Висмут что это такое


Что такое висмут, его свойства, соединения, получение и применение :: SYL.ru

Что такое висмут? Удивительный металл необычной формы и внешности, который еще в Средневековье использовался алхимиками во многих опытах. Его называли tectum argenti, что переводится, как «производство серебра», ведь люди действительно считали, что этот металл наполовину состоит из него. Его применяли во многих сферах и даже добавляли в сплавы, из которых делали холодное оружие – так мечи приобретали особый блеск и красоту. Что же представляет собой этот элемент, и какими особенностями он обладает?

Нахождение в природе

Рассказывая о том, что такое висмут, следует отметить, что в земной коре этот элемент содержится в количестве 2х10−5 % по массе, а в морской воде 2х10−5 мг/л.

Также он находится в рудах. В этих полезных ископаемых висмут содержится, как в форме собственных минералов, так и в виде примесей в сульфатных солях и сульфидах других металлов.

Порядка 90 % висмута добывается посредством извлечения его из проходящих обработку медных, оловянных и свинцово-цинковых руд, а также из концентратов. В них обнаруживаются сотые, а порой и десятые доли процента этого вещества.

Крайне редко в природе встречаются висмутовые руды. В них наблюдается высокая концентрация вещества – от 1 % и выше. Состав таких руд включает в себя самородный висмут (образуется в гидротермальных жилах), висмутин (простой сульфид), тетрадимит, козалит, бисмит, бисмутит, виттихенит, айкинит и галеновисмутит.

Месторождения

Висмут – металл, который в высоких концентрациях скапливается, как правило, в горных породах (пегматиты), в средне- и высокотемпературных гидротермальных и в контактово-метасоматических месторождениях.

Как уже говорилось выше, он обычно образует комплексные руды с другими элементами. Они также отличаются, в основном по типу оруденения. В Боливийской провинции, например, распространены сульфидно-касситеритовые месторождения, из которых извлекают этот металл. В Забайкалье - кварц-вольфрамитовые.

В России и за рубежом особенно распространены гидротермальные месторождения. В Средней Азии и Италии – медно-висмутовые. В Германии, США и Канаде – пятиэлементные. В таких месторождениях самородный висмут ассоциируется с арсенидами серебра, кобальта и никеля, а еще с ураном.

Но самое масштабное месторождение данного металла находится в Перу, в городе Серро-де-Паско. Висмут там добывают в больших количествах, извлекая его в процессе переработки свинцовых концентратов.

Процесс получения

В продолжение темы о том, что такое висмут, стоит рассказать, как именно его добывают.

Получение этого металла основано на переработке руды, а также свинцовых и медных концентратов посредством методов, используемых в сферах пиро/гидрометаллургии.

Есть и другой способ, но он используется лишь в случае получения висмута из сульфидных соединений. Процесс подразумевает переработку медных концентратов, сопровождающуюся осадительной плавкой с железным скрапом и флюсом.

Как правило, происходит процесс получения висмута по формуле: Bi2S3 + 3Fe à 2Bi + 3FeS.

В том случае, если используются окисленные руды, то металл восстанавливают углеродом под слоем флюса. Происходит это в температурном режиме от 900 до 1000 °C. Углерод, кстати, может быть заменен сульфитом натрия. С применением данного кристаллогидрата можно восстановить оксид висмута при меньшей температуре (800 °C).

Для получения сульфида данного металла применяют соду или гидроксид натрия. В этих случаях устанавливается температура в 950 и 500-600 градусов соответственно.

Специфика процесса

Отдельно стоит сказать про извлечение висмута из чернового свинца. Данный процесс специфичен тем, что он подразумевает выделение металла при помощи кальция или магния. Висмут при этом, имея вид соединения CaMg2Bi2, накапливается в верхних слоях.

Как в дальнейшем металл очищается от магния или кальция? Посредством его переплавки под щелочным слоем с добавлением окислителя NaNO3. Затем полученное вещество подвергают электролизу с получением шлама (отходные вещества). Этот продукт и переплавляют в черновой висмут.

Важно оговориться, что гидрометаллургический способ получения данного элемента характеризуют более высокие экономические показатели и соответствующая чистота полученного вещества. Этот метод основан на растворении висмутосодержащих руд, сплавов и полупродуктов. Для этого используется соляная и азотная кислоты.

За растворением следует выщелачивание получившейся жидкости. Для осуществления этого процесса используют серную кислоту или растворы хлорида натрия. Это последний этап, затем висмут извлекают и очищают посредством экстракции.

Кстати, еще есть методы двухстадийной перегонки, зонной плавки и гидрометаллургического рафинирования. Их применяют для получения самого чистого висмута.

Модификации металла

Что такое висмут? Визуально это – серебристо-белый металл, переливающийся различными оттенками. Чистый висмут отливает преимущественно розовым. Металл, в котором доминирует какой-либо другой цвет, является аллотропной модификацией.

Их, кстати, немало. Модификации возникают вследствие воздействия высокого давления. Если подвергнуть висмут температуре в +25 °C и давлению в 2,57 ГПа, то кристаллическая решетка этого вещества претерпит полиморфное превращение. Ее форма перестанет быть ромбоэдрической и станет моноклинной.

Также изменения решетки происходит при других показателях давления (5 ГПа, 4,31 ГПа и 2,72 ГПа). А если довести его до уровня в 7,74 ГПа, то она и вовсе приобретет кубическую форму. Тетрагональной решетка становится при давлении в 2,3—5,2 ГПа.

Физические свойства

Висмут – химический элемент, являющийся поистине уникальным. Лишь у немногих веществ при их плавлении наблюдается повышение плотности, и он к ним относится. Когда висмут переходит в жидкое состояние из твердого, данный показатель изменяется с 9,8 г/см 3 до 10,07 г/см3.

С ростом температуры увеличивается и удельное электрическое сопротивление этого вещества. При обычных условиях (+17.5 °C), данный показатель составляет 1,2 мкОм·м. При плавлении сопротивление уменьшается. При температуре в 269 °C, когда висмут еще находится в твердом состоянии, оно равно 2,67 мкОм·м. А когда она повышается до 272 °C, то показатель сразу падает до 1,27 мкОм·м.

Если сравнивать висмут с другими металлами, то по свойствам к нему ближе всего будет ртуть. У них обоих низкая теплопроводность, составляющая 7,87 Вт/(м·К) при 300 К.

Магнитные свойства

Конечно же, рассказывая про свойства висмута, нельзя не отметить, что это самый диамагнитный металл из всех существующих. Его магнитная восприимчивость равна 1,34·10−9 при 293 K. И данное качество, при наличии висмута, можно заметить невооруженным взглядом. Если подвесить образец металла на нитку и поднести к нему магнит, то он заметно от него отклонится.

Важнейшие соединения

Их тоже стоит отметить вниманием. Соединений у висмута масса. Но наиболее характерными для него являются те, которые обладают степенью окисления +3 и +5. Вот несколько примеров:

  • Оксид висмута (II) BiO. Выглядит как кристаллы серо-черного цвета. Вещество окисляется при температуре в 180 °С, в условиях повышенной влажности. Вступает в реакцию с хлороводородной кислотой, поддается восстановлению монооксидом углерода и водородом.
  • Оксид висмута (III) Bi2O3. Представляет собой кристаллы желтого цвета тетрагональной или моноклинной формы. До 1750 °С находятся в твердом состоянии. Плохо растворяются в гидроксидах, аммиаке, ацетоне и в воде, но хорошо в кислотах. Оксид получают, как правило, посредством нагревания висмута в кислороде.
  • Гидроксид висмута (III) Bi(OH)3. Выглядит, как аморфный порошок белого цвета. Плохо растворяется в воде и щелочах высокой концентрации, но хорошо в хлориде аммония и глицерине.
  • Сульфид висмута (III) Bi2S3. Кристаллы ромбоэдрической формы серо-черного цвета. Имеют ярко выраженные термоэлектрические свойства. Полностью гидролизуются в воде, но не поддаются растворению в минеральных кислотах, сульфидах и прочих жидкостях. Поддается восстановлению кремнием, углеродом и водородом.
  • Оксид висмута (V) Bi2O5. Порошок темно-коричневого цвета. При нагревании разлагается, в щелочах и кислотах растворяется. Добывается окислением висмута в щелочных растворах высокой концентрации.

Нитрат висмута

Это – неорганическое соединение с формулой Bi(NO3)3. Оно представляет собой смесь азотной кислоты и соли металла висмута. Выглядят, как бесцветные кристаллы, похожие на соль или сахар. Их можно растворить в воде, вследствие чего нитрат висмута образует кристаллогидрат. Но в подкисленных растворах данное соединение устойчиво.

Интересно, что кристаллогидрат этого вещества способен плавиться при температуре в 75 °С, причем в собственной же кристаллизационной воде.

У него масса химических свойств. Растворенный в воде основной нитрат висмута при кипячении полностью гидролизуется. Происходит сольволиз. Вещество взаимодействует с жидкостью и разлагается с образованием новых соединений. То же самое произойдет, если кристаллогидрат хранить на воздухе.

Стоит отметить, что нитрат может вступать в реакции с холодной концентрированной соляной кислотой, щелочами, фторидами и окислителями (вследствие этого образуются висмутаты).

Применение нитрата

Используют его в нескольких сферах. В фармакологии основной нитрат висмута широко распространен, как эффективный антисептический препарат. Его используют при кожных заболеваниях, а также при недугах желудочно-кишечного тракта.

Еще нитрат вводят в состав кремов от веснушек, отбеливающих средств для лица, светлые краски для волос и осветлители.

Кроме перечисленного, пигмент добавляют в испанские и жемчужные белила.

Где используют металл?

Применение висмута в наши дни очень распространено. Данный элемент используют в самых разных сферах.

Висмут ценится за свою легкоплавкость. Его используют при производстве автоматических огнетушителей – делают для них предохранители.

Еще из него изготавливают модели для отливки сложных деталей, поскольку висмут имеет повышенные литейные свойства, и может заполнить мельчайшие детали формы. Им заливают металлографические шлифы, используют в протезировании. Вот еще несколько способов его применения:

  • Висмут добавляют к олову, чтобы оно не рассыпалось в порошок при низких температурах. Атомы этого металла будто бы «цементируют» его решетку.
  • Из марганцево-висмутового сплава изготавливают постоянные магниты.
  • Висмут добавляют в количестве 0.01 % к другим сплавам, что улучшает их пластические свойства.
  • Трехокись этого металла используется в производстве полимеров как катализатор.
  • С применением висмут-цезий-теллура изготавливают качественный материал, используемый в создании полупроводниковых холодильников.
  • В ядерной физике, геологии и томографии применяется германат висмута - сцинтилляционный материал.
  • Для получения полония-210 также необходимо добавление этого вещества.

Перечень можно продолжить. Металл используют как химический источник тока, материал для обработки прочных сплавов, применяют его в ядерной энергетике и в изготовлении топливных элементов, в производстве тетрафторгидразина. Сферы многогранны. Это лишний раз подтверждает уникальность обсуждаемого вещества.

Сфера медицины

Выше уже было сказано, что в некоторые лечебные препараты висмут, а точнее, его нитрат, активно добавляется. Но на этом его применение в медицине не заканчивается.

Соли висмута – одно из немногих активных веществ, которое может уничтожить бактерии Helicobacter Pylori, провоцирующие язвенную болезнь. Это было установлено недавно. Но уже сейчас добавляется во многие препараты висмут. А точнее, его субнитрат, трикалия дицитрат и ранитидина висмута цитрат.

Также доказано, что применение медикаментов с содержанием данного вещества снижает токсический эффект от химиотерапии. А на основе висмутовых соединений (трибромфенолят, субцитрат, карбонат, тартрат и т. д.) разработана масса медицинских препаратов.

Кстати, оксохлорид висмута активно применяется как рентгеноконтрастное средство и как наполнитель при изготовлении кровеносных сосудов.

инструкция по применению, аналоги, состав, показания

Описание

Капсулы твердые желатиновые цилиндрической формы с полусферическими концами белого цвета.

