Инверсионный след от самолета что это такое


Конденсационный след — Википедия

Конденсационный след от самолёта с четырьмя двигателями. Конденсируется водяной пар, образующийся при сгорании топлива Конденсационный след от двухмоторного самолёта Конденсационные следы от поршневых самолётов B-17, Вторая мировая война. Отчётливо виден конденсат внутри вихрей, сбегающих с концов лопастей Вихревые жгуты с законцовок крыла самолёта F/A-18 Конденсационный след, оставленный третьей ступенью ракеты-носителя «Протон» на высоте порядка 90 км. Сконденсированные продукты сгорания и остатки несгоревшего ракетного топлива уже освещаются Солнцем, но утреннее небо ещё тёмное, поэтому след очень контрастный Конденсационный след от самолёта в ясную погоду держится долго и расползается на полнеба.
Внешние изображения
Примеры различных конденсационных следов
Boeing 777-269ER, Kuwait Airways. Сопровождается истребителем F-18. Самолёты летят в одинаковых условиях, но мощность двигателей у B-777 больше, выбрасывается больше водяного пара. В результате – его след более насыщенный и начинает образовываться раньше, чем у истребителя.
Boeing 777, Turkish. Airbus A330, Air Berlin. Интервал по высоте – 6000 футов (1829 метров). Самолёты летят в разных условиях. У того, который летит выше, – след образуется, у другого – нет.
Fokker 100, BMI. Хотя у самолёта два двигателя, они расположены недалеко друг от друга. Поэтому оба следа сливаются в один.
Airbus A319-132, Air China. Конденсационный след возникает в результате понижения давления и температуры воздуха над крылом.
Boeing 747-243B(SF), Southern Air. В образовании такого следа принимают участие обе причины – и понижение давления воздуха над крылом, и конденсация водяного пара, содержащегося в отработанных газах. Радуга – в результате отражения и преломления солнечного света на частицах следа.
Boeing 737-232, Canadian North. В комментарии к фотографии сказано: «Когда снаружи -39, нет необходимости смотреть вдаль в поисках конденсационного следа»
Ми-8ТВ, КомиАвиаТранс. Конденсационный след может появиться и у вертолёта. Хорошо выявляется вихревая структура возмущённого воздуха.
Boeing 737-476, Qantas. Конденсат над крылом, по причине относительно высокой температуры испаряется, как только покидает зону пониженного давления. Интенсивные вихри, сбегающие с законцовок закрылков, существуют продолжительное время. Виден конденсат внутри вихрей.

Конденсационный след (инверсионный след, реактивный след) — видимый в воздухе след из водяных паров или кристалликов льда, возникающий в атмосфере за движущимися летательными аппаратами при определённых состояниях атмосферы. Явление наблюдается наиболее часто в верхних слоях тропосферы, значительно реже — в тропопаузе и стратосфере[1]. При низких температурах воздуха может наблюдаться и на небольших высотах.

Конденсационные следы относятся к отдельной группе облаков — техногенным, или искусственным облакам — Ci trac. (Cirrus tractus, cirrus — перистый, tractus — след).

Своё название след получил от процесса конденсации влаги, который и приводит к его появлению. Конденсация происходит только при таких условиях, когда количество водяного пара превышает то количество, которое необходимо для насыщения. Эти условия определяются точкой росы — температурой, при которой водяной пар, содержащийся в воздухе, достигает насыщения при данной удельной влажности и постоянном давлении. Степень насыщения характеризуется относительной влажностью — процентным отношением количества водяного пара, содержащегося в воздухе, к количеству, которое требуется для насыщения (при одной и той же температуре). Кроме этих условий, необходимо ещё и наличие центров конденсации. При температуре до −30… −40 °C водяной пар при конденсации переходит в жидкую фазу, при температуре ниже −30… −40 °C водяной пар превращается сразу в ледяные кристаллы, минуя жидкую фазу. Также важную роль в формировании следа играет процесс испарения, приводящий к его исчезновению.

Существуют две основные причины возникновения условий для конденсации и появления следа.

Первая — это повышение влажности воздуха, когда к атмосферному водяному пару добавляется водяной пар, содержащийся в отработанных газах авиационного двигателя в результате сгорания топлива. Это повышает точку росы в ограниченном объёме воздуха (за двигателями). Если точка росы становится выше температуры окружающего воздуха, то, по мере остывания отработанных газов, избыточный водяной пар конденсируется. Количество водяного пара, выбрасываемого двигателем, зависит от его мощности и режима работы, то есть от расхода топлива. Образованию конденсационного следа также способствуют центры конденсации в виде частиц не сгоревшего или не полностью сгоревшего (сажа) топлива.

Вторая причина появления видимого следа — это понижение температуры воздуха в результате падения его давления над крылом и внутри вихрей, возникающих при обтекании различных частей самолёта. Это так называемые вихревые жгуты. Наиболее интенсивные вихри образуются при больших углах атаки на законцовках крыла и при выпущенных закрылках, а также на законцовках лопастей воздушных винтов. Если при этом температура опускается ниже точки росы — избыток атмосферного водяного пара конденсируется в области над крылом и внутри вихрей. Степень понижения давления и температуры зависят от таких параметров, как масса летательного аппарата, коэффициент подъёмной силы, величина индуктивного сопротивления и мн. др. факторов.

Иногда наблюдаются следы, образованные в результате комбинации этих двух причин.

Наряду с конденсацией происходит и обратный процесс — испарение: частицы сконденсированного водяного пара испаряются, и след со временем исчезает. На скорость испарения влияют влажность окружающего след воздуха и агрегатное состояние частиц следа. Чем суше воздух, тем быстрее происходит испарение. Напротив — испарение не происходит в случае, когда водяной пар находится в состоянии насыщения. Сконденсированный водяной пар при температуре воздуха −30… −40 °C частично, а при температуре ниже −40 °C полностью превращается в кристаллы, испарение ледяных кристаллов происходит значительно медленнее, чем капель воды.

Таким образом, возможность появления и время существования конденсационного следа, равно как и его вид, зависят от влажности и температуры атмосферного воздуха (при прочих равных условиях). При низкой влажности и относительно высокой температуре след может отсутствовать вовсе, так как при таких условиях водяной пар не достигает состояния перенасыщения. Чем выше влажность и ниже температура, тем больше водяного пара конденсируется, тем медленнее происходит испарение, следовательно — след насыщеннее и длиннее. А при относительной влажности, близкой к 100 %, и низкой температуре конденсируется наибольшее количество водяного пара, высокая влажность препятствует испарению частиц следа, что и влечёт образование конденсационных следов, которые могут существовать достаточно долго, нередко превращаясь в перистые или перисто-кучевые облака. Поскольку водяной пар в атмосфере распределён неравномерно, это является причиной такого же «неравномерного» следа.

При полёте ракет, если их двигатели производят достаточное количество водяного пара (все ЖРД, а особенно водородно-кислородные, производящие только водяной пар), конденсационные следы могут возникать и в верхних слоях атмосферы, где естественного водяного пара уже недостаточно. Двигатели твердотопливных ракет практически не производят водяного пара, но выбрасывают значительное количество твёрдых частиц, которые также образуют видимый дымный след, но конденсационным по своей природе он не является.

Конденсационные следы образуются не только на больших высотах полёта (отсюда и одно из ошибочных названий — «высотный след»). На ледовом аэродроме антарктической станции «Амундсен-Скотт» (высота 2830 м над уровнем моря), при определённых условиях (температура воздуха минус 50 градусов и ниже), этот след образуется уже на взлёте или при посадке, причём за турбовинтовыми самолётами (С-130 «Геркулес» из состава «Снежного Крыла» ВВС США), что делает ненужной дискуссию о ещё одном неверном названии — «реактивный след».

Конденсационные следы до сих пор являются демаскирующим фактором для деятельности военной авиации, поэтому вероятность их появления рассчитывается авиационными метеорологами по соответствующим методикам, и экипажам выдаются рекомендации. Изменение высоты полёта в определённых пределах позволяет избежать или полностью устранить нежелательное влияние этого фактора.

Существует и антипод (противоположность) конденсационному следу — «обратный», «отрицательный» (очень редко встречаемые названия) след, образующийся при рассеивании элементов облачности (кристаллов льда) в пределах спутного следа при определённых условиях. Напоминает «обращение цвета» в графических редакторах компьютерных программ, когда голубое небо является облаком, а сам след — чистым голубым пространством. Отчётливо наблюдается с земли при слоистой или кучевой облачности незначительной вертикальной мощности и отсутствии других слоёв облачности, маскирующих голубой фон верхних слоёв атмосферы. Прекрасно видим экипажами самолётов, идущих в группе, и особенно хорошо с кормовой кабины (бомбардировщика, транспортного самолёта и т. п.)

Конденсационный след не следует путать со спутным следом. Спутный след — это возмущённая область воздуха, всегда образующаяся за движущимся летательным аппаратом. Однако конденсационный след, взаимодействуя со спутным следом, рельефно выявляет вихревую структуру возмущённого воздуха, образуя интересные визуальные эффекты.

Интересно, что при работе турбореактивного двигателя на земле при определённых условиях может возникать отчётливо видимый вихревой жгут всасываемого в воздухозаборник воздуха.

Влияние на окружающую среду[править | править код]

По заявлениям климатологов, конденсационные следы оказывают влияние на климат, уменьшая температуру за счёт того, что вырождаются в перистые облака, тем самым увеличивая альбедо Земли[источник не указан 37 дней].

Почему самолет оставляет след в небе

Увидеть невидимое… Инверсионный след, эффект Прандтля-Глоерта и прочие интересности.

Мы ведь даже самое простое, движение воздуха, увидеть не можем. Воздух – газ, и газ этот прозрачный, этим все сказано

. Но все же природа слегка сжалилась над нами и дала нам небольшую возможность поправить положение. А возможность эта в том, чтобы прозрачную среду сделать непрозрачной или хотя бы цветной. Говоря умным словом, визуализировать, пишет Юрий

Насчет цвета – это мы можем сделать сами (правда не всегда и не везде, но можем), например использовать дым (лучше цветной). А насчет обычной непрозрачности, тут природа нам помогает сама.

Самое непрозрачное в атмосфере – это облака, то есть влага, та которая конденсировалась из воздуха. Вот этот самый процесс конденсации и позволяет нам, хоть и косвенно, но все же довольно наглядно увидеть кое-какие процессы, происходящие при взаимодействии летательного аппарата с воздушной средой.

Немного о конденсации. Когда она происходит, то есть когда вода, находящаяся в воздухе становится видна. Водяной пар может накапливаться в воздухе до определенного уровня, называемого уровнем насыщения. Это что-то типа соляного раствора в банке с водой.

Соль в этой воде будет растворяться только до определенного уровня, а потом происходит насыщение и растворение прекращается. В детстве не раз это пробовал делать .

Уровень насыщения атмосферы водяным паром определяется точкой росы. Это такая температура воздуха при которой водяной пар в нем достигает состояния насыщения. Этому состоянию (то есть этой точке росы) соответствует определенное постоянное давление и определенная влажность.

Когда атмосфера в какой-то ее области достигает состояния перенасыщения, то есть пара становится слишком много для данных условий, то происходит конденсация в этой области.

То есть вода выделяется в виде мельчайших капелек (либо сразу кристаллов льда, если окружающая температура очень низкая) и становится видна. Как раз то, что нам и надо  .

Чтобы это произошло, надо либо повысить количество воды в атмосфере, что означает увеличить влажность, либо понизить температуру окружающего воздуха ниже точки росы. В обоих случаях произойдет выделение лишнего пара в виде сконденсировавшейся влаги и мы увидим белый туман (или что-то вроде того  ).

То есть, как уже понятно, в атмосфере этот процесс может иметь место, а может и нет. Все зависит от местных условий.

То есть для этого нужна влажность не ниже определенной величины, определенная, соответствующая ей температура и давление. Но если все эти условия соответствуют друг другу, мы можем наблюдать иной раз довольно интересные явления.Однако обо всем по порядку .

Первое – это всем известный инверсионный след. Это название произошло от метеорологического термина инверсия (переворот), точнее температурная инверсия, когда с ростом высоты местная температура воздуха не падает, а растет (бывает и такое).

