затухание света в оптоволокне (~ 0,1-0,2 дБ/км) обеспечивают передачу массивов информации с высокими скоростями и на большие расстояния (до сотен километров без регенерации сигнала) . Кварцевое стекло как среда передачи нечувствительно к электромагнитным полям. Поэтому оптоволокно может прокладываться вместе с силовыми кабелями, без опасности возникновения наведенных помех и ошибок при передаче информации. Оптическое волокно пожаровзрывобезопасно, в ВОС (волоконно-оптическая сеть) обеспечивается гальваническая развязка между передающим и приемным оборудованием. Оптическое волокно, как канал связи, имеет высокую степень защиты от прослушивания и несанкционированного съема информации. ВОЛС (волоконно-оптические линии связи) имеют значительно меньшие объем и массу в расчете на единицу передаваемой информации, чем любые другие; исходным сырьем для изготовления оптоволокна является кремний, запасы которого на земле практически неограниченны. Существует два типа оптических волокон: многомодовые (ММ) и одномодовые (SM), отличающиеся диаметрами световедущей сердцевины. Многомодовое волокно, в свою очередь, бывает двух типов: со ступенчатым и градиентным профилями показателя преломления по его сечению. Диаметр сердцевины оптического волокна со ступенчатым профилем показателя преломления лежит в пределах от 100 до 200 мкм; значение показателя преломления n1 по всему поперечному сечению сердцевины постоянно и резко падает (ступенчатый) на границе с оболочкой (рис. 2). <a rel="nofollow" href="http://www.rusoptika.ru/volokno.html" target="_blank">http://www.rusoptika.ru/volokno.html</a>

Кабель для передачи данных, где не медные жилы, а стеклянные. И по этому кабелю не токи-электричества протекают, а свет. В США их начали использовать с начала 90-х годов, а у нас до сих пор медь используется иногда под фирменной маркой такое г-но продают, что советские бывают лучше и надежнее. Вот он какой 21 век для России.

Оптоволокно — это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения. Волоконная оптика — раздел прикладной науки и машиностроения, описывающий такие волокна. Оптоволокна используются в оптоволоконной связи, которая позволяет передавать цифровую информацию на большие расстояния и с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков . Простой принцип действия позволяет использовать различные методы, дающие возможность создавать самые разнообразные оптоволокна: Одномодовые оптоволокна Мультимодовые оптоволокна Оптоволокна с градиентным показателем преломления Оптоволокна со ступенчатым профилем распределения показателей преломления. Из-за физических свойств оптоволокна необходимы специальные методы для их соединения с оборудованием. Оптоволокна являются базой для различных типов кабелей, в зависимости от того, где они будут использоваться. Принцип передачи света внутри оптоволокна был впервые продемонстрирован во времена королевы Виктории (1837—1901 гг.) , но развитие современных оптоволокон началось в 1950-х годах. Они стали использоваться в связи несколько позже, в 1970-х; с этого момента технический прогресс значительно увеличил диапазон применения и скорость распространения оптоволокон, а также уменьшил стоимость систем оптоволоконной связи.

Оптика — Википедия

О́птика (от др.-греч. ὀπτική «наука о зрительных восприятиях») — раздел физики, рассматривающий явления, связанные с распространением электромагнитных волн видимого, инфракрасного и ультрафиолетового диапазонов спектра. Оптика описывает свойства света и объясняет связанные с ним явления. Методы оптики используются во многих прикладных дисциплинах, включая электротехнику, физику, медицину (в частности, офтальмологию и рентгенологию). В этих, а также в междисциплинарных сферах широко применяются достижения прикладной оптики[1].

Вместе с точной механикой оптика является основой оптико-механической промышленности.