Состав

1 капсула содержит:
активные вещества: оксида висмута (в виде висмута калия цитрата) — 120,0 мг.
вспомогательные вещества: магния стеарат, кремния диоксид коллоидный безводный, картофельный крахмал.
состав желатиновой капсулы №0: желатин, вода очищенная, титана диоксид Е-171 .

Фармакотерапевтическая группа

Прочие противоязвенные средства и средства для лечения гастроэзофагеальной рефлюксной болезни (ГЭРБ).
Код АТХ: А02ВХ05

Фармакологические свойства

Противоязвенное средство с бактерицидной активностью в отношении Helicobacter pylori. Обладает также противовоспалительным и вяжущим действием. В кислой среде желудка осаждаются нерастворимые висмута оксихлорид и цитрат, образуются хепатные соединения с белковым субстратом в виде защитной пленки на поверхности язв и эрозий. Увеличивая синтез простагландинов Е, образование слизи и секрецию гидрокарбоната, стимулирует активность цитопротекторных механизмов, повышает
устойчивость слизистой оболочки желудочно-кишечного тракта к воздействию пепсина, соляной кислоты, ферментов и солей желчных кислот. Приводит к накоплению эпидермального фактора роста в зоне дефекта. Снижает активность пепсина и пепсиногена.

Показания к применению

— язвенная болезнь желудка и двенадцатиперстной кишки.
— гастрит, сопровождающийся жалобами на диспепсию, при котором рекомендуется эрадикация Helicobacter pylori.

Способ применения и дозы

Взрослым и детям старше 12-ти лет препарат назначают по 1 капсуле 4 раза в сутки зa 30 минут до приема пищи и на ночь или по 2 капсулы 2 раза в сутки за 30 минут до приема пищи.
Детям от 6 до 12-ти лет назначают из расчета 8 мг/кг/сутки. В зависимости от массы ребенка назначают по 1-3 капсулы в сутки (соответственно, в 1-3 приема в день). При этом суточная доза должна быть наиболее близка к расчетной дозе (8 мг/кг/сутки). Капсулы следует принимать за 30 минут до еды и запивать небольшим количеством воды.
Продолжительность курса лечения 4-8 недель. В течение следующих 8-ми недель не следует применять препараты, содержащие висмут.
Для эрадикации Helicobacter pylori целесообразно применение Де-Висмута в комбинации с другими антибактериапьными средствами, обладающими антихеликобактерной активностью.

Побочные действия

Со стороны пищеварительной системы
Очень часто ( ≥ 1/10):
- почернение кала может произойти вследствие образования сульфида висмута, однако его можно легко отличить от мелены.
Редко ( ≥ 1/1000, - тошнота, рвота, диарея или запоры. Эти явления не опасны для здоровья и носят временный характер.
Со стороны кожи и подкожной клетчатки
Редко ( ≥ 1/1 000, Нарушение со стороны иммунной системы
Очень редко ( При длительном применении в высоких дозах - энцефалопатия, связанная с накоплением висмута в центральной нервной системе.

Противопоказания

- повышенная чувствительность к любому компоненту препарата
- выраженное нарушение функции почек
- беременность и период лактации
- детский возраст до 6 лет

Передозировка

Симптомы: острая массивная передозировка может привести к почечной недостаточности с отсроченным началом до 10 дней.
Лечение: после однократного приема очень высокой дозы лечение должно включать промывание желудка, с последующей терапией активированным углём и осмотическими слабительными. Это сокращает всасывание висмута, поэтому дополнительные лечебные мероприятия не требуются.
Концентрацию висмута в крови и моче следует определять в случае остройи хронической интоксикации, для определения связи симптомов с усиленным воздействием висмута. Хелатная терапия с димеркаптосукциновой кислотой (DMSA) или димеркаптопропансульфокислотой (DMPS) используется, если известно, что симптомы вызваны острой или хронической передозировкойвисмутом.
При тяжелой почечной недостаточности после хелатной терапии следует провести гемодиализ.

Меры предосторожности

Препарат не следует применять более 8 недель, также не рекомендуется во время лечения превышать установленные суточные дозы для взрослых и детей. В период лечения Де-Висмутом не следует применять другие препараты, содержащие висмут, так как увеличивается риск развития побочных эффектов. По окончании курсового лечения препаратом в рекомендованных дозах концентрация активного действующего вещества в плазме крови не превышает 3-58 мкг/л, а интоксикация наблюдается лишь при концентрации выше 100 мг/л.
При применении Де-Висмута возможно окрашивание кала в темный цвет вследствие образования сульфида висмута. Иногда отмечается незначительное потемнение языка.
Пролонгированное применение больших доз висмутсодержащих соединений не рекомендовано, поскольку в некоторых случаях это может привести к обратимой энцефалопатии. Риск энцефалопатии, однако, является минимальным, при условии применения препарата Де-Висмута в рекомендованных дозах.

Взаимодействие с другими лекарственными средствами

В течение получаса после приёма Де-Висмута не рекомендуется применение внутрь других лекарственных средств, а также прием пищи и жидкости, в частности, антацидов, молока, фруктов и фруктовых соков. Это связано с тем, что они при одновременном приёме внутрь могут оказывать влияние на эффективность Де-Висмута.

Применение во время беременности и лактации

Применение препарата Де-Висмут во время беременности и лактации противопоказано.

Дети

Препарат не применяется y детей в возрасте до 6 лет.

Влияние на способность к вождению автотранспорта и управлению механизмами

Данные о влиянии Де-Висмута на способность управлять транспортными средствами и работать с механизмами отсутствуют.

Условия хранения

В защищенном от влаги и света месте при температуре не выше 25 °С.
Хранить в недоступном для детей месте!

Срок годности

2 года
Не применять после истечения срока годности, указанного на упаковке.

Упаковка

10 капсул в контурной ячейковой упаковке из пленки поливинилхлоридной и фольги алюминиевой. По три или шесть контурных ячейковых упаковок вместе с инструкцией по применению в пачке из картона.

Отпуск из аптек

По рецепту врача.

Производитель
Иностранное производственное унитарное предприятие «Мед-интерпласт»‚
222603 Республика Беларусь, г. Несвиж, ул. Ленинская, 115, каб. 204.

ВИСМУТ - это... Что такое ВИСМУТ?

  • ВИСМУТ — (нем.). Металл, отличающийся своей хрупкостью и легкоплавкостью, красновато белого цвета; употребляется для сплавления металлов и приготовления белил, а также в медицине. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… …   Словарь иностранных слов русского языка

  • ВИСМУТ — (Bismuthum), Bi, химический элемент V группы периодической системы, атомный номер 83, атомная масса 208,9804; металл, tпл 271,4 шC. Висмут компонент легкоплавких сплавов, припоев, баббитов и др., присадка к алюминию, сталям и другим сплавам. Из… …   Современная энциклопедия

  • Висмут —         Bi (лат. bismuthum * a. bismuth; н. Wismut; ф. bismuth; и. bismuto), хим. элемент V группы периодич. системы Mенделеева, ат. н. 83, ат. м. 208,980.          Природный B. состоит из одного стабильного изотопа 209Bi; из радиоактивных… …   Геологическая энциклопедия

  • ВИСМУТ — (правильнее бисмут), Bismu tum, хим. обозначение Bi, ат. в. 209; в период, системе занимает по порядку 83 е место, 9 е в V группе; белый, слегка красноватый металл с выраженным кристадличе Рие. 2. ским строением, хрупкий; на воздухе и в воде не… …   Большая медицинская энциклопедия

  • ВИСМУТ — (лат. Wismuthum) Bi, химический элемент V группы периодической системы, атомный номер 83, атомная масса 208,9804. Серебристо белый металл, хрупкий, легкоплавкий; плотность 9,80 г/см&sup3, tпл 271,4 .С. В сухом воздухе устойчив. Минералы висмутин …   Большой Энциклопедический словарь

  • ВИСМУТ — ВИСМУТ, висмута, муж. (иностр.). Хрупкий металл белого цвета с красноватым отливом (хим.). || Порошок или жидкость из соединений этого металла, применяемые в медицине как лечебные средства (апт.). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ВИСМУТ — ВИСМУТ, а, муж. Химический элемент хрупкий легкоплавкий серебристо белый металл. | прил. висмутовый, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • ВИСМУТ — муж. один из металлов, невстречаемых в чистом виде и в деле, а только в окисях и солях; легкоплавкий, белый, с красноватым отливом. Висмутовый, к нему относящийся, содержащий его. Висмутовые или шпанские белила. Толковый словарь Даля. В.И. Даль.… …   Толковый словарь Даля

  • ВИСМУТ — металл красновато белого цвета; уд. вес 9,80; темп pa плавления 269°; отличается большой хрупкостью. В соединении с оловом, свинцом и кадмием В. образует сплавы, применяемые в качестве легких припоев и для изготовления легкоплавких… …   Технический железнодорожный словарь

  • висмут — сущ., кол во синонимов: 4 • зельбит (1) • минерал (5627) • полуметалл (4) • …   Словарь синонимов

  • Висмут (Bi) - это... Что такое Висмут (Bi)?

  • ВИСМУТ — (нем.). Металл, отличающийся своей хрупкостью и легкоплавкостью, красновато белого цвета; употребляется для сплавления металлов и приготовления белил, а также в медицине. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… …   Словарь иностранных слов русского языка

  • ВИСМУТ — (символ Bi), серебристо белый металл, элемент пятой группы периодической таблицы, впервые выделенный как отдельный элемент в 1753 г. Основными рудами для его получения являются бисмит (Вi2О3) и висмутовый блеск (Bi2S3). Висмут плохо проводит… …   Научно-технический энциклопедический словарь

  • ВИСМУТ — (Bismuthum), Bi, химический элемент V группы периодической системы, атомный номер 83, атомная масса 208,9804; металл, tпл 271,4 шC. Висмут компонент легкоплавких сплавов, припоев, баббитов и др., присадка к алюминию, сталям и другим сплавам. Из… …   Современная энциклопедия

  • Висмут —         Bi (лат. bismuthum * a. bismuth; н. Wismut; ф. bismuth; и. bismuto), хим. элемент V группы периодич. системы Mенделеева, ат. н. 83, ат. м. 208,980.          Природный B. состоит из одного стабильного изотопа 209Bi; из радиоактивных… …   Геологическая энциклопедия

  • ВИСМУТ — (правильнее бисмут), Bismu tum, хим. обозначение Bi, ат. в. 209; в период, системе занимает по порядку 83 е место, 9 е в V группе; белый, слегка красноватый металл с выраженным кристадличе Рие. 2. ским строением, хрупкий; на воздухе и в воде не… …   Большая медицинская энциклопедия

  • ВИСМУТ — (лат. Wismuthum) Bi, химический элемент V группы периодической системы, атомный номер 83, атомная масса 208,9804. Серебристо белый металл, хрупкий, легкоплавкий; плотность 9,80 г/см&sup3, tпл 271,4 .С. В сухом воздухе устойчив. Минералы висмутин …   Большой Энциклопедический словарь

  • ВИСМУТ — ВИСМУТ, висмута, муж. (иностр.). Хрупкий металл белого цвета с красноватым отливом (хим.). || Порошок или жидкость из соединений этого металла, применяемые в медицине как лечебные средства (апт.). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ВИСМУТ — ВИСМУТ, а, муж. Химический элемент хрупкий легкоплавкий серебристо белый металл. | прил. висмутовый, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • ВИСМУТ — муж. один из металлов, невстречаемых в чистом виде и в деле, а только в окисях и солях; легкоплавкий, белый, с красноватым отливом. Висмутовый, к нему относящийся, содержащий его. Висмутовые или шпанские белила. Толковый словарь Даля. В.И. Даль.… …   Толковый словарь Даля

  • ВИСМУТ — металл красновато белого цвета; уд. вес 9,80; темп pa плавления 269°; отличается большой хрупкостью. В соединении с оловом, свинцом и кадмием В. образует сплавы, применяемые в качестве легких припоев и для изготовления легкоплавких… …   Технический железнодорожный словарь

  • висмут — сущ., кол во синонимов: 4 • зельбит (1) • минерал (5627) • полуметалл (4) • …   Словарь синонимов

  • Висмут химический элемент

    Среди элементов периодической системы висмут — последний практически не радиоактивный элемент. И он же открывает шеренгу тяжелых элементов — естественных альфа-излучателей. Действительно, тот висмут, который мы знаем по химическим соединениям, минералам и сплавам, принято (и не без оснований) считать стабильным, а между тем, тонкими экспериментами установлено, что стабильность висмута — кажущаяся. В действительности же ядра его атомов иногда «гибнут», правда, очень нечасто: период полураспада основного природного изотопа висмута 209Bi — более 2*1018 лет. Это примерно в полмиллиарда раз больше возраста нашей планеты...