Такое явление может способствовать образованию тумана (или облаков), но для самолетного следа оно по сути своей не подходит и считается устаревшим. Сейчас вернее говорить конденсационный след. Ну, правильно, суть ведь здесь именно в конденсации.

В шлейфе газа выходящего из авиационных двигателей содержится достаточное количество влаги, повышающее местную точку росы в воздухе непосредственно за двигателями. И , если она становится выше температуры окружающего воздуха, то при остывании имеет место конденсация.

Ее облегчает наличие так называемых центров конденсации, вокруг которых из перенасыщенного (неустойчивого, можно сказать) воздуха концентрируется влага. Этими центрами становятся частички сажи или несгоревшего топлива, вылетающие из двигателя.

Если окружающая температура достаточно низка (ниже 30-40° С), то происходит так называемая сублимация. То есть пар, минуя жидкую фазу, сразу превращается в кристаллики льда. В зависимости от атмосферных условий и взаимодействия со спутной струей, тянущейся за самолетом, инверсионный (конденсационный) след может приобретать различные, порой довольно причудливые формы.

На видео показано образование инверсионного (конденсационного) следа, заснятое из кормовой кабины самолета (кажется это ТУ-16, хотя не уверен). Видны стволы кормовой огневой установки (пушки).

Второе о чем следовало бы сказать, это вихревые жгуты. Явление это серьезное, напрямую связанное с индуктивным сопротивлением, и, конечно, неплохо было бы как-то его визуализировать.

Кое-что в этом плане мы уже видели. Я имею ввиду приведенный в указанной статье ролик, показывающий использование дыма на наземной установке.

Однако это же самое можно сделать и в воздухе. И при этом получить потрясающе зрелищные виды. Дело в том, что у многих военных летательных аппаратов, особенно у тяжелых бомбардировщиков, транспортников, а также вертолетов присутствуют на борту так называемые пассивные средства защиты. Это, например, ложные тепловые цели (ЛТЦ).

Многие боевые ракеты, способные атаковать летательный аппарат (как класса «земля-воздух», так и класса «воздух-воздух») обладают инфракрасными головками самонаведения. То есть реагируют на тепло. Чаще всего это бывает тепло двигателя летательного аппарата.

Так вот ЛТЦ обладают температурой значительно большей, нежели температура двигателя, и ракета при своем движении отклоняется на эту ложную цель, а самолет (или вертолет) остается целым.

Но это так, для общего знакомства  Главное тут в том, что ЛТЦ отстреливаются в большом количестве, и каждая из них (представляя собой миниатюрную ракету) оставляет за собой дымный след.

И, вот, множество этих следов, объединяясь и закручиваясь в вихревых жгутах, визуализируют их и создают подчас потрясающие по красоте картины. Одна их самых известных – это «Дымный ангел». Он получился при выстреле ЛТЦ транспортного самолета Boeing C-17 Globemaster III.

Справедливости ради стоит сказать, что и другие летательные аппараты тоже неплохие художники …

Однако, вихревые жгуты можно увидеть и без использования дыма. Конденсация атмосферного пара нам поможет и здесь. Как мы уже знаем, воздух в жгуте получает вращательное движение и, тем самым перемещение от центра жгута к его периферии.

Это приводит к расширению и падению температуры в центре жгута, и, если влажность воздуха достаточно высока, то могут создаться условия для конденсации влаги.

Тогда мы можем увидеть вихревые жгуты воочию. Эта возможность зависит как от условий атмосферы, так и от параметров самого летательного аппарата.

И чем больше углы атаки, на которых летает самолет, тем вихревые жгуты более интенсивны и визуализация их за счет конденсации более вероятна. Особенно это характерно для маневренных истребителей, а также хорошо проявляется на выпущенных закрылках.

Кстати, точно такого же рода атмосферные условия позволяют увидеть вихревые жгуты, образующиеся на концах лопастей (которые в данной ситуации суть те же крылья) турбовинтовых или поршневых двигателей некоторых самолетов. Тоже довольно эффектная картина.

Из приведенных видео характерен ролик с самолетами ЯК-52. Там явно идет дождь и влажность, таким образом, высокая.

Часто происходит взаимодействие вихревых жгутов с инверсионным (конденсационным) следом, и тогда картины могут быть довольно причудливы  .

Теперь следующее. Ранее я об этом уже упоминал, но не грех сказать еще раз. Подъемная сила. Как пошутил бы мой приснопамятный товарищ: «Да где она?! Кто ее видел?» Да вобщем никто  . Но косвенное подтверждение все-таки можно увидеть.

Чаще всего такая возможность предоставляется на каком-нибудь авиашоу. Самолеты, выполняющие различные, довольно экстремальные эволюции конечно оперируют с большими величинами подъемной силы, возникающей на их несущих поверхностях.
Но большая подъемная сила, чаще всего означает большое падение давления (а значит и температуры) в области над крылом, что, как мы уже знаем, при определенных условиях может вызвать конденсацию водяного атмосферного пара, и тогда мы воочию убедимся в том, что условия для создания подъемной силы есть  ….

Для иллюстрации сказанного о вихревых жгутах и подъемной силе есть хорошее видео:

В следующем видео эти процессы сняты во время посадки из пассажирского салона самолета:

Однако справедливости ради надо сказать, что это явление в визуальном плане может сочетаться с эффектом Прандтля-Глоерта (по сути дела это, вобщем-то, он и есть).

Название страшное  , но принцип все тот же, а визуальный эффект значительный  …

Суть этого явления заключается в том, что позади летательного аппарата (чаще всего самолета), движущегося с высокой скоростью (достаточно близкой к скорости звука) может образовываться облако сконденсировавшегося водяного пара.

Происходит это из-за того,что при движении самолет как бы двигает перед собой воздух и, тем самым, создает область повышенного давления перед собой и область пониженного после себя.

После пролета, воздух начинает заполнять эту область с малым давлением из близлежащего пространства, и, таким образом, в этом пространстве объем его увеличивается, а температура падает.

И если при этом есть достаточная влажность воздуха, а температура опускается ниже точки росы, то происходит конденсация пара и появляется небольшое облако.

Существует оно обычно недолго. Когда давление выравнивается, то поднимается местная температура и сконденсировавшаяся влага вновь испаряется.

Частенько при появлении такого облака говорят, что самолет проходит звуковой барьер, то есть переходит на сверхзвук. На самом деле это не совсем так. Эффект Прандтля- Глоерта, то есть возможность конденсации зависит от влажности воздуха и его местной температуры, а также от скорости самолета.

Чаще всего такое явление характерно для околозвуковых скоростей (при относительно малой влажности), но может происходить и на относительно малых скоростях при высокой влажности воздуха и на малых высотах, особенно над водной поверхностью.

Однако форма пологого конуса, которую часто имеют облака конденсации при движении на больших скоростях тем не менее часто получается из-за наличия так называемых местных скачков уплотнения, образующихся на больших около- и сверхзвуковых скоростях.

Не могу также не вспомнить о своих любимых турбореактивных двигателях. Конденсация и тут позволяет увидеть кое-что интересное. При работе двигателя на земле на больших оборотах и достаточной влажности можно увидеть “воздух на входе в двигатель”

. На самом деле не совсем так, конечно. Просто двигатель интенсивно всасывает воздух и на входе образуется некоторое разрежение, как следствие падение температуры, из-за которого происходит конденсация водяного пара.

Кроме того часто возникает еще и вихревой жгут, потому что воздух на входе закручивается рабочим колесом компрессора (вентилятора). В жгуте по известным нам уже причинам тоже конденсируется влага и он становится виден. Все эти процессы хорошо видны на видео.

Ну и в завершение приведу еще один очень интересный , на мой взгляд, пример. Он уже не связан с конденсацией пара и цветной дым нам тут не понадобится  . Однако природа и без этого наглядно иллюстрирует свои законы.

Все мы неоднократно наблюдали за тем, как многочисленные стаи птиц улетают осенью на юг, а весной потом возвращаются в родные места. При этом большие тяжелые птицы, такие, как гуси (я уж не говорю про лебедей) летят, обычно, интересным строем, клином. Впереди идет вожак, а сзади по косой линии расходятся вправо и влево остальные птицы. Причем каждая последующая летит правее (либо левее) впереди летящей. Никогда не задумывались почему они летят именно так?

Оказывается это имеет прямое отношение к нашей теме. Птица – тоже своего рода летательный аппарат  , и за ее крыльями образуются примерно такие же вихревые жгуты, как и за крылом самолета. Они также вращаются (ось горизонтального вращения проходит через концы крыльев), имея за корпусом птицы направление вращения вниз, а за оконечностями ее крыльев вверх.

То есть получается, что птица, летящая сзади и правее (левее) попадает во вращательное движение воздуха вверх. Этот воздух как бы поддерживает ее и ей легче держаться на высоте.

Она меньше тратит сил. Это очень важно для тех стай, которые преодолевают большие расстояния. Птицы меньше устают и могут лететь дальше. Только вожаки не имеют такой поддержки. И именно поэтому они периодически меняются, становясь в конец клина для отдыха.

Образцом такого рода поведения часто называют канадских гусей. Считается, что таким способом они при дальних перелетах «в команде» экономят до 70% своих сил, значительно повышая эффективность перелетов.

Это и есть еще один способ косвенной, но достаточно наглядной визуализации аэродинамических процессов.

Природа наша достаточно сложно и очень целесообразно устроена и периодически нам об этом напоминает. Человеку остается только не забывать это и перенимать у нее тот огромный опыт, которым она с нами щедро делится. Главное здесь только не переусердствовать и не навредить…

И в конце  видео о канадских гусях.

 

Галинка

реактивный, спутный, конденсационный и инверсионный

Наблюдая за небом, можно увидеть две белые линии, тянущиеся за самолетом. Это может показаться необычным, если раньше человек никогда не обращал внимания на пролетающую над ним авиацию. Чаще удивление возникает еще в детстве, вызывая массу вопросов, но со взрослением все они пропадают, а явление становится обыденностью. Причины, почему за самолетом обычно остается белая полоса, намного проще, чем может показаться.

Разбираемся в основах физики

Настоящую причину появления на небе полос за самолетом знают даже не все взрослые, из-за чего интересующийся таким явлением ребенок порой не может получить никаких ответов. Но достаточно вспомнить простые опыты со школьных уроков физики, чтобы понять механизмы возникновения такого эффекта на небе и легко разъяснить их своему ребенку. Хорошим примером для этого может послужить природа выпадения осадков.

Явление напрямую касается круговорота воды, а его основой можно назвать переход жидкости из ледяного твердого состояния в жидкообразное под действием повышенных температур воздуха. Если уровень тепла между объектами заметно различается, то уже растопленный лед начинает трансформироваться в пар, становясь газообразным. После перехода в это состояние вода вновь может стать жидкой.

Это и называется конденсацией, которую можно наблюдать при оседании пара на крышку, закрывающую кипящую жидкость внутри кастрюли, или запотевании зеркал и стекол в ванной после использования горячего душа. От таких частиц, которые попадают на другие объекты в виде конденсата, формируются видимые очертания пара.

Когда газообразная вода, испаряясь из горячей жидкости, попадает в атмосферу, она начинает постепенно смешиваться с ближайшими частицами воздуха, а ее температура медленно сравнивается с окружающей. Именно такое физическое явление объясняет причины, почему после самолета могут образовываться белые полосы – они представляют собой обычный пар.

Знаете ли Вы, что след самолета называется «конденсационным»?

ДаНет

Домашний эксперимент с бутылкой

Разобраться в явлении подробнее можно с помощью простого домашнего эксперимента. Для его проведения потребуется доступ к чистой воде, пустая пластмассовая бутылка любого объема и свободная морозильная камера. На это нужно не более получаса.

Проводится эксперимент следующим образом:

  1. Взять подходящую бутылку, которая потом поместится внутри морозильной камеры. Цвет не имеет значения.
  2. Наполнить выбранную емкость водой, чья температура не превышает комнатную, закрыть и поместить на 20 минут внутрь морозильной камеры.
  3. Достать бутылку из морозилки, поставить на видное место и наблюдать в течение нескольких минут.