Оптика оказалась одним из первых разделов физики, где проявилась ограниченность классических представлений о природе. Была установлена двойственная природа света:

  • Волновая теория света, берущая начало от Гюйгенса («Трактат о свете[en]»; 1690), рассматривает свет как совокупность поперечных монохроматических электромагнитных волн, а наблюдаемые оптические эффекты как результат сложения (интерференции) этих волн. При этом считается, что в отсутствие перехода энергии излучения в другие виды энергии, эти волны не влияют друг на друга в том смысле, что, вызвавшая в некоторой области пространства интерференционные явления, волна продолжает распространяться дальше без изменения своих характеристик. Волновая теория электромагнитного излучения нашла своё теоретическое описание в работах Максвелла в форме уравнений Максвелла. Использование представления о свете, как о волне, позволяет объяснить явления, связанные с интерференцией и дифракцией, в том числе структуру светового поля (построение изображений и голографию).
  • Корпускулярная теория света[en], берущая начало от Ньютона («{{lang-en|Оптика[en]»; 1704), рассматривает свет как поток частиц — квантов света или фотонов. В соответствии с идеей Планка любое излучение происходит дискретно, причём минимальная порция энергии (энергия фотона) имеет величину ε=hν{\displaystyle \varepsilon =h\nu } , где частота ν{\displaystyle \nu } соответствует частоте излучённого света, а h{\displaystyle h} — постоянная Планка. Использование представлений о свете, как потоке частиц, объясняет явление фотоэффекта и закономерности теории излучения.

Длина световой волны λ{\displaystyle \lambda } зависит от скорости распространения волны в среде v{\displaystyle v} и связана с нею и частотой ν{\displaystyle \nu } соотношением:

λ=vν=cnν,{\displaystyle \lambda ={\frac {v}{\nu }}={\frac {c}{n\nu }},}

где n{\displaystyle n} — показатель преломления среды. В общем случае показатель преломления среды является функцией длины волны: n=n(λ){\displaystyle n=n(\lambda )}. Зависимость показателя преломления от длины волны проявляется в виде явления дисперсии света.

Характеристиками света являются:

Скорость света[править | править код]

Универсальным понятием в физике является скорость света c{\displaystyle c}. Её значение в вакууме представляет собой не только предельную скорость распространения электромагнитных колебаний любой частоты, но и вообще предельную скорость распространения информации или любого воздействия на материальные объекты. При распространении света в различных средах фазовая скорость света v{\displaystyle v} обычно уменьшается: v=c/n{\displaystyle v=c/n}, где n{\displaystyle n} есть показатель преломления среды, характеризующий её оптические свойства и зависящий от частоты света: n=n(ν){\displaystyle n=n(\nu )}. В области аномальной дисперсии света показатель преломления может быть и меньше единицы, а фазовая скорость света больше c{\displaystyle c}. Последнее утверждение не входит в противоречие с теорией относительности, поскольку передача информации с помощью света происходит не с фазовой, а, как правило, с групповой скоростью.

Электромагнитный спектр принято делить на радиоволны, инфракрасное, видимое, ультрафиолетовое, рентгеновское и гамма-излучения. Эти участки спектра различаются не по своей природе, а по способу генерации и приёма излучения. Поэтому между ними нет резких переходов, сами участки перекрываются, а границы между ними условны.

Волновые и квантовые закономерности являются общими для всего спектра электромагнитного излучения. В зависимости от длины волны, на первый план выступают разные явления, разные методы исследования и разные практические применения. Поэтому на оптику нельзя смотреть как на замкнутую дисциплину, изучающую только видимую область спектра, отделённую от других областей чёткими границами. Закономерности и результаты, найденные в этих других областях, могут оказаться применимыми в видимой области спектра и наоборот.

Аналогичные явления встречаются в распространении рентгеновского излучения и радиоволн, в микроволновых печах и т. п. Оптика, таким образом, может рассматриваться как раздел электромагнетизма. Некоторые оптические явления зависят от квантовой природы света, что связывает некоторые области оптики с квантовой механикой. Практически, огромное большинство оптических явлений могут рассматриваться, как электромагнитные колебания, описанные Уравнениями Максвелла.