    Висмут

    Кроме висмута-209, известны еще 26 изотопов элемента № 83. Все они радиоактивны и короткоживущи: периоды полураспада не превышают нескольких суток.

    Двадцать изотопов висмута с массовыми числами от 189 до 208 и самый тяжелый 215Bi получены искусственным путем, остальные — 210Bi, 211Bi, 212Bi, 213Bi и 214Bi — образуются в природе в результате радиоактивного распада ядер урана, тория, актиния и нептуния.

    Таким образом, несмотря на то что на практике мы встречаем лишь практически стабильный висмут-209, не следует забывать о важной роли элемента № 83 во всех областях знания, так или иначе связанных с радиоактивностью. Не будем, однако, впадать в другую крайность. Практическую важность приобрел прежде всего стабильный (или правильнее — псевдо стабильный) висмут. Поэтому именно ему быть главным «героем» дальнейшего повествования.

    Очень долго висмут не давался в руки. Впрочем, в руках-то его, несомненно, держали еще в древности, и неоднократно. Только тогда не понимали, что красивые белые самородки с чуть красноватым оттенком — это по сути дела элементный висмут.

    Долгое время этот металл считался разновидностью сурьмы, свинца или олова. Первые сведения о металлическом висмуте, его добыче и переработке встречаются в трудах крупнейшего металлурга и минералога средневековья Георгия Агриколы, датированных 1529 г. Представление же о висмуте как о самостоятельном химическом элементе сложилось только в XVIII в.

    Происхождение названия этого элемента трактуют по-разному. Одни исследователи склонны считать его производным от древнегерманского слова «\Yismuth» (белый металл), другие — от немецких слов «Yiese» (луг) и «muten» (разрабатывать рудник), поскольку в Саксонии висмут издревле добывали на лугах округа Шнееберг.

    Есть еще одна версия, согласно которой название элемента произошло от арабского «би исмид», что означает «обладатель свойств сурьмы». Висмут действительно на нее очень похож.

    Какая из этих точек зрения наиболее близка к истине, сказать трудно... Нынешний символ элемента № 83, Bi, впервые введен в химическую номенклатуру в 1819 г. шведским химиком Берцелиусом.

    В отличие от сурьмы в висмуте металлические свойства явно преобладают над неметаллическими. Висмут одновременно хрупок и довольно мягок, тяжел (плотность 9,8 г/ см3), легкоплавок (температура плавления 271°С). Ему свойствен сильный металлический блеск и белый розоватого оттенка цвет. Среди прочих металлов висмут выделяют малая теплопроводность (хуже него тепло проводит только ртуть) и, если можно так выразиться, предельная диамагнитность. Если между полюсами обычного магнита поместить стержень из висмута, то он, отталкиваясь от обоих полюсов, расположится как раз посередине. Для кристаллов висмута характерно сложное двойниковое строение, которое можно увидеть только под микроскопом.

    У висмута есть еще одно редкое свойство: затвердевая, он значительно расширяется в объеме (на 3,32% при 271°С). Этим свойством пользуются, когда нужно получить очень точные и сложные по форме литые изделия.

    Предполагают, что способность уплотняться при плавлении объясняется изменением типа связи между атомами. Для твердого висмута характерны связи ковалентно-металлические, при плавлении же ковалентные связи разрушаются, и атомы остаются связанными лишь металлическими связями. Гетерогенный (разнородный) характер связей в твердом висмуте препятствует плотнейшей упаковке атомов в кристаллической решетке.

    Одна необычность влечет за собой другую. Давление влияет на висмут иначе, чем на «нормальные» металлы. С ростом давления температура плавления висмута понижается, а у большинства металлов растет. Это необычное свойство считают следствием способности висмута расширяться при твердении и уплотняться при расплавлении. И это не удивительно: для всех физических тел характерна определенная корреляция изменений, происходящих под действием температуры и давления.
    Основные химические свойства любого элемента определяются, как известно, его положением в периодической системе и, следовательно, строением его электронных оболочек, особенно внешней. Среди элементов V группы, точнее ее главной подгруппы (N, Р, As, Sb, Bi), висмут — самый тяжелый и «самый металлический». Как и положено элементу V группы, он проявляет валентности 3+ и 5+ (а также 3-, 1+, 2+, 4+), но, поскольку висмут ближе к «полюсу металлических свойств», нежели любой из его аналогов, три электрона отрываются от его атома намного чаще и легче, чем пять. Практически важны лишь соединения трехвалентного висмута (3+), трехвалентны и все природные соединения этого элемента.

    Внутреннее строение атома Bi роднит его не только с мышьяком и сурьмой, что естественно, но и со многими другими металлами. В атоме висмута есть предпоследний 18-электронный слой (слой типа «купро»), который характерен для свинца, а также меди и ее аналогов (Au, Ag). Интересно, что с этими же элементами висмут нередко бывает связан в рудных месторождениях.

    Ионный радиус трехвалентного висмута (1,20 А°) мало отличается от ионных радиусов серебра (1,13 А°) и золота (1,37 А°).

    В бескислородных кислотах висмут нерастворим, хорошо растворяют его лишь азотная и концентрированная серная кислоты. Атом висмута обладает довольно большим сродством к электрону (окислительно-восстановительный потенциал системы Bi3+/Bi равен всего +0,226 в), поэтому ион Bi3+ сравнительно легко восстанавливается до нейтрального атома. Вот почему в природе висмут нередко можно встретить в самородном состоянии, иногда даже в концентрации, представляющей практический интерес.

    При обычной температуре на воздухе висмут устойчив и лишь слегка покрывается характерной красноватой побежалостью, но при температуре красного каления он легко сгорает, превращаясь в Bi203. Это соединение, нерастворимое в воде, легко растворяется в кислотах, но очень трудно — в щелочах, даже концентрированных.

    В природе Bi203 можно наблюдать в виде землистых скоплений желтого и бурого цвета. Это минерал бисмит. Вместе с другим природным соединением — карбонатом висмута, получившим название бисмутита, он считается главным кислородсодержащим минералом висмута.

    Но для геохимиков особенно важны соединения висмута с серой, селеном и теллуром. Среди минералов висмута (а их насчитывается больше 70) больше всего сульфидов и теллуридов. Такие минералы имеют большое практическое значение. В последние годы все более уверенно начинают говорить о сульфидах висмута как о типично комплексных соединениях, а иногда и как о неорганических полимерах. В самом деле, один из самых распространенных минералов элемента № 83, висмутин Bi2S3, легко представить как сочетание ионов [BiS]+ и [BiS2]- В природных условиях висмутин встречается в виде хорошо ограненных серебристых кристаллов.
    Это утверждение может показаться странным, особенно после упоминания о 70 минералах элемента № 83. Тем не менее содержание висмута в земной коре составляет лишь 2-105%; это значит, что па тонну вещества земной коры приходится лишь 0,2 г висмута. Его меньше, чем драгоценного серебра, меньше, чем многих элементов, прочно и давно зачисленных в разряд редких и рассеянных, — таллия, индия, кадмия.

    Висмут в природе

    Обратите внимание на двойственность поведения висмута в природе. С одной стороны, он может концентрироваться в минералах, а с другой — рассеиваться в рудах (особенно сульфидных) так, что содержание его в них можно определить лишь одним словом — «следы». Ярко выраженная способность висмута к образованию собственных минералов не позволяет отнести его к рассеянным элементам в общепринятом значении этого слова. В «чужие» кристаллические решетки он, как правило, не входит. Исключение — свинцовый минерал галенит PbS, в решетке которого при определенных условиях висмут может удерживаться без образования собственных минералов.

    Тем не менее, скопления богатых висмутовых руд встречаются очень редко. Они крайне ограниченны в пространстве и отличаются неравномерностью распределения, что, конечно, доставляет огорчения геологам и горнякам, занимающимся разведкой и эксплуатацией висмутовых месторождений.

    Минералы висмута как бы прячутся в рудах других элементов: вольфрама, олова, меди, никеля, молибдена, урана, кобальта, мышьяка, золота и других элементов — разных и непохожих.

    Трудно назвать рудное месторождение, в котором не было бы висмута, но еще сложнее назвать такое месторождение, в котором концентрация его была бы столь высокой, что оно могло бы с выгодой разрабатываться только ради висмута. Как же быть? Поступают просто: висмут берут отовсюду, где извлечение его экономически (или технологически) оправдано. Вот перечень сырьевых источников висмута, обеспечивающих около 3/4 мирового (без России) спроса: медные, свинцовые и серебряные рудники Перу, свинцовые месторождения Мексики, медные и свинцово-цинковые руды Японии, медные, свинцовые и серебряно-кобальтовые месторождения Канады, вольфрамово-оловянные и оловянно-серебряные руды Боливии.

    Может быть, все эти источники очень богаты висмутом? Нет, за исключением боливийских, все перечисленные руды висмутом бедны. Основной производитель висмута — свинцовая промышленность — извлекает его из концентратов, в которых не больше сотых, реже десятых процента висмута, а в исходных рудах полиметаллических месторождений от 0,0001 до 0,01% Bi. Та же примерно картина наблюдается и в медной промышленности. Обычно висмут здесь извлекают из анодных шламов, образующихся при электролитическом рафинировании меди.
    Источником висмута может быть и вторичное сырье. Например, в Германии значительное количество висмута извлекают при переработке пиритных огарков и из металлического лома. Мировое производство висмута измеряется тысячами тонн — не очень много, особенно если сравнить с соседом по таблице Менделеева — свинцом.

    Предполагают, что мировая потребность в висмуте в 2000 г. составит 5-6 тыс. т. На что идут эти тысячи тонн, ответит последняя глава нашего рассказа.


    Применение висмута

    Традиционные потребители висмута — металлургическая, фармацевтическая и химическая промышленность. В последние десятилетия к ним прибавились ядерная техника и электроника.

    Чтобы спаять стекло с металлом, используют легкоплавкие сплавы на висмутовой основе. Подобные же сплавы (с кадмием, оловом, свинцом) применяют в автоматических огнетушителях. Как только температура окружающей среды достигает 70°С, плавится пробка из висмутового сплава (49,41% Bi, 27,07% Pb, 12,88% Sn и 10,02% Cd) и огнетушитель срабатывает автоматически.

    Легкоплавкость висмута стала одной из причин прихода его в ядерную энергетику. Но были и другие. Только бериллию (из всех металлов) уступает висмут по способности рассеивать тепловые нейтроны, почти не поглощая их при этом. Висмут используют в качестве теплоносителя и охлаждающего агента в ядерных реакторах. Иногда в «горячей зоне» реактора помещают уран, растворенный в жидком висмуте.

    Самым первым способом извлечения плутония из облученного урана был метод осаждения плутония с фосфатом висмута. Совместно с фтористым литием LiF эта соль работала в первых промышленных установках по производству плутония. Облученный нейтронами уран растворяли в азотной кислоте, а затем в этот раствор добавляли H2S04. С ураном она образовывала нерастворимый комплекс, а четырехвалентный плутоний оставался в растворе. Отсюда его осаждали с BiP04, отделяя тем самым от массы урана. Сейчас этот метод уже не применяют, но о нем стоило упомянуть хотя бы потому, что опыт, полученный благодаря этому методу, помог создать более совершенные и современные способы выделения плутония осаждением его из кислых растворов.