На поверхности замороженной бутылки начнут медленно появляться капельки воды, из-за чего вскоре она станет сырой. Образованный конденсат возникает вследствие контакта теплого воздуха с ледяным пластиком, что стимулирует выделение влаги.

Аналогичным явлением считается роса на растениях. Взаимодействие холодного утреннего воздуха с теплой поверхностью приводит к появлению конденсата, группирующегося в маленькие капли. Также к популярным примерам можно отнести образование пара, когда человек выдыхает на улице зимой.

Как образуется след и после каких самолетов

С помощью белых следов дети следят за тем, какую траекторию в небе оставляют реактивные самолеты, и удивляются тому, что иногда никаких признаков привычных полос нет. Дело в том, что авиация, пролетающая на высоте ниже восьми километров, не оставляет после себя линий. Причина отсутствия следов кроется в разнице температур между нижними и высокими слоями атмосферы. С увеличением высоты воздух становится намного холоднее. На уровне, где летает большинство самолетов, температура опускается до –40°C.

Причина, почему воздушные судна оставляют за собой белые линии, заключается в работе мотора. Когда основное топливо в виде керосина попадает в двигатель и сгорает, оттуда выплескиваются горячие струи, состоящие из газа и пара. Эта жидкость при контакте с холодным воздухом атмосферы мгновенно трансформируется в туманные скопления.

Вместе с ней из двигателей выбрасываются элементы сажи, которые провоцируют дальнейшее смешивание холодного и горячего потоков воздуха. Чаще всего пар распределяется равномерно по всей области, куда попала жидкость из двигателей. Поэтому линия практически всегда ровная и соответствует направлению движения самолета.

Если уровень влажности в атмосфере слишком низкий, то оставленные следы быстро растворяются в небе. Заметить их удается с трудом. При высокой влажности, наоборот, линии выглядят четкими, насыщенными и держат свою форму намного дольше, при этом постепенно становясь шире.

Белые следы остаются в небе практически от любых самолетов. Их может вызвать как гражданский, так и военный авиалайнер, вне зависимости от размеров и характеристик. Линии остаются даже после винтовой авиации, но тогда они возникают в насыщенной воздушной зоне в результате разряжения воздуха после прохождения лопасти пропеллера и его смешивания с холодной атмосферой.

Иногда можно заметить, как пролетают два самолета, но за одним белый след остается, а за другим – нет. Такое явление можно наблюдать только в трех случаях:

  1. Самолеты находятся на разной высоте – как уже было упомянуто, следы остаются только низкой температуре воздуха, которая отмечается на уровне не менее 8 км.
  2. Большое расстояние между самолетами – влажность в воздушном пространстве может быть разной, из-за чего у одного авиалайнера есть линии, а у второго – нет.
  3. На самолетах установлены двигатели разного типа – некоторые виды не оставляют после себя следов даже при высокой влажности и низкой температуре воздуха.

Также можно заметить такие ситуации, когда после самолета оставалась белая полоса, но потом резко прервалась. Это происходит при изменении влажности воздуха или перепадах температур, хотя чаще ее испарение плавное.

Как правильно называется след от самолета

Многие взрослые не знают, как называются следы от самолета в небе, и ошибочно дают им неправильные имена. Причем некоторые вообще не имеют ни малейшего отношения к авиации или природным явлениям.

Инверсионный след, которым зачастую называют линии после самолета, происходит от слова «инверсия», характеризующего переворот в метеорологии. В случае с полетами авиации предполагается температурный ее вариант, связанный с ростом температуры воздуха при подъеме вверх.

Второе название этого явления – реактивный след. Оно связано с тем, что чаще эффект наблюдается после пролета авиации с одноименными двигателями. Оба варианта ошибочны, хотя ранее считались приемлемыми.

Правильно называть след конденсационным. Именно конденсация становится основной причиной появления белых полос. Если явление не может возникнуть из-за одинаковых температур и низкой влажности воздуха, то и следов от самолета не останется. В то же время инверсии вообще может не быть, как и могут не применяться реактивные двигатели, когда белые линии возникают.

Ошибочно конденсационный след также носит название реверсивный, конверсионный или торсионный. Подобные названия не имеют никакого отношения к этому явлению. Поэтому применять их не рекомендуется.

Иногда после самолета может появиться вихревой жгут. Он возникает при использовании ложных тепловых целей на военной авиации, когда пилот выпускает специальные средства, чтобы отвести от машины ракету с инфракрасной головкой самонаведения. Так как выбрасываемые ЛТЦ попадают в атмосферу, они смешиваются не только с основным потоком воздуха, но и с прогретой двигателями областью. Их температура намного выше, а отстреливаются они в большом количестве одновременно.

Результатом применения ложных тепловых целей становится визуализация различных жгутов, из которых могут сформироваться красивые картины. Например, «Дымный ангел», получившийся при выстреле ЛТЦ из Boeing C-17.

Иногда жгуты образуются без применения специальных средств, а при смешивании с обычным белым следом тоже выдают необычные образы, которые сохраняются на одном месте частью прямой линии, что вызывает еще большее удивление.

Влияют ли следы самолета на климат

Оказывает ли вредное влияние след от самолета на климат, сказать точно нельзя. Ученые спорят об этом несколько десятилетий. Одни уверены, что остающиеся авиационные линии исключают доступ вредного солнечного излучения к поверхности Земли, что снижает вероятность возникновения глобального потепления. Другие уверены, что эти полосы приводят к усилению парникового эффекта и дестабилизируют атмосферу, не давая воздуху охлаждаться естественным путем.

Отдельные группы исследователей призывают пилотов отказаться от прямых маршрутов и строить свой полет с учетом влажности. По их замыслу, самолеты должны двигаться, избегая отдельных участков в воздушном пространстве. Но такое решение неизбежно приведет к повышению расхода топлива и усиленному выбросу вредных веществ от его переработки в воздух.

Некоторые люди научились использовать след в небе с пользой. С его помощью удается определить прогноз погоды на ближайшее время. Так, если полосы яркие и четкие, то влажность высокая – может начаться дождь. А при отсутствии следов стоит ожидать ясную солнечную погоду, т.к. вероятность осадков минимальна.

По траектории движения самолетов остаются конденсационные следы. Происходит это при условии, что влажность воздуха высокая, а температура низкая. Увидеть их чаще можно после авиации, пролетающей на высоте не менее 8000 м. В других случаях подобные белые полосы считаются редкостью.

Анализ феномена химиотрасс | FernFlower Group

Химиотрассы или химтрейлы (англ. chemtrails) — следы от самолетов, которые не рассеиваются долгое время, при этом могут образовывать на небе сетку. 

Изначально к химиотрассам относили конденсационные следы, которые длительное время расширяются, пока не превратятся в перистые облака, в отличие от «нормальных», которые исчезают в течение нескольких минут. Сейчас химиотрассами считаются практически все «необычные» конденсационные следы, отличающиеся, к примеру, формой, неравномерностью или другими особенностями. По утверждению сторонников идеи химиотрасс, эти явления сопровождаются ощущениями усталости и подавленности у людей в окрестных населенных пунктах. 

Данная статья направлена на то, чтобы разобраться, существуют ли химиотрассы вообще или же у тех особенностей, которые с ними связывают, существуют другие причины.

В 1996 году ВВС США опубликовали статью «Weather as a Force Multiplier: Owning the Weather in 2025» («Погода в качестве умножителя силы: владение погодой в 2025 году»), предлагавшую идею погодного оружия и ставшую основанием разработки теории химиотрасс.

Слово «химиотрассы» — русский вариант английского «chemtrails» — было введено в обиход директором Русской уфологической исследовательской станции RUFORS Николаем Субботиным, написавший в 2001 году первую в России статью о проблеме химиотрасс.

В 2007 году местное телевидение штата Луизиана сообщило о клетчатом небе и завышенной концентрации бария — 6,8 миллионных частей (втрое выше ПДК). Впоследствии пришлось взять слова обратно (концентрация оказалась в тысячу раз меньше, 6,8 миллиардных частей) — тем не менее, «джинн был выпущен из бутылки».

За период с 1996 года и по настоящее время было предложено множество гипотез об источниках химиотрасс.

 

  1. Основная версия: правительство использует самолеты (чаще всего пассажирские) для распыления аэрозольного вещества, которое может вызывать усталость и подавленность людей, а так же ряд разного рода заболеваний.
  2. Исследователь Том Донго из города Седона (шт. Аризона, США) занимается исследованием порталов и аномальной зоны, расположенной в 20 милях от Седоны, и придерживается альтернативной гипотезы использования химиотрасс. По гипотезе Тома и других исследований седонской аномалии, порталы могут являться проходами в иные измерения. А химиотрассы – это распыление некоего химического вещества для уничтожения порталов. Этой проблеме посвящена книга Тома "Пересекающиеся измерения".
  3. Американский исследователь Майк Блейр более категоричен в своих выводах относительно природы и назначения химиотрасс. В официальном докладе от 11 июня 2001 года, он четко называет основных виновников этого феномена и причины его возникновения. Основу химиотрасс составляют соли бария. Распыление этого химического вещества проходит в рамках военной программы испытания новейшей радарной системы (RFMP).
  4. Еще одна гипотеза возникновения химиотрасс связана с использованием солей бария, которые предназначены для управления погодой. Этот проект также известен как HAARP.
  5. Химиотрассы и выпадающая из них субстанция — результат работы двигателей НЛО какого-то особенного типа.

 

  • Химиотрассы расширяются, пока не превратятся в перистые облака. Иногда бывает, что самолёты устраивают на небе целую «решётку» — как правило, в ясный день.

"Химиотрассы" в небе

 

  • Химиотрассы, создаваемые воздушными судами, наблюдаются на высотах от 8000 до 33000 футов (от 2438,4 до 10058,4 м). Обычно они образуются на высотах ниже 30000 футов (9144 м). Обычный выхлоп не может сформироваться на этой высоте. Поэтому наблюдение выхлопов ниже 30000 футов с большой вероятностью является химиотрассой.
  • После пролёта самолётов на земле обнаруживают соли бария и алюминия, полимерные волокна, торий, карбид кремния или различные вещества органического происхождения, а у попавших под химиотрассу якобы ухудшается самочувствие.

Химиотрассы часто называют необычным конденсационным следом самолета. Попробуем разобраться, какой след от самолета является обычным. 

Конденсационный след (устар. инверсионный след - неверное, жарг. реактивный след — ошибочное название) — видимый след, образующийся в небе за движущимися летательными аппаратами при определённых состояниях (соотношениях параметров) атмосферы. Наблюдаются наиболее часто в верхних слоях тропопаузы, и значительно реже - в стратосфере.

Конденсационный след представляет собой отдельную группу облаков - техногенные (исскуственные) облака - Cirrus traktus (Cс trac., cirrus - перистый, tractus - следы).

Существуют две основные причины возникновения явления:

Первая - повышение влажности воздуха, когда к атмосферному водяному пару добавляется водяной пар, образованный в результате сгорания топлива. Это повышает точку росы в ограниченном объеме воздуха (за двигателями), и если она становится выше температуры окружающего воздуха, то при остывании отработанных газов избыточный водяной пар конденсируется (сублимируется). 

 

Конденсационный след

Вторая – понижение давления и температуры воздуха над крылом и внутри вихрей, возникающих при обтекании различных частей самолета. Наиболее интенсивные вихри образуются на законцовках крыла и выпущенных закрылков, а также на концах лопастей воздушных винтов. Если при этом температура опускается ниже точки росы – избыток атмосферного водяного пара конденсируется (сублимируется) в области над крылом и внутри вихрей.

 

Конденсационные следы от поршневых самолётов B-17, Вторая мировая война Отчетливо виден конденсат внутри вихрей, сбегающих с концов лопастей

 

 

Конденсационный след, образованный завихрениями с концов крыла.

Часто наблюдаются следы, образованные в результате комбинации этих двух причин. Также особое значение имеет тот факт, что на большой высоте наблюдается дефицит центров конденсации, поэтому даже при достижении температуры, меньшей точки росы, атмосферная влага часто остаётся в газообразном состоянии. Пролёт летательного аппарата вызывает появление большого количества таких центров конденсации, что способствует быстрому развитию конденсационного следа. Центрами конденсации могут быть частицы не сгоревшего или не полностью сгоревшего (сажа) топлива. По причине того, что влажность окружающего воздуха меньше, чем следа, сконденсированные или сублимированные частицы воды испаряются, и след со временем исчезает.