Классическая оптика[править | править код]

До появления квантовой оптики оптика в целом основывалась на классическом электромагнетизме. Классическая оптика делится на две главные ветви: геометрическая оптика и физическая оптика.

Геометрическая оптика[править | править код]

Геометрическая оптика (оптика луча) не занимается рассмотрением вопроса о природе света, а основывается лишь на эмпирических законах его распространения. Центральное понятие геометрической оптики, с помощью которого описывается распространение света, — световой луч, представляющий собой линию, вдоль которой переносится энергия света. В однородной оптической среде световые лучи представляют собой прямые линии.

Геометрическая оптика позволила успешно объяснить многие явления, наблюдающиеся при прохождении света в различных средах. К таким явлениям относятся, например, искривление лучей в земной атмосфере, образование радуг и миражей. Геометрическая оптика позволяет изучать и определять закономерности и правила построения изображений. Её методы широко используются при расчётах и конструировании разнообразных оптических приборов.

Вместе с тем в приближении геометрической оптики невозможно объяснить происхождение многих важных оптических эффектов, таких, например, как дифракция, интерференция и поляризация света.

Параксиальное приближение[править | править код]

Следующее упрощение в геометрической оптике — параксиальное приближение, или «приближение малых углов». Математически поведение луча становится линейным, позволяя представить оптические компоненты простыми матрицами. Применение методов Гауссовской оптики позволяет найти свойства первого порядка оптических систем.

Гауссовское распространение луча — расширение параксиальной оптики, описывающее более точную модель поведения лучей. Используя параксиальное приближение и явление дифракции, данный набор методов описывает расширение светового пучка с расстоянием и минимальный размер светового пятна, в которое может быть сосредоточен световой пучок. Тем самым эта модель является промежуточной между геометрической и физической оптикой.

История[править | править код]

Работы Гюйгенса «Волновая теория света», которые были написаны под влиянием фундаментальных работ Ньютона, и вошли потом в «Оптику», оказали большое влияние на современников. Действительно, будучи приверженцем теории цветов Гука, он после работ Ньютона, восхищаясь их экспериментальной стороной, но не разделяя его теоретической интерпретации, пришёл к выводу, что «явление окрашивания остаётся ещё весьма таинственным из-за трудности объяснения этого разнообразия цветов с помощью какого-либо физического механизма». Поэтому он счёл наиболее целесообразным вообще не рассматривать вопроса о цветах в своём трактате.

В своем небольшом трактате первым он рассмотрел прямолинейное распространение света, во второй части — отражение, в третьей — преломление, в четвёртой — атмосферную рефракцию, в пятой — двойное лучепреломление и в шестой — формы линз.

Неудовлетворительное объяснение прямолинейного распространения света Гюйгенс возместил блестящим объяснением с помощью своего механизма частичного отражения, преломления и полного внутреннего отражения — явлений, интерпретация которых вынудила Ньютона усложнять свою теорию, нагромождая одну теорию на другую. По существу, эти объяснения Гюйгенса и сейчас приводятся во всех учебниках. Новая теория обладала также тем преимуществом, что для объяснения преломления она в соответствии со здравым смыслом требовала меньшей скорости в более плотной среде.

Физическая оптика[править | править код]

Физическая оптика или оптика волны основывается на принципе Гюйгенса и моделирует распространение сложных фронтов импульса через оптические системы, включая и амплитуду и фазу волны. Этот раздел оптики объясняет дифракцию, интерференцию, эффекты поляризации, аберрацию и природу других сложных эффектов.

В этом разделе оптики также используются приближения, а не полная электромагнитная модель распространения света. Однако в простых случаях, а по мере роста доступных вычислительных мощностей и в более сложных, становится возможным полный расчёт по точной теории.

Современная оптика охватывает области оптической науки и разработок, которые стали популярными в XX столетии. Эти области оптической науки в основном касаются электромагнитных или квантовых свойств света, но включают и другие области.