    С помощью висмута получают изотоп полоний-210, служащий источником энергии на космических кораблях. Применение висмута в металлургии тоже довольно широко. Кроме упоминавшихся уже легкоплавких сплавов и припоев, висмут (примерно 0,01%) используют в сплавах на основе алюминия и железа. Эта добавка улучшает пластические свойства металла, упрощает его обработку.

    Некоторые висмутовые сплавы обладают уникальными магнитными свойствами. Сильные постоянные магниты делают из сплава, состав которого определяется формулой MnBi. А сплав состава 88% Bi и 12% Sb в магнитном поле обнаруживает аномальный эффект магнитосопротивления; из этого сплава изготовляют быстродействующие усилители и выключатели.

    Многие сплавы висмута при низкой температуре приобретают свойство сверхпроводимости.

    Широкому применению висмута в металлургии и электронике способствовало и то обстоятельство, что висмут — наименее токсичный из всех тяжелых металлов. Из соединений висмута шире всего используют его трехокись Bi203. В частности, ее применяют в фармацевтической промышленности для изготовления многих лекарств от желудочно-кишечных заболеваний, а также антисептических и заживляющих средств.

    В производстве полимеров трехокись висмута служит катализатором; ее применяют, в частности, при получении акриловых полимеров. Bi203 употребляют также в производстве эмалей, фарфора и стекла — главным образом в качестве флюса, понижающего температуру плавления смеси неорганических веществ, из которой образуются эмаль, фарфор или стекло.

    Соли висмута находят применение в областях, весьма далеких друг от друга. Это, к примеру, производство перламутровой губной помады и производство красок для дорожных знаков, которые «загораются» в лучах автомобильных фар...

    Далеко в прошлое ушло то время, когда висмут считался малоценным металлом с ограниченной сферой применения. Сейчас он нужен всем странам с высокоразвитой промышленностью. Поэтому и спрос на него продолжает расти.

    ПЕРВЫЙ ВИСМУТ В РОССИИ. «Захваченный трестом, главным образом германским, висмут является сейчас продуктом, для получения которого мы находимся всецело в зависимости от Германии. А между тем мы имеем указания на возможность нахождения его. соединений, например, в Забайкалье». Так писал Владимир Иванович Вернадский в 1915 г. в своей «Записке в Комиссию по исследованию естественных производительных сил России». Он был прав и очень дальновиден. Пройдет всего три года, и в 1918 г. другой русский ученый — К.Л. Ненадкевич — выплавит первые десятки килограммов отечественного висмута. Выплавит именно из забайкальских руд — из сульфидных концентратов вольфрамового месторождения Букука.

    КРАСАВИЦАМ ЭПОХИ ВОЗРОЖДЕНИЯ. Азотнокислый висмут BiN03-5H20 обычно получают выпариванием раствора висмута в азотной кислоте. В водном растворе эта соль легко гидролизуется и при нагревании выделяет основной нитрат висмута (висмутил-нитрат) (BiO)N03. Эта соль была известна еще в XVI в. и пользовалась большой популярностью у красавиц эпохи Возрождения. Ее применяли в качестве косметического средства, которое называли испанскими белилами.

    НА СВЕТУ — ТЕМНЕЕТ, В ТЕМНОТЕ — СВЕТЛЕЕТ. Среди соединений висмута с галогенами наибольший интерес представляет, пожалуй, треххлористый висмут. Это — белое кристаллическое вещество, которое можно получить разнообразными способами, в частности обработкой металлического висмута царской водкой. BiCl3 имеет необычное свойство: на свету он интенсивно темнеет, но, если его поместить после этого в темноту, он снова обесцвечивается. В водном растворе BiCl3 гидролизуется с образованием хлорида висмутила BiOCl. Треххлористый висмут используют для получения водостойких висмутовых смол и невысыхающих масел.

    РАЗНОЧТЕНИЯ В РЕЦЕПТУРЕ. Из легкоплавких сплавов самый популярный, определенно, сплав Вуда. Но вот беда: в разных справочниках и пособиях под названием сплава Вуда нередко фигурируют сходные, но не совсем идентичные по соотношению компонентов сплавы. В 1975 г. в редакцию журнала «Химия и жизнь» пришло письмо студента из Ростова-на-Дону, который набрал по литературе целую дюжину сходных рецептур: в шести случаях из двенадцати эти составы назывались сплавом Вуда, по одному разу сплавом Липовица, Розе или Гутри, один раз — просто эвтектикой, еще в двух случаях рецептура приводилась без названия. Произведенное «расследование» показало, во-первых, что сплав Вуда и сплав Липовица — одно и то же. Сплав Розе, в отличие от сплава Вуда, не содержит кадмия: 50% Bi, 25% Pb и 25% Sn; Тпл = 94°С. Сплав Гутри с Тпл ниже 45°С, напротив, кроме четырех названных компонентов, содержит легкоплавкие галлий и индий. Сплавом же Вуда следует, очевидно, считать композицию из четырех элементов: висмута (от 44 до 57%), свинца (25-28), олова (13-14) и кадмия (6-14) с температурой плавления около 70°С. Правда, известна и бессвинцовая разновидность этого сплава: 70% Bi, 18% Бпи 12% Cd с Тпл = 68,5°С.

    Висмут самородный - это... Что такое Висмут самородный?

    Ви́смут / Bismuthum (Bi)
    Атомный номер 83
    Внешний вид простого вещества Твёрдый хрупкий металл
    стального цвета с
    розоватым отливом
    Свойства атома
    Атомная масса
    (молярная масса)
    208,98037 а. е. м. (г/моль)
    Радиус атома 170 пм
    Энергия ионизации
    (первый электрон)
    702,9 (7,29) кДж/моль (эВ)
    Электронная конфигурация [Xe] 4f14 5d10 6s2 6p3
    Химические свойства
    Ковалентный радиус 146 пм
    Радиус иона (+5e) 74 (+3e) 96 пм
    Электроотрицательность
    (по Полингу)
    2,02
    Электродный потенциал Bi←Bi3+ 0,23 В
    Степени окисления 5, 3
    Термодинамические свойства простого вещества
    Плотность 9,747 г/см³
    Удельная теплоёмкость 0,124 Дж/(K·моль)
    Теплопроводность 7,9 Вт/(м·K)
    Температура плавления 544,5 K
    Теплота плавления 11,00 кДж/моль
    Температура кипения 1883 K
    Теплота испарения 172,0 кДж/моль
    Молярный объём 21,3 см³/моль
    Кристаллическая решётка простого вещества
    Структура решётки ромбоэдрическая
    Период решётки 4,750 Å
    Отношение c/a n/a
    Температура Дебая 120,00 K
    Bi 83
    208,98038
    6s²6p³
    Висмут

    Происхождение названия

    Предположительно латинское Bismuthum или bisemutum происходит от немецкого weisse Masse, белая масса.

    Нахождение в природе

    Содержание Висмута в земной коре 2 * 10 − 5

    В рудах находится как в форме собственных минералов, так и в виде примеси в некоторых сульфидах и сульфосолях других металлов. В мировой практике около 90% всего добываемого висмута извлекается попутно при металлургической переработке свинцово-цинковых, медных, оловянных руд и концентратов, содержащих сотые и иногда десятые доли процента висмута.

    Висмутовые руды, содержащих 1% и выше висмута, встречаются редко. Минералами висмута, входящими в состав таких руд, являются висмут самородный (содержит 98,5—99% Bi), висмутин — Bi2S3 (81,30% Bi), тетрадимит — Bi2Te2S (56,3—59,3% Bi), козалит — Pb2Bi2S5 (42% Bi), бисмит — Вi2O3 (89,7% Bi), бисмутит — Bi2CO3(OH)4 (88,5—91,5% Bi).

    Получение

    Висмут получают сплавлением сульфида с железом:

    Bi2S3 + 3Fe = 2Bi + 3FeS,

    или последовательным проведением процессов:

    2Bi2S3 + 9O2 = 2Bi2O3 + 6SO2↑;

    Bi2O3 + 3C = 2Bi + 3CO↑.

    Синтезированный кристалл висмута. Радужную окраску придает тонкий слой окисла.

    Физические и химические свойства

    Мировая добыча и потребление висмута

    Висмут в достаточной степени редкий металл, и его мировая добыча/потребление едва превышает 6000 тонн в год (от 5800 до 6400 тонн в год).

    Цены

    Цены на висмут чистотой 99% в 2007 году составили в среднем 30-33 долл/кг.

    Применение

    Металлургия

    Висмут имеет большое значение для производства так называемых «автоматных сталей», особенно нержавеющих и очень облегчает их обработку резанием на станках-автоматах (токарных, фрезерных и др.) при концентрации висмута всего 0,003 %, в то же время не увеличивая склонность к коррозии. Висмут используют в сплавах на основе алюминия (примерно 0,01 %), эта добавка улучшает пластические свойства металла, резко упрощает его обработку.

    Катализаторы

    В производстве полимеров трёхокись висмута служит катализатором, и её применяют, в частности, при получении акриловых полимеров. При крекинге нефти некоторое применение находит оксохлорид висмута.

    Термоэлектрические материалы

    Монокристалл теллурида висмута

    Одним из важнейших направлений применения висмута является производство полупроводниковых материалов и в частности теллуридов (термо-э.д.с. теллурида висмута 280 мкВ/К) и селенидов висмута. Получен высокоэффективный материал на основе висмут-цезий-теллур для производства полупроводниковых холодильников суперпроцессоров.

    Детекторы ядерных излучений

    Некоторое значение для производства детекторов ядерного излучения имеет монокристаллический иодид висмута. Германат висмута (Bi4Ge3O12, краткое обозначение BGO) — сцинтилляционный материал, применяется в ядерной физике, физике высоких энергий, компьютерной томографии, геологии.

    Легкоплавкие сплавы

    Сплавы висмута с кадмием, оловом, свинцом, индием, таллием, ртутью, цинком и галлием, обладают очень низкой температурой плавления и применяются в качестве теплоносителей и припоев, а так же в медицине в качестве фиксирующих составов для сломанных конечностей. Некоторые легкоплавкие сплавы применяются в качестве элементов противопожарной сигнализации, в качестве специальных смазок работающих в вакууме и тяжелых условиях, в качестве клапанов (при расплавлении открывающих просвет для протекания жидкостей и газов (например ракетных топлив), в качестве предохранителей в мощных электрических цепях, в качестве уплотнительных прокладок в сверхвысоковакуумных системах, как термометрические материалы, как материалы для изготовления выплавляемых моделей в литье и т. д.

    Измерение магнитных полей

    Металлический висмут особой чистоты служит материалом для производства обмотки для измерения сверхсильных магнитных полей, ввиду того, что при увеличении магнитного поля электросопротивление висмута резко возрастает, и в то же время достаточно равномерно для того, чтобы по изменению сопротивления обмотки, изготовленной из него, судить о напряженности внешнего магнитного поля.

    Производство полония-210

    Некоторое значение висмут имеет в ядерной технологии при получении полония — важного элемента радиоизотопной промышленности.

    Химические источники тока

    Издавна оксид висмута в смеси с графитом используется в качестве положительного электрода в висмутисто-магниевых элементах (ЭДС 1,97—2,1 В, 120 Вт·ч/кг, 250—290 Вт·ч/дм³). Также в качестве положительного электрода в литиевых элементах находит применение висмутат свинца. Висмут в сплаве с индием находит применение в чрезвычайно стабильных и надежных ртутно-висмуто-индиевых элементах. Такие элементы прекрасно работают в космосе и в тех условиях, где важна стабильность напряжения, высокая удельная энергия, а снижение частоты отказов играет первостепенную роль (например, военные применения). Трёхфтористый висмут применяется для производства чрезвычайно энергоёмких (3000 Вт·ч/дм³, практически достигнутое — 1500—2300 Вт·ч/дм³) лантан-фторидных аккумуляторов.

    Обработка прочных металлов и сплавов

    В сплавах висмута (например, сплав Вуда, сплав Розе и др.) производят токарную, фрезерную обработку и сверление урана, вольфрама и его сплавов и других материалов, трудно поддающихся обработке резанием.