Таким образом, возможность появления и время существования конденсационного следа, равно как и его вид, зависят от влажности и температуры окружающей среды.

Если окружающий воздух сухой, то в дальнейшем происходит повторное испарение капельно-жидкой воды, и конденсационный след быстро рассеивается. Если же атмосфера насыщена влагой (относительная влажность близка к 100% ), то феномен может существовать длительное время. В условиях перенасыщенной влагой атмосферы конденсационный след стабилен, постепенно увеличивается в объеме и в конечном итоге вносит свой вклад в формирование слоя перистых облаков.

  • При низкой влажности и относительно высокой температуре след может отсутствовать вовсе.
  • Чем выше влажность и ниже температура, тем больше влаги конденсируется (сублимируется), тем насыщеннее и длиннее след. И он может существовать длительное время.
  • А при влажности близкой к 100% и низкой температуре - конденсируется наибольшее количество водяного пара, высокая влажность препятствует испарению частиц следа, что и влечёт образование конденсационных следов, которые могут существовать достаточно долго. Т.е. в условиях перенасыщенной влагой атмосферы конденсационный след стабилен, постепенно увеличивается в объеме и в конечном итоге вносит свой вклад в формирование слоя перистых облаков.

Конденсационные следы образуются не только на «больших» высотах полёта. На снежном (ледовом) аэродроме Полярной Станции Скот Амундсен (высота 2830 м над уровнем моря) - при определённых условиях (температура воздуха минус 50 градусов и ниже) - этот след образуется уже на взлёте или при посадке, причём за турбовинтовыми самолётами (С-130 «Геркулес» из состава «Снежного Крыла» ВВС США).

Неравномерное распределение водяного пара в атмосфере является причиной такого же «неравномерного» следа. Можно привести несколько примеров причин неравномерности следов:

Концевой вихрь крыла

Летящий самолет оставляет за собой возмущенную область атмосферы, называемую спутным следом. Этот след образуется в основном реактивными струями двигателей и концевыми вихрями от крыла. Скручивание объясняется разницей давлений на нижней и верхней поверхностях крыла. В результате перетекания воздуха из области повышенного давления на нижней поверхности крыла в область пониженного давления на верхней поверхности через его конец образуются мощные вихри. Чем больше перепад давления и, следовательно, подъемная сила, с которой поток действует на крыло, тем больше интенсивность концевых вихрей. Окружные скорости в вихревом следе диаметром 8-15 м могут достигать 150 км/ч. 

 

 

Мираж 2000 и F-16C, летящих с большим углом атаки.

Визуализация концевого вихря осуществлялась с помощью трассера-генератора дымного следа. Возмущения атмосферы, вызванные воздействием вихревого следа, существуют длительное время, постепенно затухая, снижая окружную скорость движения.

В результате взаимодействия между собой вихри постепенно опускаются и расходятся.

Наблюдая за инверсионным следом пролетевшего самолета, мы обнаруживаем, что примерно через 30-40 секунд после пролета самолета инверсионный след начинает изменять свой вид под действием развивающегося вихревого следа. При пересечении инверсионного и вихревого следов возникают весьма замысловатые формы, имеющие вполне определенные закономерности.

Количество двигателей самолета

В зависимости от количества двигателей и их расположения на самолете конденсационный след может быть одно-или двухполосный.

 

Наиболее часто повторяющиеся видоизменения конденсационного следа.
Рис. 5 – двухполосный след; На рис. 6 показано скручивание конденсационного следа под действием концевого вихря. Рис. 7 и 8 иллюстрируют более причудливые случаи взаимодействия конденсационного следа с концевым вихрем.

Таким образом, конденсационный след и его трансформация фиксируют аэродинамические процессы, сопровождающие полет самолета.

Отрывно-вихревые течения

При выполнении маневров на больших углах атаки (20° и более) резко меняется характер обтекания поверхностей самолета. На верхней поверхности крыла и фюзеляжа образуются отрывные области, в которых, вследствие понижения давления, возникают условия для конденсации атмосферной влаги. Благодаря этому можно наблюдать за полетом самолета и без трассеров.

 

 

Истребитель Су-21 в облачном ореоле, образовавшемся на верхней поверхности планера при полете на большом угле атаки.(слева). Появление вихревого жгута и области отрыва на поверхности крыла у бомбардировщика В-1А.(справа)

Яркий след форсажа

Двигатели современных самолетов-истребителей оснащены сверхзвуковыми регулируемыми соплами. Как правило, на форсажном режиме работы двигателя давление на срезе сопла превышает давление окружающего воздуха. На значительном удалении от среза сопла давление в струе и в атмосфере должны уравняться. По мере удаления от среза сопла давление в струе уменьшается, а скорость газа возрастает. Поперечное сечение струи увеличивается, что схематически показано на рисунке ниже. 

 

 

 

Газ по инерции продолжает расширяться, и в наиболее широком сечении струи давление становится ниже атмосферного. После этого струя начинает сужаться, давление в ней приближается к атмосферному, а скорость соответственно уменьшается. Торможение сверхзвукового потока приводит к возникновению прямого скачка уплотнения. В результате в некоторой части струи скорости становятся дозвуковыми, а давление соответственно выше атмосферного. Как видно, форма струи становится бочкообразной. Затем процесс повторяется.

Газовая струя имеет температуру более 2000 °К, поэтому ее свечение делает видимыми процессы, происходящие при ее истечении. Видны области яркого свечения в тех местах струи, где образуются прямые скачки уплотнения.

Таким образом, можно сделать вывод, что длительное время существования инверсионного следа зависит от ряда естественных причин и это не делает его «особенным». Он не зависит напрямую от высоты полета, а определяется только параметрами окружающей среды (температурой, влажностью и скоростью ветра).

«Сетка» из инверсионных следов может образоваться при длительном существовании инверсионного следа в силу специфики расположения воздушных трасс (наглядно это можно посмотреть в перечне и схемах воздушных трасс для своего региона или страны). 

Исходя из вышесказанного, обнаруженные на земле соли бария, различные вещества органического происхождения и т.п., от контакта с которыми якобы ухудшается самочувствие, не связаны с явлением конденсационного следа и имеют другие причины, поиск которых выходит за рамки данной статьи.

 

Благодарность за консультацию кандидату технических наук, преподавателю Военной Академии Виктору В.

Инверсионный след - это... Что такое Инверсионный след?


Инверсионный след

Инверсионные следы от самолета с четырьмя двигателями

Инверсионный след двигателей ракеты носителя «Союз»

Конденсацио́нный след (устаревшее название инверсио́нный след, часто ошибочно называемый реактивным следом) — след, оставляемый в небе летательными аппаратами, летящими на большой высоте.

Инверсионный след представляет собой туман, сконденсированный в основном из атмосферной влаги, а также в меньшей степени из влаги, содержащейся в выхлопах двигателей летательного аппарата.

Своё название он получил по названию физического феномена, свойственного верхним слоям атмосферы — инверсии относительно точки росы. В верхних слоях атмосферы отсутствуют пылевые частицы, и даже при достижении температуры, меньшей точки росы, атмосферная влага остается в газообразном состоянии, то есть прозрачной и нерассеивающей свет. Пролёт летательного аппарата в инвертированных слоях вызывает появление огромного количества таких центров конденсации, и на них мгновенно происходит конденсация пара в виде капель влаги (облачного тумана). За счёт этого траектория полета летательного аппарата становится видимой.

Центрами конденсации выступают:

  • частицы, выброшенные из камер сгорания двигателей;
  • микротурбулентные вихри, возникающие на любом аэродинамическом элементе.

Вся эта совокупность конденсирующих центров осаждает влагу в капли, причём дальнейшая судьба туманного следа зависит от параметров атмосферы в этом месте и в это время. Например, возможна дальнейшая конденсация и укрупнение капель, которые попросту выпадают в более низкие слои атмосферы. Возможно испарение капель вследствие диффузии.

Естественно, что облачный след несёт на себе отпечаток турбулентной структуры, сопровождавшей обтекание летательного аппарата, и рельефно выявляет всю вихревую фактуру потревоженного воздуха. Этим объясняются перепады плотности разного масштаба в следе, в том числе и прерывистость следа в некоторых случаях.

По заявлениям экологов, инверсионные следы оказывают влияние на климат, уменьшая температуру за счёт того, что вырождаются в тонкие высотные перистые облака, тем самым препятствуя солнечным лучам (в отличие от таких облаков обычные перистые облака не только отражают солнечные лучи, но и сохраняют под собой тепло Земли).

Wikimedia Foundation. 2010.

  • Инверс, Лина
  • Инверсия (в математике)

Смотреть что такое "Инверсионный след" в других словарях:

  • Реактивный след — Инверсионные следы от самолета с четырьмя двигателями Инверсионные следы от поршневых самолётов, Вторая мировая война Инверсионный след двигателей ракеты носителя «Союз» Конденсационный след …   Википедия

  • Конденсационный след — Проверить информацию. Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. На странице обсуждения должны быть пояснения …   Википедия

  • Атлантис STS-115 — Программа Спейс Шаттл (Space Shuttle) Эмблема экспедиции Основные данные Экспедиция: STS 115 Орбитальный модуль …   Википедия

  • STS-115 — Эмблема Полётные данные корабля Название корабля …   Википедия

  • ПВРД — Воздушно реактивный двигатель (ВРД) тепловой реактивный двигатель, в качестве рабочего тела которого используется атмосферный воздух, нагреваемый за счёт химической реакции окисления горючего кислородом, содержащимся в самом рабочем теле. Впервые …   Википедия

  • ПуВРД — Воздушно реактивный двигатель (ВРД) тепловой реактивный двигатель, в качестве рабочего тела которого используется атмосферный воздух, нагреваемый за счёт химической реакции окисления горючего кислородом, содержащимся в самом рабочем теле. Впервые …   Википедия

  • Аврора (самолёт) — У этого термина существуют и другие значения, см. Аврора. SR 91 Aurora предполагаемый вид SR 91 …   Википедия

  • Сипер, Михаил Саулович — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Сипер Михаил Саулович (род …   Википедия

  • Шанхайские рыцари — Shanghai Knights …   Википедия

  • Дезик и Цыган — в кабине ракеты перед стартом Дезик и Цыган  первые собаки, совершившие полёт на геофизической ракете В 1В (Р 1В) в верхние слои атмосферы 22 июля 1951 года с полигона Капустин Яр в Астраханской области в рамках проекта ВР 190  запуска… …   Википедия


Почему самолет оставляет след? - Мастерок.жж.рф — LiveJournal

Конечно зачастую в небе вы видите этот след не настолько "мощный", но есть некоторые моменты о нем, которые вы могли не знать.

Проверьте себя ...

Частенько подняв голову к небу мы видим на нем белую полосу от летящего самолета. След, который он оставляет за собой, называется конденсационным. К слову, у нас часто называют его инверсионным следом, но в Википедии напротив "инверсионного" стоит пометка "устаревшее название". Поэтому будем пользоваться термином "конденсационный". К тому же, это название "говорящее" - в самом этом названии заложен ответ на вопрос о том, что это такое.

Как правило, непосредственной причиной возникновения следа являются отработанные газы реактивных двигателей. В их состав входит водяной пар, углекислый газ, оксиды азота, углеводороды, копоть и соединения серы. Из этого только водяной пар и сера ответственны за появление инверсионного следа. Сера служит образованию точек конденсации, при этом сам инверсионный след может формироваться как из водяного пара, входящего в состав отработанных газов, так и из пара, входящего в состав пересыщенной атмосферы.

Попадая в холодный воздух (а на той высоте, на которой обычно летают самолеты, температура около -40 градусов), пар конденсируется вокруг частичек сжигаемого топлива и получаются мельчайшие капельки, вроде тумана, которые и образуют полосу на небе. Можно сказать, что получается этакое рукотворное длинное облако. Со временем оно рассеется или станет частью перистых облаков.

Почему этот след не всегда виден?