Физиологическая оптика[править | править код]

Физиологическая оптика — междисциплинарная наука о зрительном восприятии света. Она объединяет сведения по биофизике, биохимии и психологии зрительного восприятия.

Рентгеновская оптика[править | править код]

Рентгеновская оптика — отрасль прикладной оптики, изучающая процессы распространения рентгеновских лучей в средах, а также разрабатывающая элементы для рентгеновских приборов. Рентгеновская оптика в отличие от обычной рассматривает электромагнитные волны в диапазоне длин волн рентгеновского 10−4 до 100 Å (от 10−14 до 10−8м) и гамма-излучений < 10−4 Å.

Темы, связанные с современной оптикой[править | править код]

  • Б. М. Яворский и А. А. Детлаф Справочник по физике. — М.: Наука, 1971.

ОПТИКNET | Интернет в частный сектор

ОПТИКNET | Интернет в частный сектор

Оптоволокно в каждый дом

Оптическое волокно в дом гарантирует стабильную связь и высокую скорость доступа.

  • Подключение ₽ 6000
  • Входящая скорость до 60 мб/сек
  • Исходящая скорость до 60 мб/сек
  • IP TV Смотрешка 54 канала
  • Техподдержка 24/7
  • Подключение ₽ 6000
  • Входящая скорость до 80 мб/сек
  • Исходящая скорость до 80 мб/сек
  • IP TV Смотрешка 109 каналов
  • Техподдержка 24/7
  • Подключение ₽ 6000
  • Входящая скорость до 100 мб/сек
  • Исходящая скорость до 100 мб/сек
  • IP TV Смотрешка + MEGOGO 118 каналов
  • Техподдержка 24/7

Мы используем самые последние технологии доступа в Интернет. Мы постоянно расширяем границу присутствия - оставьте заявку на подключение и мы рассмотрим возможность вашего подключения.

Интерактивное телевидение

24 часа ТВ

24часаТВ работает как в сети провайдера, так и в мобильных 3G/4G сетях на всех популярных устройствах. При этом – вы сможете смотреть все это на 5-ти устройствах одновременно, идеально для всей семьи!

Перейти

СМОТРЁШКА

Смотрёшка работает везде, где есть Интернет. На любых устройствах: смартфон, планшет, телевизор, компьютер. На всех популярных платформах: Web, iOS, Android, Smart TV и STB.

Перейти
Вопросы и ответы

1Как подключить ОптикNet?

Позвонить по номеру 8 900 130 9060 и оставить устную заявку. Заявку так же можно подать с нашего сайта на странице Контакты.

2Каковы условия подключения?

Оптический терминал приобретается отдельно. Приобретение терминала возможно в рассрочку, кредит от нашего партнера.

3Как быстро подключат ОптикNet?

После принятия Заявки на подключение, мы подключаем ОптикNet в течении 3-5 дней!

Технология

Технология GPON или Gigabit PON стала внедряться относительно недавно. Качественное отличие новой технологии доступа GPON — это перспектива доставки, в том числе и будущих видов услуг, которые находятся на стадии разработки.

Подробнее

Почему стоит подключиться к ОптикNet?

В частных домах жители редко получают качественный интернет... Мы решили что они достойны, и имеют право получать такой же интернет как и жители многоэтажек.

Скорость

ОптикNet использует современное оптическое волокно в дом и гарантирует высокую входящую и исходящую скорость доступа!

Стабильность

ОптикNet гарантирует стабильное соединение сигнала интернет на весь период обслуживания!

Техническая поддержка

ОптикNet предоставляет грамотное и оперативное решение вопросов и устранение проблем профессиональными сотрудниками!

Оборудование

ОптикNet использует самое современное оборудование и самые последние технологии доступа в Интернет!

Мы cохраняем файлы cookie: это помогает сайту работать лучше. Если Вы продолжите использовать сайт, мы будем считать, что Вас это устраивает. Подробнее...ПРИНИМАЮ

Условия политики обработки персональных данных


Смотрите также