    Ядерная энергетика

    Малое сечение захвата висмутом тепловых нейтронов и значительная способность к растворению урана вкупе со значительной температурой кипения и невысокой агрессивностью к конструкционным материалам позволяют использовать висмут в гомогенных атомных реакторах.

    Магнитные материалы

    Интерметаллид марганец-висмут сильно ферромагнитен и производится в больших количествах промышленностью для получения пластичных магнитов. Особенностью и преимуществом такого материала является возможность быстрого и дешёвого получения постоянных магнитов (к тому же не проводящих ток) любой формы и размеров. Кроме того этот магнитный материал достаточно долговечен и обладает значительной коэрцитивной силой. Кроме соединений висмута с марганцем, также известны магнитотвёрдые соединения висмута с индием, хромом и европием, применение которых ограничено специальными областями техники вследствие либо трудностей синтеза (висмут-хром), либо высокой цены второго компонента(индий, европий).

    Топливные элементы

    Керамические фазы ВИМЕВОКС, включающие в свой состав оксид висмута с оксидами других металлов (ванадий, медь, никель, молибден и др.), обладают очень высокой проводимостью при температурах 500—700 К и применяются для производства высокотемпературных топливных элементов.

    Высокотемпературная сверхпроводимость

    Керамики, включающие в свой состав оксиды висмута, кальция, стронция, бария, меди, иттрия и др. являются высокотемпературными сверхпроводниками. В последние годы при изучении этих сверхпроводников выявлены фазы, имеющие пики перехода в сверхпроводящее состояние при 155 К, 175 К, и даже 234 К.

    Производство тетрафторгидразина

    Висмут в виде мелкой стружки или порошка применяется в качестве катализатора для производства тетрафторгидразина из трехфтористого азота, используемого в качестве мощнейшего окислителя ракетного горючего.

    Электроника

    Сплав состава 88 % Bi и 12 % Sb в магнитном поле обнаруживает аномальный эффект магнитосопротивления; из этого сплава изготовляют быстродействующие усилители и выключатели.

    Вольфрамат, станнат-ванадат, силикат и ниобат висмута входят в состав высокотемпературных сегнетоэлектрических материалов. Феррит висмута применяется в качестве магнитоэлектрического материала.

    Медицина

    Из соединений висмута в медицинском направлении шире всего используют его трехокись Bi2O3. В частности, её применяют в фармацевтической промышленности для изготовления многих лекарств от желудочно-кишечных заболеваний, а также антисептических и заживляющих средств.

    Оксохлорид висмута находит применение в медицине в качестве рентгеноконтрастного средства и в качестве наполнителя при изготовлении кровеносных сосудов. Кроме того в медицине находят широкое применение такие соединения висмута как: галлат, тартрат, карбонат, субсалицилат, субцитрат, трибромфенолят висмута. На основе этих соединений разработано множество медицинских препаратов.

    В качестве противоязвенных средств используются: висмута трикалия дицитрат (висмута субцитрат) (код АТХ A02BX05), висмута субнитрат (A02BX12), ранитидина висмута цитрат (A02BA07).

    Пигменты

    Ванадат висмута применяется в качестве пигмента.

    Косметика

    В производстве лака для ногтей, губной помады, теней и др, оксохлорид применяется как блескообразователь.

    Биологическая роль

    Природный висмут состоит из одного изотопа 209Bi, который считался самым тяжёлым из существующих в природе стабильных изотопов. Однако в 2003 было экспериментально доказано, что он является альфа-радиоактивным с периодом полураспада 1,9±0,2×1019 лет.

    Кроме 209Bi, известны ещё более трех десятков (пока 34) изотопов и ещё больше изомеров. Среди них есть три долгоживущих:

    • 207Bi 31,55 год
    • 208Bi 0,368×106 лет
    • 210mBi 3,04×106 лет

    Все остальные радиоактивны и короткоживущи: периоды их полураспада не превышают нескольких суток.

    Тринадцать изотопов висмута с массовыми числами от 197 до 208 и самый тяжелый 215Bi получены искусственным путём, остальные — 210Bi, 211Bi, 212Bi, 213Bi и 214Bi — образуются в природе в результате радиоактивного распада ядер урана, тория, актиния и нептуния.

    Ссылки

    Wikimedia Foundation. 2010.

    висмут - это... Что такое висмут?

  • ВИСМУТ — (нем.). Металл, отличающийся своей хрупкостью и легкоплавкостью, красновато белого цвета; употребляется для сплавления металлов и приготовления белил, а также в медицине. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… …   Словарь иностранных слов русского языка

  • ВИСМУТ — (символ Bi), серебристо белый металл, элемент пятой группы периодической таблицы, впервые выделенный как отдельный элемент в 1753 г. Основными рудами для его получения являются бисмит (Вi2О3) и висмутовый блеск (Bi2S3). Висмут плохо проводит… …   Научно-технический энциклопедический словарь

  • ВИСМУТ — (Bismuthum), Bi, химический элемент V группы периодической системы, атомный номер 83, атомная масса 208,9804; металл, tпл 271,4 шC. Висмут компонент легкоплавких сплавов, припоев, баббитов и др., присадка к алюминию, сталям и другим сплавам. Из… …   Современная энциклопедия

  • Висмут —         Bi (лат. bismuthum * a. bismuth; н. Wismut; ф. bismuth; и. bismuto), хим. элемент V группы периодич. системы Mенделеева, ат. н. 83, ат. м. 208,980.          Природный B. состоит из одного стабильного изотопа 209Bi; из радиоактивных… …   Геологическая энциклопедия

  • ВИСМУТ — (правильнее бисмут), Bismu tum, хим. обозначение Bi, ат. в. 209; в период, системе занимает по порядку 83 е место, 9 е в V группе; белый, слегка красноватый металл с выраженным кристадличе Рие. 2. ским строением, хрупкий; на воздухе и в воде не… …   Большая медицинская энциклопедия

  • ВИСМУТ — (лат. Wismuthum) Bi, химический элемент V группы периодической системы, атомный номер 83, атомная масса 208,9804. Серебристо белый металл, хрупкий, легкоплавкий; плотность 9,80 г/см&sup3, tпл 271,4 .С. В сухом воздухе устойчив. Минералы висмутин …   Большой Энциклопедический словарь

  • ВИСМУТ — ВИСМУТ, висмута, муж. (иностр.). Хрупкий металл белого цвета с красноватым отливом (хим.). || Порошок или жидкость из соединений этого металла, применяемые в медицине как лечебные средства (апт.). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ВИСМУТ — ВИСМУТ, а, муж. Химический элемент хрупкий легкоплавкий серебристо белый металл. | прил. висмутовый, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • ВИСМУТ — муж. один из металлов, невстречаемых в чистом виде и в деле, а только в окисях и солях; легкоплавкий, белый, с красноватым отливом. Висмутовый, к нему относящийся, содержащий его. Висмутовые или шпанские белила. Толковый словарь Даля. В.И. Даль.… …   Толковый словарь Даля

  • ВИСМУТ — металл красновато белого цвета; уд. вес 9,80; темп pa плавления 269°; отличается большой хрупкостью. В соединении с оловом, свинцом и кадмием В. образует сплавы, применяемые в качестве легких припоев и для изготовления легкоплавких… …   Технический железнодорожный словарь

  • висмут — сущ., кол во синонимов: 4 • зельбит (1) • минерал (5627) • полуметалл (4) • …   Словарь синонимов

  • Висмут — Википедия

    Внешний вид простого вещества

    Блестящий серебристый металл

    Свойства атома
    Название, символ, номер Ви́смут (устар. Би́смут) / Bismuthum (Bi), 83
    Атомная масса
    (молярная масса)
    208,98040(1)[1] а. е. м. (г/моль)
    Электронная конфигурация [Xe] 4f14 5d10 6s2 6p3
    Радиус атома 170 пм
    Химические свойства
    Ковалентный радиус 146 пм
    Радиус иона (+5e) 74 (+3e) 96 пм
    Электроотрицательность 2,02 (шкала Полинга)
    Электродный потенциал Bi←Bi3+ 0,23 В
    Степени окисления 5, 3
    Энергия ионизации
    (первый электрон)
     702,9 (7,29) кДж/моль (эВ)
    Термодинамические свойства простого вещества
    Плотность (при н. у.) 9,79 г/см³
    Температура плавления 271,44 °C, 544,5 K
    Температура кипения 1837 K
    Уд. теплота плавления 11,30 кДж/моль
    Уд. теплота испарения 172,0 кДж/моль
    Молярная теплоёмкость 26,0[2] Дж/(K·моль)
    Молярный объём 21,3 см³/моль
    Кристаллическая решётка простого вещества
    Структура решётки ромбоэдрическая[3]
    Параметры решётки a=4,746; α=57,23 Å
    Отношение c/a -
    Температура Дебая 120,00 K
    Прочие характеристики
    Теплопроводность (300 K) 7,9 Вт/(м·К)
    Номер CAS 7440-69-9
    83

    Висмут

    4f145d106s26p3

    Ви́смут — химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) шестого периода периодической системы химических элементов Д. И. Менделеева; имеет атомный номер 83. Обозначается символом Bi (лат. Bismuthum). Простое вещество представляет собой при нормальных условиях блестящий серебристый с розоватым оттенком металл.

    История и происхождение названия

    Предположительно латинское Bismuthum или bisemutum происходит от немецкого weisse Masse, «белая масса»[4].

    В Средневековье висмут часто использовался алхимиками во время опытов. Добывающие руду шахтёры называли его tectum argenti, что означает «производство серебра», при этом они считали, что висмут был наполовину серебром.

    Висмут использовали не только в Европе. Инки применяли висмут в процессе изготовления холодного оружия, из-за него мечи отличались особой красотой, а их блеск был вызван радужным окислением, которое являлось следствием образования на поверхности металла тонкой плёнки оксида висмута.

    Однако висмут не был отнесён к самостоятельному элементу, и полагали, что он является разновидностью свинца, сурьмы или олова. Впервые о висмуте упоминается в 1546 году в трудах немецкого минералога и металлурга Георгиуса Агриколы. В 1739 году немецким химиком Поттом И. Г. было установлено, что висмут является всё-таки отдельным химическим элементом. Через 80 лет шведский химик Берцелиус впервые ввёл символ элемента Bi в химическую номенклатуру[5].

    Нахождение в природе

    Содержание висмута в земной коре — 2·10−5 % по массе, в морской воде — 2·10−5 мг/л[2].

    В рудах находится как в форме собственных минералов, так и в виде примеси в некоторых сульфидах и сульфосолях других металлов. В мировой практике около 90 % всего добываемого висмута извлекается попутно при металлургической переработке свинцово-цинковых, медных, оловянных руд и концентратов, содержащих сотые и иногда десятые доли процента висмута.

    Висмутовые руды, содержащие 1 % и выше висмута, встречаются редко. Минералами висмута, входящими в состав таких руд, а также руд других металлов, являются висмут самородный (содержит 98,5—99 % Bi), висмутин Bi2S3 (81,30 % Bi), тетрадимит Bi2Te2S (56,3—59,3 % Bi), козалит Pb2Bi2S5 (42 % Bi), бисмит Bi2O3 (89,7 % Bi), бисмутит Bi2CO3(OH)4 (88,5—91,5 % Bi), виттихенит Cu3BiS3, галеновисмутит PbBi2S4, айкинит CuPbBiS3.

    Генетические группы и промышленные типы месторождений

    Висмут в повышенных концентрациях накапливается в месторождениях различных генетических типов: в пегматитах, в контактово-метасоматических, а также в высоко- и среднетемпературных гидротермальных месторождениях. Собственно висмутовые месторождения имеют ограниченное распространение и обычно этот металл образует комплексные руды с другими металлами в ряде рудных формаций гидротермальных месторождений[6]. Среди них выделяются следующие:

    1. Вольфрам-медно-висмутовые
    2. Месторождения пятиэлементной формации (Co-Ni-Bi-Ag-U)
    3. Золото-висмутовые
    4. Мышьяк-висмутовые
    5. Медно-висмутовые
    6. Кварц-висмутовые

    Мировая добыча и потребление висмута

    Висмут — достаточно редкий металл, и его мировая добыча/потребление едва превышает 6000 тонн в год (от 5800 до 6400 тонн в год).