Если для такой влажности температура окружающего воздуха ниже точки росы, то влага образует за двигателями белые конденсационные следы. На малых высотах они состоят из капель воды, которые обычно быстро испаряются, и след исчезает. А вот когда самолет идет на большой высоте, где температура воздуха ниже –40 °С, пар сразу конденсируется в ледяные кристаллы, которые испаряются гораздо медленнее.

Кстати, конденсационные следы самолетов могут влиять на климат Земли. Если посмотреть на Землю со спутника, то можно увидеть, что в тех районах, где часто летают самолеты, все небо покрыто их следами. Одни ученые считают, что это хорошо - следы увеличивают отражательные свойства атмосферы, тем самым не давая солнечным лучам доходить до поверхности Земли. Так можно снизить температуру земной атмосферы и не допустить глобального потепления. Другие считают, что плохо - возникающие от конденсационного следа перистые облака препятствуют охлаждению атмосферы, тем самым вызывая ее потепление. Кто прав, а кто не прав, покажет время.

Хотят запретить оставлять след?

В зависимости от условий атмосферы и скорости ветра инверсионный след может оставаться в небе до 24 часов и иметь длину до 150 км. Ученые из Университета Рединга (Великобритания) решили выяснить, как заставить самолеты летать бесследно, сохранив при этом рентабельность перевозок.

«Может показаться, что самолету нужно делать немалый крюк, чтобы избежать инверсионного следа. Но из-за кривизны Земли вам требуется лишь немного увеличить расстояние, чтобы избежать действительно длинных следов», — говорит Эмма Ирвин, автор исследования, опубликованного в журнале Environmental Research Letters.

Их расчеты показали, что для небольших ближнемагистральных самолетов отклонение от насыщенных влагой областей, даже в 10 раз превышающее длину самого инверсионного следа, способно уменьшить негативное влияние на климат.

«Для больших самолетов, которые выбрасывают больше углекислого газа на километр, имеет смысл отклонение в три раза большее», — говорит Ирвин. В своем исследовании ученые оценили воздействие на климат, оказываемое лайнерами, летящими на одной и той же высоте.

К примеру, самолету, летящему из Лондона в Нью-Йорк, чтобы избежать образования длинного следа, достаточно отклониться на два градуса, что добавит к его пути 22 км, или 0,4% всего расстояния.

В настоящее время ученые вовлечены в работу над проектом, целью которого является оценка возможности перекройки существующих трансатлантических маршрутов с учетом воздействия авиации на климат. Реализовать предложения климатологов значит в будущем столкнуться с проблемами в области экономики и безопасности авиационных перевозок, признают эксперты. «Диспетчерские службы должны оценить, являются ли подобные перекройки маршрутов рейс от рейса осуществимыми и безопасными, а синоптики – понять, способны ли они надежно прогнозировать, где и когда могут образоваться инверсионные облака», — считает Ирвин.

Еще немного интересных вопросов и ответов: вот например Почему хоронят на двухметровой глубине? и почему в самолетах ночью при взлете и посадке выключают свет?. Замечали ли вы, что частенько просыпаетесь за пять минут до срабатывания будильника? и оказывается, что Огурцы и помидоры - не овощи

Увидеть невидимое... Инверсионный след, эффект Прандтля-Глоерта и прочие интересности.

Привет, друзья!

Су-35. Вихревые жгуты визуально...

Сегодня статья отдыхательная :-). Тема в целом серьезная конечно, в авиации ведь все серьезно :-)… Но вобщем-то я бы это поместил в раздел всяких интересностей и любопытностей. А посему немало будет видео и картинок :-).

Итак… Мы много тут уже рассуждали о различных аэродинамических процессах, об образовании сил, о движениях воздушных потоков. Так вот у меня раньше часто возникал вопрос насчет того, что неплохо бы все это как-нибудь понаглядней увидеть или хотя бы обнаружить косвенные признаки происходящего…

Например, тянет тягач на тяжелом тросе большую машину. Трос натянулся, как струна. Машина поддается, ползет… Вот она сила, в тросе натянутом, чувствуется здорово. А вот самолет весом под сорок тонн, круто задрав нос «попер» вверх.. И где она эта сила :-)? В чем она? Нет, ну мы-то с вами уже знаем о подъемной силе при движении крыла в воздухе. Она, что называется, и слона на высоту поднимет (точнее уж говоря много слонов :-)), но одно дело знать и совсем другое дело видеть…

Я уже писал как-то (не на этом сайте, правда :-)) о своем армейском товарище, который любил пошутить, говоря о самолете, который он обслуживал: «Я, слушай, все понимаю. Подъемная сила там, аэродинамика и все такое прочее. Но как все-таки эта дура в воздухе держится?» То есть (повторю сам себя :-)) речь о том, что было бы все-таки интересно увидеть более наглядно все то, что воздух проделывает с летательным аппаратом, а тот, в свою очередь с воздухом. Напрямую это, к сожалению, увидеть не удастся, но вот косвенно можно, и, если знать о чем речь, то все становится очень даже наглядным.

Однако мы ведь даже самое простое, движение воздуха, увидеть не можем. Воздух – газ, и газ этот прозрачный, этим все сказано :-). Но все же природа слегка сжалилась над нами и дала нам небольшую возможность поправить положение. А возможность эта в том, чтобы прозрачную среду сделать непрозрачной или хотя бы цветной. Говоря умным словом, визуализировать.

Насчет цвета – это мы можем сделать сами (правда не всегда и не везде, но можем :-)), например использовать дым (лучше цветной). А насчет обычной непрозрачности, тут природа нам помогает сама.

Самое непрозрачное в атмосфере – это облака, то есть влага, та которая конденсировалась из воздуха. Вот этот самый процесс конденсации и позволяет нам, хоть и косвенно, но все же довольно наглядно увидеть кое-какие процессы, происходящие при взаимодействии летательного аппарата с воздушной средой.

Немного о конденсации. Когда она происходит, то есть когда вода, находящаяся в воздухе становится видна. Водяной пар может накапливаться в воздухе до определенного уровня, называемого уровнем насыщения. Это что-то типа соляного раствора в банке с водой :-). Соль в этой воде будет растворяться только до определенного уровня, а потом происходит насыщение и растворение прекращается. В детстве не раз это пробовал делать :-).

Уровень насыщения атмосферы водяным паром определяется точкой росы. Это такая температура воздуха при которой водяной пар в нем достигает состояния насыщения. Этому состоянию (то есть этой точке росы) соответствует определенное постоянное давление и определенная влажность.

Когда атмосфера в какой-то ее области достигает состояния перенасыщения, то есть пара становится слишком много для данных условий, то происходит конденсация в этой области. То есть вода выделяется в виде мельчайших капелек (либо сразу кристаллов льда, если окружающая температура очень низкая) и становится видна. Как раз то, что нам и надо :-).

Чтобы это произошло, надо либо повысить количество воды в атмосфере, что означает увеличить влажность, либо понизить температуру окружающего воздуха ниже точки росы. В обоих случаях произойдет выделение лишнего пара в виде сконденсировавшейся влаги и мы увидим белый туман (или что-то вроде того :-)).

То есть, как уже понятно, в атмосфере этот процесс может иметь место, а может и нет. Все зависит от местных условий. То есть для этого нужна влажность не ниже определенной величины, определенная, соответствующая ей температура и давление. Но если все эти условия соответствуют друг другу, мы можем наблюдать иной раз довольно интересные явления.Однако обо всем по порядку :-).

Первое – это всем известный инверсионный след. Это название произошло от метеорологического термина инверсия (переворот), точнее температурная инверсия, когда с ростом высоты местная температура воздуха не падает, а растет (бывает и такое :-)). Такое явление может способствовать образованию тумана (или облаков), но для самолетного следа оно по сути своей не подходит и считается устаревшим. Сейчас вернее говорить конденсационный след. Ну, правильно, суть ведь здесь именно в конденсации.

Инверсионный (конденсационный) след. Самолет Fokker 100.

В шлейфе газа выходящего из авиационных двигателей содержится достаточное количество влаги, повышающее местную точку росы в воздухе непосредственно за двигателями. И , если она становится выше температуры окружающего воздуха, то при остывании имеет место конденсация. Ее облегчает наличие так называемых центров конденсации, вокруг которых из перенасыщенного (неустойчивого, можно сказать) воздуха концентрируется влага. Этими центрами становятся частички сажи или несгоревшего топлива, вылетающие из двигателя.

Самолеты летят на разных высотах. Условия атмосферы разные, поэтому за одним инверсионный след есть, за другим нет.

Если окружающая температура достаточно низка (ниже 30-40° С), то происходит так называемая сублимация. То есть пар, минуя жидкую фазу, сразу превращается в кристаллики льда. В зависимости от атмосферных условий и взаимодействия со спутной струей, тянущейся за самолетом, инверсионный (конденсационный) след может приобретать различные, порой довольно причудливые формы.

На видео показано образование инверсионного (конденсационного) следа, заснятое из кормовой кабины самолета (кажется это ТУ-16, хотя не уверен). Видны стволы кормовой огневой установки (пушки).

Второе о чем следовало бы сказать, это вихревые жгуты. Им и тому, что их касается посвящена была недавняя статья. Явление это серьезное, напрямую связанное с индуктивным сопротивлением, и, конечно, неплохо было бы как-то его визуализировать. Кое-что в этом плане мы уже видели. Я имею ввиду приведенный в указанной статье ролик, показывающий использование дыма на наземной установке.

Однако это же самое можно сделать и в воздухе. И при этом получить потрясающе зрелищные виды. Дело в том, что у многих военных летательных аппаратов, особенно у тяжелых бомбардировщиков, транспортников, а также вертолетов присутствуют на борту так называемые пассивные средства защиты. Это, например, ложные тепловые цели (ЛТЦ).

Многие боевые ракеты, способные атаковать летательный аппарат (как класса «земля-воздух», так и класса «воздух-воздух») обладают инфракрасными головками самонаведения. То есть реагируют на тепло. Чаще всего это бывает тепло двигателя летательного аппарата. Так вот ЛТЦ обладают температурой значительно большей, нежели температура двигателя, и ракета при своем движении отклоняется на эту ложную цель, а самолет (или вертолет) остается целым.

Но это так, для общего знакомства :-). Главное тут в том, что ЛТЦ отстреливаются в большом количестве, и каждая из них (представляя собой миниатюрную ракету) оставляет за собой дымный след. И, вот, множество этих следов, объединяясь и закручиваясь в вихревых жгутах, визуализируют их и создают подчас потрясающие по красоте картины :-). Одна их самых известных – это «Дымный ангел». Он получился при выстреле ЛТЦ транспортного самолета Boeing C-17 Globemaster III.

Транспортник Boeing C-17 Globemaster III.

"Дымный ангел" во всей красе :-).

Справедливости ради стоит сказать, что и другие летательные аппараты тоже неплохие художники 🙂 …

Работа ЛТЦ вертолета. Дым показывает формирование вихрей.

Однако, вихревые жгуты можно увидеть и без использования дыма. Конденсация атмосферного пара нам поможет и здесь. Как мы уже знаем, воздух в жгуте получает вращательное движение и, тем самым перемещение от центра жгута к его периферии. Это приводит к расширению и падению температуры в центре жгута, и, если влажность воздуха достаточно высока, то могут создаться условия для конденсации влаги. Тогда мы можем увидеть вихревые жгуты воочию. Эта возможность зависит как от условий атмосферы, так и от параметров самого летательного аппарата.

Конденсация в вихревом жгуте механизации крыла.

Вихревые жгуты и область пониженного давления над крылом.

И чем больше углы атаки, на которых летает самолет, тем вихревые жгуты более интенсивны и визуализация их за счет конденсации более вероятна. Особенно это характерно для маневренных истребителей, а также хорошо проявляется на выпущенных закрылках.

Кстати, точно такого же рода атмосферные условия позволяют увидеть вихревые жгуты, образующиеся на концах лопастей (которые в данной ситуации суть те же крылья) турбовинтовых или поршневых двигателей некоторых самолетов. Тоже довольно эффектная картина 🙂 .

Вихри на концах лопастей винтовых двигателей. Самолет DehavillandCC-115Buffalo.

Самолет Luftwaffe Transall С-160D. Вихри на концах лопастей винтов двигателей.

Конденсация в вихревых жгутах на концах лопастей винтов. Самолет Bell Boeing V-22 Osprey.

Из приведенных видео характерен ролик с самолетами ЯК-52. Там явно идет дождь и влажность, таким образом, высокая.

Часто происходит взаимодействие вихревых жгутов с инверсионным (конденсационным) следом, и тогда картины могут быть довольно причудливы :-).

Теперь следующее. Ранее я об этом уже упоминал, но не грех сказать еще раз. Подъемная сила. Как пошутил бы мой приснопамятный товарищ: «Да где она?! Кто ее видел?» Да вобщем никто :-). Но косвенное подтверждение все-таки можно увидеть.

Истребитель F-15. Разрежение на верхней поверхности крыла.

СУ-35. Эффект Прандтля-Глоерта, иллюстрация подъемной силы.

Вихревые жгуты и конденсация в зоне пониженного давления на крыле. Самолет EA-6B Prowler.

Чаще всего такая возможность предоставляется на каком-нибудь авиашоу. Самолеты, выполняющие различные, довольно экстремальные эволюции конечно оперируют с большими величинами подъемной силы, возникающей на их несущих поверхностях.
Но большая подъемная сила, чаще всего означает большое падение давления (а значит и температуры) в области над крылом, что, как мы уже знаем, при определенных условиях может вызвать конденсацию водяного атмосферного пара, и тогда мы воочию убедимся в том, что условия для создания подъемной силы есть :-)….

Для иллюстрации сказанного о вихревых жгутах и подъемной силе есть хорошее видео:

В следующем видео эти процессы сняты во время посадки из пассажирского салона самолета:

Однако справедливости ради надо сказать, что это явление в визуальном плане может сочетаться с эффектом Прандтля-Глоерта (по сути дела это, вобщем-то, он и есть). Название страшное :-), но принцип все тот же, а визуальный эффект значительный :-)…

Суть этого явления заключается в том, что позади летательного аппарата (чаще всего самолета), движущегося с высокой скоростью (достаточно близкой к скорости звука) может образовываться облако сконденсировавшегося водяного пара.

Истребитель F-18 Super Hornet. Эффект Прандтля-Глоерта.

Происходит это из-за того,что при движении самолет как бы двигает перед собой воздух и, тем самым, создает область повышенного давления перед собой и область пониженного после себя. После пролета, воздух начинает заполнять эту область с малым давлением из близлежащего пространства, и, таким образом, в этом пространстве объем его увеличивается, а температура падает. И если при этом есть достаточная влажность воздуха, а температура опускается ниже точки росы, то происходит конденсация пара и появляется небольшое облако.

Существует оно обычно недолго. Когда давление выравнивается, то поднимается местная температура и сконденсировавшаяся влага вновь испаряется.

Частенько при появлении такого облака говорят, что самолет проходит звуковой барьер, то есть переходит на сверхзвук. На самом деле это не совсем так. Эффект Прандтля- Глоерта, то есть возможность конденсации зависит от влажности воздуха и его местной температуры, а также от скорости самолета. Чаще всего такое явление характерно для околозвуковых скоростей (при относительно малой влажности), но может происходить и на относительно малых скоростях при высокой влажности воздуха и на малых высотах, особенно над водной поверхностью.

Однако форма пологого конуса, которую часто имеют облака конденсации при движении на больших скоростях тем не менее часто получается из-за наличия так называемых местных скачков уплотнения, образующихся на больших около- и сверхзвуковых скоростях. Но об этом в другой, «малоотдыхательной» статье :-)…

Не могу также не вспомнить о своих любимых турбореактивных двигателях. Конденсация и тут позволяет увидеть кое-что интересное. При работе двигателя на земле на больших оборотах и достаточной влажности можно увидеть «воздух на входе в двигатель» :-). На самом деле не совсем так, конечно. Просто двигатель интенсивно всасывает воздух и на входе образуется некоторое разрежение, как следствие падение температуры, из-за которого происходит конденсация водяного пара.

Кроме того часто возникает еще и вихревой жгут, потому что воздух на входе закручивается рабочим колесом компрессора (вентилятора). В жгуте по известным нам уже причинам тоже конденсируется влага и он становится виден. Все эти процессы хорошо видны на видео.

Ну и в завершение приведу еще один очень интересный , на мой взгляд, пример. Он уже не связан с конденсацией пара и цветной дым нам тут не понадобится :-). Однако природа и без этого наглядно иллюстрирует свои законы.

Все мы неоднократно наблюдали за тем, как многочисленные стаи птиц улетают осенью на юг, а весной потом возвращаются в родные места. При этом большие тяжелые птицы, такие, как гуси (я уж не говорю про лебедей) летят, обычно, интересным строем, клином. Впереди идет вожак, а сзади по косой линии расходятся вправо и влево остальные птицы. Причем каждая последующая летит правее (либо левее) впереди летящей. Никогда не задумывались почему они летят именно так?

Оказывается это имеет прямое отношение к нашей теме. Птица – тоже своего рода летательный аппарат :-), и за ее крыльями образуются примерно такие же вихревые жгуты, как и за крылом самолета. Они также вращаются (ось горизонтального вращения проходит через концы крыльев), имея за корпусом птицы направление вращения вниз, а за оконечностями ее крыльев вверх.

То есть получается, что птица, летящая сзади и правее (левее) попадает во вращательное движение воздуха вверх. Этот воздух как бы поддерживает ее и ей легче держаться на высоте. Она меньше тратит сил. Это очень важно для тех стай, которые преодолевают большие расстояния. Птицы меньше устают и могут лететь дальше. Только вожаки не имеют такой поддержки. И именно поэтому они периодически меняются, становясь в конец клина для отдыха.

Образцом такого рода поведения часто называют канадских гусей. Считается, что таким способом они при дальних перелетах «в команде» экономят до 70% своих сил, значительно повышая эффективность перелетов.

Это и есть еще один способ косвенной, но достаточно наглядной визуализации аэродинамических процессов.

Природа наша достаточно сложно и очень целесообразно устроена и периодически нам об этом напоминает. Человеку остается только не забывать это и перенимать у нее тот огромный опыт, которым она с нами щедро делится. Главное здесь только не переусердствовать и не навредить…

До новых встреч, и в конце немного видео о канадских гусях :-).

Фотографии кликабельны.

No related posts.

Инверсионный след от самолета и ракеты

Большое количество разнообразных журналов, которые занимаются подборкой и анализом информации, касающейся достижений и проблем авиации, часто акцентируют внимание читателей на материальные аспекты работы и строения модернизированных устройств, таких как самолеты, ракеты, вертолеты и остальные летательные аппараты. Часто также подвергаются анализу все явления, которые происходят с внутренней и внешней структурой транспортного средства во время совершения полета. Обычно инверсионный след это отражает. Многие люди наблюдают за красивыми самолетами, которые в полете оставляют за собой ровную полосу.

Концепция данного явления

Инверсионный след формируется в тропопаузе. На его появление влияют пары воды, которые подвергаются усиленной конденсации. Они присутствуют в продуктах сгорания, так как во время сгорания равномерно расходуется углеводородное топливо. После выхода наружу и достаточного охлаждения яркий инверсионный след от самолета или другого летального аппарата в воздухе становится заметным.

Есть специальные авиашоу, которые целесообразно проводить только в солнечную погоду. Данные мероприятия организуются на аэродромах, имеющих статус наиболее крупных в мире. В это время большое количество зрителей восторженно наблюдают за движением множества самолетов, совершающих интересные маневры в воздухе. Главной отличительной чертой таких мероприятий является оставление яркого шлейфа от каждого транспортного средства. Часто делают так, чтобы каждый самолет отличался собственным цветом шлейфа, что помогает получить наиболее яркий и запоминающийся эффект.

В отличие от самолетов, ракеты постоянно оставляют за собой массивные, даже часто грозные следы, которые выглядят не только масштабно, но и имеют насыщенный цвет. Они выпускаются из самолетов, имеющих боевое назначение. Данную процедуру можно наблюдать не только при походе на специальные мероприятия, но и находясь на улице или включив телевизор на интересующем канале. Так можно увидеть инверсионный след.

Концевой вихрь крыла

Следует помнить, что самолет в полете оставляет за собой ограниченную и достаточно широкую область атмосферы, которая становится возмущенной, ее состав на долгое время переменяется. Данное явление часто именуют спутанным следом. Обычно он появляется под действием реактивных двигателей, так как при работе они постоянно осуществляют взаимодействие с окружающей средой. Также в этом процессе принимают участие концевые вихри крыльев самолета.

Если сравнивать значительно негативное воздействие на окружающую среду, то первенство всегда отдается именно концевым вихрям крыльев. Есть множество условных обозначений спутанных следов, однако чаще всего они рисуются на специальных схемах в подобии листа с необычными краями, концы которых полностью скручены, то есть можно сравнить их с вихрями.

Процесс скручивания: научная аргументация

Процесс скручивания можно легко объяснить научным образом. Проявляется яркая разница давления между обеими сторонами крыльев самолета, то есть на их верхней и нижней поверхности. Воздух постепенно перераспределяется с нижней поверхности, так как на ней наблюдается наиболее повышенное давление, на верхнюю, чтобы оставаться в области с наименьшим давлением.

Данное перераспределение происходит через конец каждого крыла, из-за чего образуются мощные и очень заметные вихри. Имеет значение сила перепада давления, так как от него зависит подъемная сила. Именно это значение оказывает сильное влияние на крыло. Чем данное воздействие сильнее, тем более мощными и рельефными образуются вихри.

Различные марки самолетов, предусматривающие концевой вихрь крыла

Скорость потоков воздуха иногда меняется, однако можно примерно определить, что если диаметр вихревого следа составляет около 8-15 м, следует говорить о значении 150 км/ч. Концевой вихрь может образовываться различным образом. Данный процесс зависит от марки, конфигурации самолета. Заслуживают внимание мощные истребители «Мираж 2000» и F-16C, если переходят в положение при полете с высоким углом атаки.

Процесс появления концевого вихря

Концевой вихрь визуализируется благодаря специальному трассер-генератору, отвечающему за должное представление дымного следа. Действие данного элемента обусловлено изменением в состоянии атмосферы, что продолжается довольно длительное время. Затем окружная скорость движения постепенно затихает, то есть визуальный объект теряется и исчезает.

Под действием времени окружная скорость вихря затухает, из-за чего визуальная картинка меняет очертания до тех пор, пока полностью не растворится. Ощутимая интенсивность вихря может продолжаться примерно до двух минут после того, как самолет пролетел конкретное место. Такой вихрь имеет возможность значительно воздействовать на режим полета самолета, который попал в область атмосферы, возмущенной от действия двигателя предыдущего транспортного средства.

Длительное наблюдение за концевым вихрем

Когда вихри подвергаются взаимодействию между собой, они медленно опускаются и расходятся, то есть ощутимое изменение в атмосфере исчезает. Инверсионный след самолета представляет собой отличный объект для того, чтобы наблюдать за его превращениями. Примерно через 30 - 40 секунд он начинает изменять очертания, так как на него усиленно влияет вихрь, который постепенно развивается. Когда пересекаются и инверсионный, и вихревой слои, создаются причудливые формы, которые можно заранее просчитать, так как на процесс их образования действуют различные закономерности.

Количество полос и высота инверсионного следа регулируется количеством и расположением двигателей в системе. При этом инверсионный след не только парит в воздухе, но и постоянно видоизменяется, создавая интересные контуры. Чаще всего наблюдается скручивание данного слоя под воздействием концевого вихря. Все трансформации слоя отражают разнообразные аэродинамические процессы, которые всегда образуются при осуществлении полета.

Отрывно-вихревые течения

Иногда пилоты вынуждены выполнять различные атаки, которые осуществляются с большим углом наклона, составляющим более 20 градусов. В этом случае характер обтекания контуров самолета на время значительно меняется. Начинают появляться отрывные области, которые преимущественно фиксируются около верхней поверхности крыла и фюзеляжа. В них сильно понижается давление, поэтому сразу начинается концентрация и приумножение атмосферной влаги. Благодаря данному аспекту наблюдать за совершением полета самолета можно без использования трассеров.