    Месторождения

    Известны месторождения висмута в Германии, Монголии, Боливии, Австралии, Перу, России, а также в других странах[7].

    Получение

    Синтезированный кристалл висмута. Радужную окраску придаёт оксидная плёнка.

    Получение висмута основано на переработке полиметаллических медных и свинцовых концентратов и висмутовых руд методами пирометаллургии и гидрометаллургии. Для получения висмута из сульфидных соединений висмута, получаемых при попутной переработке медных концентратов, используют осадительную плавку с железным скрапом и флюсом.

    Процесс идет по реакции:

    Bi2S3+3Fe→2Bi+3FeS{\displaystyle {\mathsf {Bi_{2}S_{3}+3Fe\rightarrow 2Bi+3FeS}}}

    В случае использования окисленных руд висмут восстанавливают углеродом под слоем легкоплавкого флюса при температурах 900—1000 °C:

    Bi2O3+3C→2Bi+3CO{\displaystyle {\mathsf {Bi_{2}O_{3}+3C\rightarrow 2Bi+3CO}}}

    Сульфидные руды могут быть переведены в оксидные по реакции:

    2Bi2S3+9O2→2Bi2O3+6SO2{\displaystyle {\mathsf {2Bi_{2}S_{3}+9O_{2}\rightarrow 2Bi_{2}O_{3}+6SO_{2}}}}

    Вместо углерода может быть использован сульфит натрия, который восстанавливает оксид висмута при температуре 800 °C по реакции:

    Bi2O3+3Na2SO3→2Bi+3Na2SO4{\displaystyle {\mathsf {Bi_{2}O_{3}+3Na_{2}SO_{3}\rightarrow 2Bi+3Na_{2}SO_{4}}}}

    Сульфид висмута может быть восстановлен до висмута с помощью соды при температуре около 950 °C или с помощью гидроксида натрия при температуре 500—600 °C. Реакции этих процессов имеют следующий вид:

    4Bi2S3+12Na2CO3→8Bi+9Na2S+3Na2SO4+12CO2{\displaystyle {\mathsf {4Bi_{2}S_{3}+12Na_{2}CO_{3}\rightarrow 8Bi+9Na_{2}S+3Na_{2}SO_{4}+12CO_{2}}}}
    4Bi2S3+24NaOH→8Bi+9Na2S+3Na2SO4+12h3O{\displaystyle {\mathsf {4Bi_{2}S_{3}+24NaOH\rightarrow 8Bi+9Na_{2}S+3Na_{2}SO_{4}+12H_{2}O}}}

    Получение висмута из чернового свинца, который образуется при переработке свинцовых концентратов, состоит в выделении висмута с помощью магния или кальция. При этом висмут скапливается в верхних слоях в виде соединения CaMg2Bi2. Дальнейшая очистка от Ca и Mg происходит при переплаве под слоем щёлочи с добавкой окислителя (NaNO3). Полученный продукт подвергают электролизу с получением шлама, который переплавляют в черновой висмут[2].

    Гидрометаллургический способ получения висмута характеризуется более высокими экономическими показателями и чистотой полученного продукта при переработке бедных полиметаллических концентратов. В основе способа лежит процесс растворения висмутосодержащих руд, полупродуктов, сплавов азотной и соляной кислотами и последующего выщелачивания образовавшихся растворов. Выщелачивание проводят с помощью серной кислоты или электрохимическим выщелачиванием растворами хлорида натрия. Дальнейшее извлечение и очистка висмута проводится методами экстракции[8].

    Получение висмута высокой чистоты основано на методах гидрометаллургического рафинирования, зонной плавки и двухстадийной перегонки.

    Физические свойства

    Висмут — металл серебристо-белого цвета с розоватым оттенком. Известно большое количество аллотропных модификаций висмута, которые имеют место при высоком давлении. Существует восемь кристаллографических модификаций висмута. При давлении 2,57 ГПа и температуре +25 °C кристаллическая решётка висмута претерпевает полиморфное превращение из ромбоэдрической в моноклинную с параметрами решётки a = 0,6674 нм, b = 0,6117 нм, c = 0,3304 нм, β = 110,33°, пространственная группа C2m. При давлениях 2,72 ГПа, 4,31 ГПа и около 5 ГПа также происходят полиморфные превращения кристаллической решётки висмута. При давлении 7,74 ГПа висмут имеет кубическую решётку, пространственная группа Im3m с параметром решётки a = 0,3800 нм. В интервале давлений 2,3—5,2 ГПа и температур 500—580 °C висмут имеет тетрагональную решётку с параметрами a = 0,657 нм, c = 0,568 нм. При давлении 30 ГПа также обнаружено полиморфное превращение[2].

    Переход висмута из твёрдого в жидкое состояние сопровождается увеличением плотности с 9,8 г/см3 до 10,07 г/см3, которая постепенно уменьшается с повышением температуры и при 900 °C составляет 9,2 г/см3. Обратный переход висмута из жидкого в твёрдое состояние сопровождается увеличением объёма на 3,3 %. Повышение плотности при плавлении наблюдается лишь у немногих веществ; другим хорошо известным примером вещества с таким свойством является вода.

    Удельное электрическое сопротивление висмута равно 1,2 мкОм·м при +17,5 °C и повышается с ростом температуры. Интересной особенностью является то, что удельное сопротивление при плавлении уменьшается: у твёрдого висмута (при 269 °C) оно составляет 2,67 мкОм·м, а в жидком состоянии (при 272 °C) — лишь 1,27 мкОм·м.

    Температурный коэффициент линейного расширения равен 13,4·10−6 К−1 при 293 К (+20 °C).

    По сравнению с другими металлами висмут, как и ртуть, обладает низкой теплопроводностью, равной 7,87 Вт/(м·К) при 300 К.

    Висмут является диамагнетиком с магнитной восприимчивостью −1,34·10−9 при 293 K, что делает его самым диамагнитным металлом. Образец висмута, подвешенный на нитке, достаточно заметно отклоняется в сторону от поднесённого сильного магнита.

    Кристаллический висмут не переходит в состояние сверхпроводимости даже при охлаждении до температуры порядка 10 мК. Однако есть свидетельства, что сверхпроводимость при нормальном давлении наступает при температуре около 0,5 мК. При этом критическое магнитное поле составляет величину всего 5,2 мкТл[9].

    При комнатной температуре висмут хрупкий металл и в изломе имеет грубозернистое строение, но при температуре 150—250 °C проявляет пластические свойства. Монокристаллы висмута пластичны и при комнатной температуре, и при медленном приложении усилия легко изгибаются. При этом можно ощутить «ступенчатость» процесса и даже услышать лёгкий хруст — это связано с двойникованием, за счёт которого упругое напряжение скачком снимается.

    Модуль упругости: 32—34 ГПа.

    Модуль сдвига: 12,4 ГПа[5].

    Изотопы

    Природный висмут состоит из одного изотопа 209Bi, который ранее считался самым тяжёлым из существующих в природе стабильных изотопов. Однако в 2003 году было экспериментально подтверждено[10] теоретическое предположение, высказанное тремя десятилетиями ранее[11], что он является альфа-радиоактивным. Измеренный период полураспада 209Bi составляет (1,9±0,2)·1019 лет, что на много порядков больше, чем возраст Вселенной. Таким образом, все известные изотопы висмута радиоактивны. Природный висмут, состоящий из одного изотопа 209Bi, является практически радиоактивно безвредным для человека, так как за год в одном грамме природного висмута в среднем лишь около 100 ядер испытывают альфа-распад, превращаясь в стабильный таллий-205.

    Кроме 209Bi, известны ещё более трёх десятков (пока 34) изотопов, у большинства из которых есть изомерные состояния. Среди них есть три долгоживущих:

    • 207Bi 31,55 года;
    • 208Bi 3,68·105 лет;
    • 210mBi 3,04·106 лет.

    Все остальные радиоактивны и короткоживущи: периоды их полураспада не превышают нескольких суток.

    Изотопы висмута с массовыми числами с 184 по 208 и с 215 по 218 получены искусственным путём, остальные — 210Bi, 211Bi, 212Bi, 213Bi и 214Bi — образуются в природе, входя в цепочки радиоактивного распада ядер урана-238, урана-235 и тория-232.

    Химические свойства

    В соединениях висмут проявляет степени окисления −3, +1, +2, +3, +4, +5. При комнатной температуре в среде сухого воздуха не окисляется, но в среде влажного воздуха покрывается тонкой плёнкой оксида. Нагрев до температуры плавления приводит к окислению висмута, которое заметно интенсифицируется при 500 °C. При достижении температуры выше 1000 °C сгорает с образованием оксида Bi2O3[5]:

    4Bi+3O2 → 2Bi2O3{\displaystyle {\mathsf {4Bi+3O_{2}\ {\xrightarrow {\ }}2Bi_{2}O_{3}}}}

    Взаимодействие озона с висмутом приводит к образованию оксида Bi2O5.

    Незначительно растворяет фосфор. Водород в твёрдом и жидком висмуте практически не растворяется, что свидетельствует о малой активности водорода по отношению к висмуту. Известны гидриды Bi2H2 и BiH3, которые при нагреве являются неустойчивыми и ядовитыми газами. Висмут не взаимодействует с углеродом, азотом и кремнием[12].

    Взаимодействие висмута с серой или с сернистым газом сопровождается образованием сульфидов BiS, Bi2S3.

    Bi+S →510oC BiS{\displaystyle {\mathsf {Bi+S\ {\xrightarrow {510^{o}C}}\ BiS}}}
    2Bi+3S →300−400oC Bi2S3{\displaystyle {\mathsf {2Bi+3S\ {\xrightarrow {300-400^{o}C}}\ Bi_{2}S_{3}}}}

    Висмут проявляет стойкость по отношению к концентрированной соляной и разбавленной серной кислотам, но растворяется азотной кислотой и царской водкой.

    Bi+4HNO3 → Bi(NO3)3+NO↑+2h3O{\displaystyle {\mathsf {Bi+4HNO_{3}\ {\xrightarrow {}}\ Bi(NO_{3})_{3}+NO\uparrow +2H_{2}O}}}
    Bi+3HCl+HNO3 → BiCl3+NO↑+2h3O{\displaystyle {\mathsf {Bi+3HCl+HNO_{3}\ {\xrightarrow {}}\ BiCl_{3}+NO\uparrow +2H_{2}O}}}

    Висмут реагирует с тетраоксидом диазота с образованием нитрата висмута:

    Bi+3N2O4 →70−110oC Bi(NO3)3+3NO↑{\displaystyle {\mathsf {Bi+3N_{2}O_{4}\ {\xrightarrow {70-110^{o}C}}\ Bi(NO_{3})_{3}+3NO\uparrow }}}

    С концентрированной серной кислотой растворяется с образованием сульфата висмута:

    2Bi+6h3SO4 → Bi2(SO4)3+3SO2↑+6h3O{\displaystyle {\mathsf {2Bi+6H_{2}SO_{4}\ {\xrightarrow {}}\ Bi_{2}(SO_{4})_{3}+3SO_{2}\uparrow +6H_{2}O}}}

    Взаимодействие висмута с фтором, хлором, бромом и иодом сопровождается образованием различных галогенидов:

    2Bi+5F2 →600−700oC 2BiF5{\displaystyle {\mathsf {2Bi+5F_{2}\ {\xrightarrow {600-700^{o}C}}\ 2BiF_{5}}}}
    2Bi+3Cl2 →200oC 2BiCl3{\displaystyle {\mathsf {2Bi+3Cl_{2}\ {\xrightarrow {200^{o}C}}\ 2BiCl_{3}}}}

    С металлами способен образовывать интерметаллиды — висмутиды[2][13].

    Висмут также способен образовывать висмуторганические соединения, такие, как триметилвисмут Bi(CH3)3 и трифенилвисмут Bi(C6H5)3.

    Стоимость

    Цены на висмут на мировом рынке неустойчивы, что определяется как колебанием спроса и предложения, так и падением или ростом производства свинца, которое приводит соответственно к росту или снижению производства висмута, являющегося ценным сопутствующим материалом в свинецсодержащих концентратах. Начиная с 1970-х годов самая низкая цена висмута составляла 3,5 долл./кг и отмечалась в 1980 г., а самая высокая — 15 долл./кг — в 1989 г. В конце 1995 г. цена на висмут чистотой 99,99 % составляла 8,8 долл./кг[14].

    Цены за килограмм продукта со склада в США за период с января по сентябрь поднялись на 8,8 доллара США (с 19,80 до 28,60 долларов за килограмм (франко-борт)).

    Цены на слитки висмута со склада в Роттердаме с января по сентябрь 2011 года возросла на 4,2 доллара (с 22,20 до 26,40 долларов за килограмм (СИФ)).

    В зависимости от степени чистоты металла висмут разделяют на несколько марок. В порядке увеличения степени чистоты это марки Ви2, Ви1, Ви00 , ГОСТ 10928-90 нормирует содержание примесей в этих марках не более 3 %, 2 % и 0,02 % соответственно[15]. Выпускаются также особо чистые марки висмута Ви000[16], Ви0000[16]. Цена на металлический висмут существенно зависит от его чистоты. Средневзвешенная цена на мировом рынке на конец 2016 г. составляла около 10 $/кг[17]. Покупателями марок высокой степени очистки являются научные центры, в частности висмут используют для синтеза других элементов[18].

    Применение

    Металлургия

    Висмут имеет большое значение для производства так называемых «автоматных сталей», особенно нержавеющих, и очень облегчает их обработку резанием на станках-автоматах (токарных, фрезерных и др.) при концентрации висмута всего 0,003 %, в то же время не увеличивая склонность к коррозии. Висмут используют в сплавах на основе алюминия (примерно 0,01 %), эта добавка улучшает пластические свойства металла, резко упрощает его обработку.

    Катализаторы

    В производстве полимеров трёхокись висмута служит катализатором, и её применяют, в частности, при получении акриловых полимеров. При крекинге нефти некоторое применение находит оксид-хлорид висмута.

    Термоэлектрические материалы

    Монокристалл теллурида висмута

    Висмут применяется в полупроводниковых материалах, используемых, в частности, в термоэлектрических приборах. К таким материалам относятся теллурид (термо-э.д.с. теллурида висмута 280 мкВ/К) и селенид висмута. Получен высокоэффективный материал на основе висмут-цезий-теллур для производства полупроводниковых холодильников суперпроцессоров.

    Детекторы ядерных излучений

    Некоторое значение для производства детекторов ядерного излучения имеет монокристаллический иодид висмута. Германат висмута (Bi4Ge3O12, краткое обозначение BGO) — распространённый сцинтилляционный материал, применяется в ядерной физике, физике высоких энергий, компьютерной томографии, геологии. Этот материал выгодно отличается от распространенных сцинтилляторов тем, что он радиационно стоек, имеет отличную временную стабильность и абсолютно негигроскопичен. Перспективным сцинтиллятором, обладающим высоким временным разрешением, является также галлат висмута Bi2Ga4O9. Его использование пока ограничено из-за сложности выращивания крупных монокристаллов.

    Легкоплавкие сплавы

    Синтетический кристалл висмута и слиток объёмом 1 см3.

    Сплавы висмута с другими легкоплавкими веществами (кадмием, оловом, свинцом, индием, таллием, ртутью, цинком и галлием) обладают очень низкой температурой плавления (некоторые — ниже температуры кипения воды, а наиболее легкоплавкий состав с висмутом имеет температуру плавления около +41 °C[19]). Наиболее известны сплав Вуда и (не содержащий ядовитый кадмий) сплав Розе. Легкоплавкие сплавы используются как:

    • теплоносители;
    • припои;
    • детали устройств противопожарной сигнализации и автоматического пожаротушения;
    • специальные смазки, работающие в вакууме и в условиях высоких температур, когда органические смазки неприменимы;
    • детали клапанов, расплавление которых открывает сечение для протекания жидкостей и газов, например, ракетных топлив;
    • предохранители в мощных электрических цепях;
    • уплотнительные прокладки в сверхвысоковакуумных установках;
    • фиксирующие материалы для сломанных костей конечностей в медицине;
    • термометрические жидкости в жидкостных термометрах;
    • материалы для изготовления выплавляемых моделей в литейном деле и т. д.

    Измерение магнитных полей

    Из металлического висмута особой чистоты изготавливают обмотки для измерения магнитных полей, так как электросопротивление висмута существенно и практически линейно зависит от магнитного поля, что позволяет измерять напряжённость внешнего магнитного поля, измеряя сопротивление обмотки, изготовленной из него.

    Производство полония-210

    Некоторое значение висмут имеет в ядерной технологии при получении полония-210 — важного элемента радиоизотопной промышленности.

    Химические источники тока

    Оксид висмута в смеси с графитом используется в качестве положительного электрода в висмутисто-магниевых элементах (ЭДС 1,97—2,1 В с удельной энергоёмкостью 120 Вт·ч/кг, 250—290 Вт·ч/дм³).

    Висмутат свинца находит применение в качестве положительного электрода в литиевых элементах.

    Висмут в сплаве с индием применяется в чрезвычайно стабильных и надежных ртутно-висмуто-индиевых элементах. Такие элементы прекрасно работают в космосе и в тех условиях, где важна стабильность напряжения, высокая удельная энергоёмкость, а надёжность играет первостепенную роль (например, военные и аэрокосмические применения).

    Трёхфтористый висмут применяется для производства чрезвычайно энергоёмких лантан-фторидных аккумуляторов (теоретически до 3000 Вт·ч/дм³, практически достигнута — 1500—2300 Вт·ч/дм³).

    Обработка прочных металлов и сплавов

    Легкоплавкие сплавы висмута (например, сплав Вуда, сплав Розе и др.) используются для крепления заготовок деталей из урана, вольфрама и их сплавов и других материалов, трудно поддающихся обработке резанием, на металлорежущих станках (токарных, фрезерных сверлильных и др.).

    Ядерная энергетика

    Эвтектический сплав висмут-свинец используется в ядерных реакторах с жидкометаллическим теплоносителем. В частности, в советском подводном флоте такие реакторы использовались на подлодке К-27 и семи подлодках проекта 705 («Лира»).

    Малое сечение захвата висмутом тепловых нейтронов и значительная способность к растворению урана вкупе со значительной температурой кипения и невысокой агрессивностью к конструкционным материалам позволяют использовать висмут в гомогенных атомных реакторах, пока не вышедших из стадии экспериментальных разработок.

    Магнитные материалы

    Интерметаллид марганец-висмут сильно ферромагнитен и производится в больших количествах промышленностью для получения пластичных магнитов. Особенностью и преимуществом такого материала является возможность быстрого и дешёвого получения постоянных магнитов (к тому же не проводящих ток) любой формы и размеров. Кроме того, этот магнитный материал достаточно долговечен и обладает значительной коэрцитивной силой. Кроме соединений висмута с марганцем, также известны магнитотвёрдые соединения висмута с индием, хромом и европием, применение которых ограничено специальными областями техники вследствие либо трудностей синтеза (висмут-хром), либо высокой ценой второго компонента (индий, европий).

    Топливные элементы

    Оксид висмута (керамические фазы ВИМЕВОКС), легированный оксидами других металлов (ванадий, медь, никель, молибден и др.), обладает очень высокой электропроводимостью при температурах 500—700 К и применяется для производства высокотемпературных топливных элементов.

    Высокотемпературная сверхпроводимость

    Керамики, включающие в свой состав оксиды висмута, кальция, стронция, бария, меди, иттрия и др., являются высокотемпературными сверхпроводниками. В последние годы при изучении этих сверхпроводников выявлены фазы, имеющие пики перехода в сверхпроводящее состояние при 110 К.

    Производство тетрафторгидразина

    Висмут в виде мелкой стружки или порошка применяется в качестве катализатора для производства тетрафторгидразина (из трехфтористого азота), используемого в качестве окислителя ракетного горючего.

    Электроника

    Сплав состава 88 % Bi и 12 % Sb в магнитном поле обнаруживает аномальный эффект магнетосопротивления; из этого сплава изготовляют быстродействующие усилители и выключатели.

    Вольфрамат, станнат-ванадат, силикат и ниобат висмута входят в состав высокотемпературных сегнетоэлектрических материалов.

    Феррит висмута BiFeO3 в виде тонких плёнок является перспективным магнитоэлектрическим материалом.

    Висмут — один из компонентов бессвинцовых припоев, а также легкоплавких припоев, используемых для монтажа особо чувствительных СВЧ-компонентов.

    Медицина

    Из соединений висмута в медицине шире всего используют его трёхокись Bi2O3. В частности, её применяют в фармацевтической промышленности для изготовления многих лекарств от желудочно-кишечных заболеваний[20], а также антисептических и заживляющих средств. Кроме того, в последнее время на её основе разрабатывается ряд противоопухолевых препаратов для лечения онкологических заболеваний.

    Оксид-хлорид висмута находит применение в медицине в качестве рентгеноконтрастного средства и в качестве наполнителя при изготовлении кровеносных сосудов. Кроме того, в медицине находят широкое применение такие соединения, как галлат, тартрат, карбонат, субсалицилат, субцитрат и трибромфенолят висмута. На основе этих соединений разработано множество медицинских препаратов (включая такие широко используемые, как мазь Вишневского).

    В качестве противоязвенных средств используются: висмута трикалия дицитрат (висмута субцитрат) (код АТХ A02BX05), висмута субнитрат (A02BX12), ранитидина висмута цитрат (A02BA07).

    Пигменты

    Ванадат висмута применяется в качестве пигмента (ярко-жёлтый цвет).

    Косметика

    Оксид-хлорид висмута применяется как блескообразователь в производстве лака для ногтей, губной помады, теней и др.

    Охота и рыбалка

    Висмут является относительно безопасным для окружающей среды. Это позволяет использовать дробь и грузила из висмута взамен традиционного и токсичного свинца[21].

    Биологическая роль

    Содержание висмута в человеческом организме составляет:

    • мышечная ткань — 0,32×10−5 %
    • костная ткань — менее 0,2×10−4 %
    • кровь — ~0,016 мг/л
    • ежедневный приём с пищей 0,005—0,02 мг.

    Содержание в организме среднего человека (масса тела ~70 кг) невелико, но точные данные отсутствуют. Данные о токсической и летальной дозах также отсутствуют[22]. Однако известно, что висмут при пероральном приеме малотоксичен. Это кажется неожиданным, так как обычно тяжелые металлы весьма ядовиты, но объясняется легкостью гидролиза растворимых соединений висмута. В интервале величин pH, встречающихся в человеческом организме (за исключением, может быть, желудка) висмут практически полностью осаждается в виде нерастворимых основных солей. Тем не менее, при совместном приёме висмута с веществами, способными перевести его в раствор (глицерин, молочная кислота и т. п.) возможно тяжёлое отравление. При проглатывании большого количества концентрированных растворов нитрата и других солей висмута значительную опасность представляет высокая концентрация свободной кислоты, образовавшейся вследствие гидролиза.

    Склонностью к гидролизу и низкой токсичностью обусловлено применение основных солей (субцитрата, основного нитрата и др.) висмута в качестве препаратов для лечения язвы желудка. Помимо нейтрализации кислоты и защиты стенок желудка коллоидным осадком, висмут проявляет активность против бактерии Helicobacter pylori, которая играет существенную роль в развитии язвенной болезни желудка.

    Интересные факты

    Висмут в твёрдом состоянии имеет меньшую плотность, чем в жидком. Этим свойством обладают лишь немногие вещества: среди элементарных, помимо висмута, германий, галлий[23] и некоторые соединения, например, вода.