Условия для появления отрывно-вихревого эффекта

Если угол атаки слишком большой, вокруг самолета образуется значительный по величине ореол из облака. Когда самолет пролетает, данное облако автоматически переходит в вихревой инверсионный след от самолета. Обычно у бомбардировщиков возле крыльев образовываются области отрыва, из-за чего отчетливо наблюдается появление вихревого жгута. Так выглядит инверсионный след, фото которого всегда завораживают.

Горячие следы ракет

Иногда при запуске ракет приходится сталкиваться с такими случаями, когда наблюдается срывное течение в области газо-воздушного тракта, находящегося в силовой установке ракеты. Газовая струя, отходящая от ракетного двигателя, отличается высокой температурой, поэтому иногда попадает в воздухозаборник самолета-носителя, что случается при постановке устройства на некоторые режимы.

Воздушный поток становится слишком неравномерным по температуре, так как подвергается воздействию газов повышенной температуры, из-за чего воздух, поступающий в двигатель, становится измененным. Образуется помпаж двигателя, то есть возникает срывное течение в системе. Чтобы выявить этот процесс, наблюдают за основными камерами сгорания, так как воздушный поток подвергается продольным колебаниям, проходя по тракту двигателя, а затем отмечается выбросом пламени из данных элементов. Так появляется инверсионный след от ракеты.

Особенности инверсионного следа при проведении испытаний

Часто пуски ракетного вооружения проводят в концепции осуществления испытаний. Исключением является бортовая аппаратура, которая служит для целей записывания и хранения информации. Часто самолет-фотограф выпускается вместе с носителем, при этом осуществляется процесс киносъемки, что позволяет зафиксировать все явление на камеру. Часто можно встретить такой инверсионный след от ракеты «Бук».

Часто пуск ракеты осуществляется на относительно небольших скоростях, чтобы лучше зафиксировать весь процесс. При этом нередко образуется помпаж двигателя, так как горячие газы струями попадают в ракетный двигатель, что выводит из строя его воздухозаборник. Сразу отмечается выброс пламени, что характерно при возникновении помпажа. Так выражается инверсионный след FSX.

Из-за этого происшествия двигатель останавливается. Данные особенности после исследования помогли создать целый ряд различных систем, в задачи которых входит своевременная диагностика помпажа, предпринятие мер по его ликвидации, а также перевод двигателя на оптимальный режим работы с постоянным поддержанием его оптимального состояния. Ракетное вооружение в этом случае расширяет сферу применения, при этом на каждом режиме работы двигателя данные летательные аппараты способны показывать наиболее стабильное состояние.

Проводились испытания самолета «МиГ-29», которые заключались в дозаправке топлива. При одном из полетов был зафиксирован выброс топливной жидкости в атмосферу, чему предшествовала разгерметизация топливного трубопровода. С помощью самолета-фотографа была зафиксированная данная необычная ситуация. При этом определенная часть топлива попала в двигатель, что практически моментально привело к его остановке из-за помпажа.

Кроме выброса пламени, что всегда случается при помпаже двигателя, произошло воспламенение топлива, которое шло по воздушному каналу. После этого пламя охватило все топливо и вышло за пределы внутренней конструкции, однако практически мгновенно было снесено встречным потоком воздуха. Из-за данной ситуации проявилось необычное явление, которое назвали огненным шаром. Данный инверсионный след «Бук» также способен передать.

Яркий след форсажа

Современные истребительные самолеты обладают двигателем, который оснащен регулируемыми соплами, классифицирующимися как сверхзвуковые. Когда подключается форсажный режим работы, давление на срезе сопла значительно выше, чем этот показатель у окружающих воздушных масс. Если анализировать пространство на значительном расстоянии от сопла, давление постепенно уравнивается. Данный аспект при движении самолета приводит к повышенной продукции газа, что и приводит к тому, что образуется яркий инверсионный след от самолета, появляющийся при движении летательного аппарата.

Инверсионный след Википедия

Конденсационный след от самолёта с четырьмя двигателями. Конденсируется водяной пар, образующийся при сгорании топлива Конденсационный след от двухмоторного самолёта Конденсационные следы от поршневых самолётов B-17, Вторая мировая война. Отчётливо виден конденсат внутри вихрей, сбегающих с концов лопастей Вихревые жгуты с законцовок крыла самолёта F/A-18 Конденсационный след, оставленный третьей ступенью ракеты-носителя «Протон» на высоте порядка 90 км. Сконденсированные продукты сгорания и остатки несгоревшего ракетного топлива уже освещаются Солнцем, но утреннее небо ещё тёмное, поэтому след очень контрастный Конденсационный след от самолёта в ясную погоду держится долго и расползается на полнеба.
Внешние изображения
Примеры различных конденсационных следов
Boeing 777-269ER, Kuwait Airways. Сопровождается истребителем F-18. Самолёты летят в одинаковых условиях, но мощность двигателей у B-777 больше, выбрасывается больше водяного пара. В результате – его след более насыщенный и начинает образовываться раньше, чем у истребителя.
Boeing 777, Turkish. Airbus A330, Air Berlin. Интервал по высоте – 6000 футов (1829 метров). Самолёты летят в разных условиях. У того, который летит выше, – след образуется, у другого – нет.
Fokker 100, BMI. Хотя у самолёта два двигателя, они расположены недалеко друг от друга. Поэтому оба следа сливаются в один.
Airbus A319-132, Air China. Конденсационный след возникает в результате понижения давления и температуры воздуха над крылом.
Boeing 747-243B(SF), Southern Air. В образовании такого следа принимают участие обе причины – и понижение давления воздуха над крылом, и конденсация водяного пара, содержащегося в отработанных газах. Радуга – в результате отражения и преломления солнечного света на частицах следа.
Boeing 737-232, Canadian North. В комментарии к фотографии сказано: «Когда снаружи -39, нет необходимости смотреть вдаль в поисках конденсационного следа»
Ми-8ТВ, КомиАвиаТранс. Конденсационный след может появиться и у вертолёта. Хорошо выявляется вихревая структура возмущённого воздуха.
Boeing 737-476, Qantas. Конденсат над крылом, по причине относительно высокой температуры испаряется, как только покидает зону пониженного давления. Интенсивные вихри, сбегающие с законцовок закрылков, существуют продолжительное время. Виден конденсат внутри вихрей.

Конденсационный след (инверсионный след, реактивный след) — видимый в воздухе след из водяных паров или кристалликов льда, возникающий в атмосфере за движущимися летательными аппаратами при определённых состояниях атмосферы. Явление наблюдается наиболее часто в верхних слоях тропосферы, значительно реже — в тропопаузе и стратосфере[1]. При низких температурах воздуха может наблюдаться и на небольших высотах.

Конденсационные следы относятся к отдельной группе облаков — техногенным, или искусственным облакам — Ci trac. (Cirrus tractus, cirrus — перистый, tractus — след).

Своё название след получил от процесса конденсации влаги, который и приводит к его появлению. Конденсация происходит только при таких условиях, когда количество водяного пара превышает то количество, которое необходимо для насыщения. Эти условия определяются точкой росы — температурой, при которой водяной пар, содержащийся в воздухе, достигает насыщения при данной удельной влажности и постоянном давлении. Степень насыщения характеризуется относительной влажностью — процентным отношением количества водяного пара, содержащегося в воздухе, к количеству, которое требуется для насыщения (при одной и той же температуре). Кроме этих условий, необходимо ещё и наличие центров конденсации. При температуре до −30… −40 °C водяной пар при конденсации переходит в жидкую фазу, при температуре ниже −30… −40 °C водяной пар превращается сразу в ледяные кристаллы, минуя жидкую фазу. Также важную роль в формировании следа играет процесс испарения, приводящий к его исчезновению.

Существуют две основные причины возникновения условий для конденсации и появления следа.

Первая — это повышение влажности воздуха, когда к атмосферному водяному пару добавляется водяной пар, содержащийся в отработанных газах авиационного двигателя в результате сгорания топлива. Это повышает точку росы в ограниченном объёме воздуха (за двигателями). Если точка росы становится выше температуры окружающего воздуха, то, по мере остывания отработанных газов, избыточный водяной пар конденсируется. Количество водяного пара, выбрасываемого двигателем, зависит от его мощности и режима работы, то есть от расхода топлива. Образованию конденсационного следа также способствуют центры конденсации в виде частиц не сгоревшего или не полностью сгоревшего (сажа) топлива.

Вторая причина появления видимого следа — это понижение температуры воздуха в результате падения его давления над крылом и внутри вихрей, возникающих при обтекании различных частей самолёта. Это так называемые вихревые жгуты. Наиболее интенсивные вихри образуются при больших углах атаки на законцовках крыла и при выпущенных закрылках, а также на законцовках лопастей воздушных винтов. Если при этом температура опускается ниже точки росы — избыток атмосферного водяного пара конденсируется в области над крылом и внутри вихрей. Степень понижения давления и температуры зависят от таких параметров, как масса летательного аппарата, коэффициент подъёмной силы, величина индуктивного сопротивления и мн. др. факторов.

Иногда наблюдаются следы, образованные в результате комбинации этих двух причин.

Наряду с конденсацией происходит и обратный процесс — испарение: частицы сконденсированного водяного пара испаряются, и след со временем исчезает. На скорость испарения влияют влажность окружающего след воздуха и агрегатное состояние частиц следа. Чем суше воздух, тем быстрее происходит испарение. Напротив — испарение не происходит в случае, когда водяной пар находится в состоянии насыщения. Сконденсированный водяной пар при температуре воздуха −30… −40 °C частично, а при температуре ниже −40 °C полностью превращается в кристаллы, испарение ледяных кристаллов происходит значительно медленнее, чем капель воды.

Таким образом, возможность появления и время существования конденсационного следа, равно как и его вид, зависят от влажности и температуры атмосферного воздуха (при прочих равных условиях). При низкой влажности и относительно высокой температуре след может отсутствовать вовсе, так как при таких условиях водяной пар не достигает состояния перенасыщения. Чем выше влажность и ниже температура, тем больше водяного пара конденсируется, тем медленнее происходит испарение, следовательно — след насыщеннее и длиннее. А при относительной влажности, близкой к 100 %, и низкой температуре конденсируется наибольшее количество водяного пара, высокая влажность препятствует испарению частиц следа, что и влечёт образование конденсационных следов, которые могут существовать достаточно долго, нередко превращаясь в перистые или перисто-кучевые облака. Поскольку водяной пар в атмосфере распределён неравномерно, это является причиной такого же «неравномерного» следа.

При полёте ракет, если их двигатели производят достаточное количество водяного пара (все ЖРД, а особенно водородно-кислородные, производящие только водяной пар), конденсационные следы могут возникать и в верхних слоях атмосферы, где естественного водяного пара уже недостаточно. Двигатели твердотопливных ракет практически не производят водяного пара, но выбрасывают значительное количество твёрдых частиц, которые также образуют видимый дымный след, но конденсационным по своей природе он не является.

Конденсационные следы образуются не только на больших высотах полёта (отсюда и одно из ошибочных названий — «высотный след»). На ледовом аэродроме антарктической станции «Амундсен-Скотт» (высота 2830 м над уровнем моря), при определённых условиях (температура воздуха минус 50 градусов и ниже), этот след образуется уже на взлёте или при посадке, причём за турбовинтовыми самолётами (С-130 «Геркулес» из состава «Снежного Крыла» ВВС США), что делает ненужной дискуссию о ещё одном неверном названии — «реактивный след».

Конденсационные следы до сих пор являются демаскирующим фактором для деятельности военной авиации, поэтому вероятность их появления рассчитывается авиационными метеорологами по соответствующим методикам, и экипажам выдаются рекомендации. Изменение высоты полёта в определённых пределах позволяет избежать или полностью устранить нежелательное влияние этого фактора.

Существует и антипод (противоположность) конденсационному следу — «обратный», «отрицательный» (очень редко встречаемые названия) след, образующийся при рассеивании элементов облачности (кристаллов льда) в пределах спутного следа при определённых условиях. Напоминает «обращение цвета» в графических редакторах компьютерных программ, когда голубое небо является облаком, а сам след — чистым голубым пространством. Отчётливо наблюдается с земли при слоистой или кучевой облачности незначительной вертикальной мощности и отсутствии других слоёв облачности, маскирующих голубой фон верхних слоёв атмосферы. Прекрасно видим экипажами самолётов, идущих в группе, и особенно хорошо с кормовой кабины (бомбардировщика, транспортного самолёта и т. п.)

Конденсационный след не следует путать со спутным следом. Спутный след — это возмущённая область воздуха, всегда образующаяся за движущимся летательным аппаратом. Однако конденсационный след, взаимодействуя со спутным следом, рельефно выявляет вихревую структуру возмущённого воздуха, образуя интересные визуальные эффекты.

Интересно, что при работе турбореактивного двигателя на земле при определённых условиях может возникать отчётливо видимый вихревой жгут всасываемого в воздухозаборник воздуха.

Влияние на окружающую среду

По заявлениям климатологов, конденсационные следы оказывают влияние на климат, уменьшая температуру за счёт того, что вырождаются в перистые облака, тем самым увеличивая альбедо Земли[источник не указан 37 дней].

Примечания

Ссылки

Белый след в небе от самолета что это и как называется

Наблюдая с земли за полетом лайнера, иногда замечаешь, как самолет оставляет за собой две белые полоски. Такое необычное, казалось бы, явление физики объясняют довольно просто. Ведь следствием работы двигателей лайнера в атмосфере становится появление инверсионных или, как принято называть сейчас, конденсационных следов. Обсудим природу появления этой отметины на конкретных примерах.

Физические термины простыми словам

Взрослые люди осознают причину возникновения этого процесса, но ребенок дошкольного возраста задает вопросы, почему появляется белый след от самолета, что это и как получается такая необычная картина. Припомнив школьный опыт уроков физики, удастся легко растолковать малышу суть появления полос в небе. Неплохой аналогией для такого пояснения становится природа появления осадков – дождя или снега.

Часто за пролетающим в небе самолетом остается белый след

Поскольку подобное явление относится к круговороту воды, здесь следует начать объяснение с нескольких агрегатных состояний жидкости. Ведь все мы знаем, что из твердого состояния (лед) вода переходит в жидкое под действием тепла.

Далее, при разнице температур нескольких объектов воздействия жидкость трансформируется в газообразное состояние – пар. Из этого вида вода способна вновь принять жидкую форму. Последнее превращение физики называют конденсацией, а доказать это явление получится на простом опыте в домашних условиях. Например, запотевание зеркал в ванной после принятия горячего душа.

Именно мелкие твердые частицы концентрируют вокруг себя получившийся пар, придавая ему видимую нами форму.

Правда, это соединение не считается стойким, поэтому через непродолжительное время туман рассеивается, смешиваясь с атмосферой. Это происходит вследствие выравнивания температуры соединения с окружающей средой.

Но для малыша не стоит столь подробно и правильно описывать происходящее. Когда вы принимаете ванну, температура жидкости намного превышает такой же показатель воздуха. Вследствие этого туман при контакте с прохладным стеклом опускается в форме капель – это и есть конденсат. Таким же простым языком можно объяснить ребенку, почему самолет оставляет в небе след.

Выполним небольшое исследование

Такой эффект оседания пара вполне возможно организовать самому и проанализировать все действия и результат. Наберите жидкость – лучше всего простую воду – в пластиковую емкость и поставьте ее в морозильную камеру на 15–25 минут.

После истечения этого времени достаньте контейнер и посмотрите, как вместилище постепенно покрывается влагой – это и есть конденсат. Подобное появление капель происходит из-за соприкосновения теплого воздуха с ледяной поверхностью бутылки. В результате взаимодействия разницы температур выделяется влага.

Простейшее исследование появления капель

По такой же причине на растениях ранним утром появляется роса. Теперь получится понятными для ребенка словами растолковать, откуда она берется. Ведь в ночное время на улице становится холоднее, чем днем. Поэтому при соприкосновении прохладного воздуха с теплой поверхностью растений происходит превращение пара в капли росы. Еще одним наглядным примером становится появление пара изо рта на морозе.

Причины появления белых полос за лайнером

Обычно самолеты, которые пролетают на высоте до восьми километров, не оставляют подобных отметин. Это объясняет разница температур в нижних и высоких слоях атмосферы. Ведь с увеличением высоты на уровень, где курсирует большинство воздушных судов, термометр показывает около минус сорока градусов. След от самолета зовут конденсационным благодаря непосредственно этому физическому процессу. Рассмотрим детали его появления.

Из мотора самолета при сгорании основного топлива – керосина — выплескиваются горячие струи пара и газа. Углеводород – это сцепление жидкости и углекислого газа. Вода, которая имеется в выхлопе самолета очень горячая. На большой высоте воздух довольно холодный, поэтому выходящая из винтов жидкость мгновенно превращается в туман.

Попадая в холодный воздух, горячие продукты горения топлива образуют устойчивый белый туман

Кроме того, вместе с выхлопом из двигателей вырываются частички сажи – ведь авиационное горючее сжигается не до конца. Эти частицы берут на себя роль объектов, которые концентрируют вокруг остатков тумана смешение теплого и холодного потока.

Все крупицы пара равномерно распределяются по площади появления горячей воды из винтов и превращаются в маленькие капельки, похожие на туман. Именно поэтому мы и видим в небе белую полосу за самолетом.

В том случае, когда в воздухе очень маленькая сырость, полоса от авиалайнера быстро исчезает и нам она совсем незаметна. Но когда влажность высокая – след видно довольно четко, а отметина остается в небе продолжительное время.

Помимо этого, когда в воздухе высокое количество влаги, полоса не только насыщена, но становится больше и в итоге соединяется с облаками. Это самое простое и доступное пояснение малышу, почему от самолета остается белый след.

Как оставляемые полосы отражаются на окружающей среде

Мы разобрали, как называется след в небе от самолета и выяснили причины его возникновения. Но многих людей волнует, как же эти полосы отразятся на экологии окружающей среды. Когда человек исследует материалы и снимки Земли, полученные со спутника, всегда обнаруживается зона, где пролегают авиационные маршруты. Вся территория здесь покрыта белыми полосами.

Некоторые специалисты утверждают, что полосы от самолетов не дают вредному солнечному излучению проникать до поверхности нашей планеты. Благодаря этому снижается риск глобального потепления. Другие ученые допускают отрицательное влияние этого процесса. Полосы, которые отставляет авиалайнер, усиливают парниковый эффект и препятствуют естественному охлаждению слоев воздуха. 

Сегодня ученые не пришли к единому мнению — наносят ли вред окружающей среде подобные отметины или нет

Группа исследователей, желающих предотвратить значительное влияние на климат, призывают пилотов летать ниже или постараться миновать мест с повышенной влажностью при планировании маршрута. Однако подобное решение сложно назвать обдуманным и верным. Ведь в этом случае время перелета непременно увеличится, остатки авиационного топлива достаточно негативно отразятся на экологии и чистоте атмосферы.

Предсказания прогноза

К слову, наблюдая за полетом авиации, некоторые люди определяют погоду. Эта возможность вытекает из физической составляющей процесса. На большой высоте воздух бывает довольно сырым, но не может превратиться в пар из-за отсутствия частичек, которые становятся составляющей прохождения конденсации, например, пыли.

Авиалайнер, перемещаясь на приличной высоте, оставляет белый след. Как было сказано выше, это остатки топлива и сажа. Если полосу видно четко, значит, влажность воздуха повышена. Соответственно, вероятны дожди и туманы. Но когда след быстро растворяется и практически незаметен, предстоит сухая и солнечная погода.

Как видите, след за летящим лайнером – достаточно простой физический процесс по изменению агрегатного состояния тел. Приведенная информация позволит вам разъяснить природу возникновения этого явления детям в доступной для них форме. А демонстрация аналогичных опытов поможет малышу увидеть результат такого превращения.

…Безобидны ли белые следы от самолетов? | Всё что нужно знать о... | ВОПРОС-ОТВЕТ

В то, время как большинство людей не придают этому значения, часть населения Земли убеждена: это не обычные конденсационные следы, которые на больших высотах оставляют реактивные двигатели, а признаки распыления в воздухе какого-то химического аэрозоля. А в состав этого аэрозоля, как подозревают теоретики, может входить всё – от ядохимикатов до вирусов, разработанных в лабораториях.

Что такое «химиотрассы»

Слово «химиотрассы» (калька с английского «chemtrails» – химические следы) придумали для того, чтобы обозначать особенные, нетипичные следы, которые чертят в небе реактивные самолёты. Обычные трассы – белые следы, которые остаются за пролетающим на большой высоте реактивным самолётом, – рассасываются через несколько минут после появления. Химиотрассы же не исчезают несколько часов, иногда могут висеть на небе до двух суток, постепенно расплываясь и превращаясь в тонкие, полупрозрачные вытянутые облака, которых в природе в норме не бывает. Нередко на небе можно наблюдать и целую сетку из неисчезающих авиационных следов. Сторонники теории заговоров убеждены: посредством химиотрасс «мировое правительство» распыляет в атмосфере планеты химикаты, которые сделают климат более податливым к воздействию погодного оружия. Кстати, в США существует огромный парк самолётов типа «Боинг КС-135 Стратотанкер», который, будучи оборудован распылительным оборудованием, внешне неотличим от пассажирских боингов.

Кому это нужно

На Западе считается, что история с химиотрассами началась после публикации в 1996 году работы «Климат как усилитель силы: обладание погодой к 2025 году». Подписанная семью американскими военными в звании от майора до полковника, эта исследовательская работа заложила основу для американской военной доктрины XXI века. Суть новой концепции в том, что ядерное оружие отныне не только не считается главным, но и переводится на скамейку запасных. В 2000-х годах США не испытали ни одной атомной бомбы, а роль всепланетного пугала теперь принадлежит климатическому оружию.

Сегодня длинные неисчезающие авиаследы наблюдают люди по всему миру.Фото: www.russianlook.com 

Что такое HAARP

Этой англоязычной аббревиатурой называют программу высокочастотных исследований полярных сияний. Комплекс HAARP, расположенный на Аляске, почти аналогичен российскому комплексу «Сура», с той лишь разницей, что отечественный комплекс может только исследовать ионосферу, а HAARP – и исследовать, и модифицировать. А благодаря этому исследовательский, казалось бы, комплекс может быть эффективным климатическим оружием.

Во время одного из первых пусков система HAARP продемонстрировала: при помощи луча энергии высокой частоты, направленного в небо, можно создавать необычные погодные явления – например, не существующие в природе типы облаков, а также дожди, засухи и землетрясения. Однако для того чтобы системе было с чем работать, в атмосфере должны присутствовать определённые химикаты. Так, HAARP смог создать экспериментальные облака только после того, как два распыляющих самолёта создали над базой облако, состоящее из слаборадиоактивных солей бария.

Какая связь с нами

Сегодня длинные неисчезающие авиаследы наблюдают люди по всему миру. А журнал NationalGeographic даже посвятил химиотрассам целый фильм. Интересно, что на химиотрассы жалуются не только за пределами США, но и в самих Штатах. Так, например, в 2004 году группа жителей Гавайского архипелага выступила с ужасающим заявлением. По их мнению, в состав аэрозолей, распыляемых над их островами, кроме всего прочего входят и соли алюминия. Обычная земная флора гибнет при контакте с веществом такого аэрозоля: кора пальм трескается и теряет прочность, а древесина едва ли не превращается в жидкость. Для чего кому-то может понадобиться такой вандализм? Оказывается, Гавайские острова уже давно обхаживает американская суперкорпорация «Монсанто». Как убеждены гавайцы, распыляя над островами алюминиевые аэрозоли, неизвестные силы пытаются заставить жителей архипелага покупать у «Монсанто» саженцы растений, стойкие к алюминию.

Угроза здоровью

Разумеется, доверять силам, которые позволяют себе модифицировать химический состав атмосферы, не хочет никто. И в адрес таинственных распылителей звучат серьёзные обвинения: исследователи и просто озабоченные граждане всех стран мира подозревают – новые штаммы гриппа, атипичной пневмонии и эпизоотических вирусов, вероятно, попадают в атмосферу после распылений. Но чтобы досконально изучить феномен и с уверенностью подтвердить или опровергнуть эти предположения, необходимо взять на анализ материал конденсационного следа. А для этого требуется специально оборудованная авиалаборатория.

Смотрите также:


Смотрите также