    Висмут является сильнейшим диамагнетиком, причем эффект диамагнетизма на нём можно наблюдать в простых лабораторных условиях, в отличие от других доступных, но очень слабых диамагнетиков. Подвешенный на тонкой нити образец висмута заметно на глаз отталкивается от любого полюса магнита. Имея достаточно большие блоки висмута и мощный магнит, даже в домашних условиях можно увидеть, что силы отталкивания достаточно, чтобы оторвать магнит от опоры. Это явление называется диамагнитной левитацией[24].

    Довольно популярны украшения из кристаллов висмута.

    См. также

    Примечания

    1. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2013. — Vol. 85, no. 5. — P. 1047-1078. — DOI:10.1351/PAC-REP-13-03-02.
    2. 1 2 3 4 5 Химическая энциклопедия: в 5 т. / Кнунянц И. Л. (гл. ред.). — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 379-380. — 623 с. — 100 000 экз.
    3. ↑ Висмут в Химической энциклопедии
    4. ↑ Chemistry of arsenic, antimony, and bismuth. — 1998. — P. 41. — ISBN 978-0-7514-0389-3.
    5. 1 2 3 Под ред. Дрица М. Е. Свойства элементов. — Металлургия, 1985. — С. 292-302. — 672 с..
    6. Вольфсон Ф. И., Дружинин А. В. Главнейшие типы рудных месторождений. — М.: Недра, 1975. — 392 с.
    7. ↑ ВИСМУТ
    8. Юхин Ю. М., Михайлов Ю. И. Химия висмутовых соединений и материалов. — СО РАН, 2001. — С. 19-21. — 360 с.
    9. Om Prakash, Anil Kumar, A. Thamizhavel, S. Ramakrishnan. Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure (англ.) // Science. — 2017. — Vol. 355. — P. 52–55. — DOI:10.1126/science.aaf8227.
    10. Pierre de Marcillac, Noël Coron, Gérard Dambier, Jacques Leblanc, and Jean-Pierre Moalic (April 2003). «Experimental detection of α-particles from the radioactive decay of natural bismuth». Nature 422 (6934): 876–878. DOI:10.1038/nature01541. PMID 12712201. Bibcode: 2003Natur.422..876D.
    11. H. G. Carvalho, M. Penna (1972). «Alpha-activity of 209Bi». Lettere al Nuovo Cimento 3 (18): 720. DOI:10.1007/BF02824346.
    12. Славинский М. П. Физико-химические свойства элементов. — Государственное научно-техническое издательство литературы по черной и цветной металлургии, 1952. — С. 426-432. — 764 с.
    13. Лидин Р.А. и др. Химические свойства неорганических веществ: Учеб. пособие для вузов. — 3-е изд., испр. — М.: Химия, 2000. — 480 с. — ISBN 5-7245-1163-0.
    14. Денисов В. М., Белоусова Н. В., Моисеев Г. К. и др. Висмутосодержащие материалы: строение и физико-химические свойства/ Уро РАН. — Екатеринбург, 2000. — 527 с.
    15. ↑ ГОСТ 10928
    16. 1 2 ГОСТ 16274.0-77, ТУ 48-6-114
    17. ↑ Висмут. Цена на мировом рынке.
    18. ↑ Трансурановые элементы.
    19. ↑ Сплав IndAlloy 15, состоящий из Bi (42,9 %), Cd (5,10 %), In (18,3 %), Pb (21,7 %), Hg (4,00 %), Sn (8,00 %). Matweb LLC. Matherial Property Data.
    20. Моторкина Р.К., Новицкая Н.Я., Швайкова М.Д. Висмут // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б.В. Петровский. — 3 изд. — Москва : Советская энциклопедия, 1976. — Т. 4. Валин - Гамбия]. — 576 с. — 150 000 экз.
    21. ↑ http://www.nordis.fi/patruunat/vihtavuori-haulikon-patruunat/ ассортимент патронов с висмутовой дробью
    22. ↑ Эмсли Дж. Элементы. — М.: Мир, 1993. — 256 с.
    23. Чиркин В. С. Теплофизические свойства материалов. — Государственное издательство физико-математической литературы, 1959. — С. 187-192. — 356 с.
    24. ↑ Опыты по магнитной левитации (финский язык). Видеозапись «левитации» магнита между двух блоков висмута: [1], [2].

    Ссылки

    висмут - это... Что такое висмут?

  • ВИСМУТ — (нем.). Металл, отличающийся своей хрупкостью и легкоплавкостью, красновато белого цвета; употребляется для сплавления металлов и приготовления белил, а также в медицине. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… …   Словарь иностранных слов русского языка

  • ВИСМУТ — (символ Bi), серебристо белый металл, элемент пятой группы периодической таблицы, впервые выделенный как отдельный элемент в 1753 г. Основными рудами для его получения являются бисмит (Вi2О3) и висмутовый блеск (Bi2S3). Висмут плохо проводит… …   Научно-технический энциклопедический словарь

  • ВИСМУТ — (Bismuthum), Bi, химический элемент V группы периодической системы, атомный номер 83, атомная масса 208,9804; металл, tпл 271,4 шC. Висмут компонент легкоплавких сплавов, припоев, баббитов и др., присадка к алюминию, сталям и другим сплавам. Из… …   Современная энциклопедия

  • Висмут —         Bi (лат. bismuthum * a. bismuth; н. Wismut; ф. bismuth; и. bismuto), хим. элемент V группы периодич. системы Mенделеева, ат. н. 83, ат. м. 208,980.          Природный B. состоит из одного стабильного изотопа 209Bi; из радиоактивных… …   Геологическая энциклопедия

  • ВИСМУТ — (правильнее бисмут), Bismu tum, хим. обозначение Bi, ат. в. 209; в период, системе занимает по порядку 83 е место, 9 е в V группе; белый, слегка красноватый металл с выраженным кристадличе Рие. 2. ским строением, хрупкий; на воздухе и в воде не… …   Большая медицинская энциклопедия

  • ВИСМУТ — (лат. Wismuthum) Bi, химический элемент V группы периодической системы, атомный номер 83, атомная масса 208,9804. Серебристо белый металл, хрупкий, легкоплавкий; плотность 9,80 г/см&sup3, tпл 271,4 .С. В сухом воздухе устойчив. Минералы висмутин …   Большой Энциклопедический словарь

  • ВИСМУТ — ВИСМУТ, висмута, муж. (иностр.). Хрупкий металл белого цвета с красноватым отливом (хим.). || Порошок или жидкость из соединений этого металла, применяемые в медицине как лечебные средства (апт.). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ВИСМУТ — ВИСМУТ, а, муж. Химический элемент хрупкий легкоплавкий серебристо белый металл. | прил. висмутовый, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • ВИСМУТ — муж. один из металлов, невстречаемых в чистом виде и в деле, а только в окисях и солях; легкоплавкий, белый, с красноватым отливом. Висмутовый, к нему относящийся, содержащий его. Висмутовые или шпанские белила. Толковый словарь Даля. В.И. Даль.… …   Толковый словарь Даля

  • ВИСМУТ — металл красновато белого цвета; уд. вес 9,80; темп pa плавления 269°; отличается большой хрупкостью. В соединении с оловом, свинцом и кадмием В. образует сплавы, применяемые в качестве легких припоев и для изготовления легкоплавких… …   Технический железнодорожный словарь

  • Висмутин — Википедия

    Материал из Википедии — свободной энциклопедии

    Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 мая 2017; проверки требуют 2 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 мая 2017; проверки требуют 2 правки.

    Висмути́н (бисмутин, висмутинит, висмутовый блеск) — минерал класса сульфидов подкласса простых сульфидов, сульфид висмута. Впервые обнаружен в 1832 году в Боливии.

    Кристаллы (шестоватые, игольчатые) редки. Цвет минерала белый со свинцово-серым оттенком, иногда встречается пёстрая побежалость. Встречается в гидротермальных месторождениях, в жильных оловянно-вольфрамовых месторождениях, скарнах, в арсено-висмутовых, медно-висмутовых, золото-висмутовых месторождениях, иногда в пегматитах. Агрегаты плотные, зернистые, лучистые, стебельчатые. Мягкий, режется ножом, гибкий, но не упругий. Висмут составляет до 81 % минерала, встречаются примеси Pb (до 5 %), Cu (до 3,2 %), Sb (до 2,4 %), Se (до 8,8 %). Удельное электрическое сопротивление составляет в среднем 5,7⋅102ом·метр.

    Висмутин, Богемия

    Места распространения висмутина: США (Рудные горы, Коннектикут), Мексика, Перу, Германия (Нижняя Саксония), Великобритания, Швеция, Россия (Забайкалье), Италия (окрестности Турина), Чехия, Венгрия, Румыния. Характерен для оловянных месторождений Боливии и оловянно-свинцово-цинковых месторождений Японии. Обычно обнаруживается вместе с халькопиритом, арсенопиритом, вольфрамом, кварцем, сидеритом, бериллием, топазами.

    Важнейшая руда висмута, но большие скопления висмутина встречаются редко. Основной метод обогащения — флотация. Представляет интерес для коллекционеров (особенно красивые кристаллы из США и Мексики).

    висмут - это... Что такое висмут?

  • ВИСМУТ — (нем.). Металл, отличающийся своей хрупкостью и легкоплавкостью, красновато белого цвета; употребляется для сплавления металлов и приготовления белил, а также в медицине. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н.,… …   Словарь иностранных слов русского языка

  • ВИСМУТ — (символ Bi), серебристо белый металл, элемент пятой группы периодической таблицы, впервые выделенный как отдельный элемент в 1753 г. Основными рудами для его получения являются бисмит (Вi2О3) и висмутовый блеск (Bi2S3). Висмут плохо проводит… …   Научно-технический энциклопедический словарь

  • ВИСМУТ — (Bismuthum), Bi, химический элемент V группы периодической системы, атомный номер 83, атомная масса 208,9804; металл, tпл 271,4 шC. Висмут компонент легкоплавких сплавов, припоев, баббитов и др., присадка к алюминию, сталям и другим сплавам. Из… …   Современная энциклопедия

  • Висмут —         Bi (лат. bismuthum * a. bismuth; н. Wismut; ф. bismuth; и. bismuto), хим. элемент V группы периодич. системы Mенделеева, ат. н. 83, ат. м. 208,980.          Природный B. состоит из одного стабильного изотопа 209Bi; из радиоактивных… …   Геологическая энциклопедия

  • ВИСМУТ — (правильнее бисмут), Bismu tum, хим. обозначение Bi, ат. в. 209; в период, системе занимает по порядку 83 е место, 9 е в V группе; белый, слегка красноватый металл с выраженным кристадличе Рие. 2. ским строением, хрупкий; на воздухе и в воде не… …   Большая медицинская энциклопедия

  • ВИСМУТ — (лат. Wismuthum) Bi, химический элемент V группы периодической системы, атомный номер 83, атомная масса 208,9804. Серебристо белый металл, хрупкий, легкоплавкий; плотность 9,80 г/см&sup3, tпл 271,4 .С. В сухом воздухе устойчив. Минералы висмутин …   Большой Энциклопедический словарь

  • ВИСМУТ — ВИСМУТ, висмута, муж. (иностр.). Хрупкий металл белого цвета с красноватым отливом (хим.). || Порошок или жидкость из соединений этого металла, применяемые в медицине как лечебные средства (апт.). Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ВИСМУТ — ВИСМУТ, а, муж. Химический элемент хрупкий легкоплавкий серебристо белый металл. | прил. висмутовый, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • ВИСМУТ — муж. один из металлов, невстречаемых в чистом виде и в деле, а только в окисях и солях; легкоплавкий, белый, с красноватым отливом. Висмутовый, к нему относящийся, содержащий его. Висмутовые или шпанские белила. Толковый словарь Даля. В.И. Даль.… …   Толковый словарь Даля

  • ВИСМУТ — металл красновато белого цвета; уд. вес 9,80; темп pa плавления 269°; отличается большой хрупкостью. В соединении с оловом, свинцом и кадмием В. образует сплавы, применяемые в качестве легких припоев и для изготовления легкоплавких… …   Технический железнодорожный словарь

  • висмут — сущ., кол во синонимов: 4 • зельбит (1) • минерал (5627) • полуметалл (4) • …   Словарь синонимов


  • Смотрите также